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Abstract: - The Discrete Tchebichef Transform (DTT) is a linear orthogonal transform which has higher energy 

compactness property like other orthogonal transform such as Discrete Cosine Transform (DCT). It is recently 

found applications in image analysis and compression. This paper proposes a new approach of fast zigzag 

pruning algorithm of 4x4 DTT coefficients. The principal idea of the proposed algorithm is to make use of the 

distributed arithmetic and symmetry property of 2-D DTT, which combines the similar terms of the pruned 

output. Normalization of each coefficient is done by merging the multiplication terms with the quantization 

matrix so as to reduce the computation. Equal number of zigzag pruned coefficients and block pruned 

coefficients are used for comparison to test the efficiency of our algorithm. Experimental method shows that 

our method is competitive with the block pruned method. Specifically for 3x3 block pruned case, our method 

provides lesser computational complexity and has higher peak signal to noise ratio (PSNR). The proposed 

method is implemented on a Xilinx XC2VP30 FPGA device to show its efficient use of hardware resources. 

 

Key-Words: - Discrete Cosine Transform, Discrete- Tchebichef Transform, Image compression, Peak signal to 

noise ratio,  Zigzag Prune. 

 

1  Introduction 

Image transform methods using orthogonal kernel 

functions are commonly used in image compression. 

One of the most widely known image transform 

method, Discrete cosine transform (DCT) has been 

adopted in the standards for still and moving picture 

coding [1], [2].This happens because it performs 

much like the statistically optimal Karhunen-Loeve 

transform under a variety of criteria [1]. The 

computing devices such as Personal Digital 

Assistants (PDAs), Digital cameras and mobile 

phones require a lot of image transmission and 

processing. Therefore it is essential to have efficient 

image compression techniques which could be 

scalable and portable to these smaller computing 

devices. The Tchebichef moment compression, that 

is proposed in this paper, is meant for smaller 

computing devices [3].  The efficiency of 

Tchebichef  moment compression is higher than that 

of DCT in terms of compression performance for 

class of images having high intensity variations. 

DTT has lower complexity since it requires the 

evaluation of only algebraic expressions; whereas 

certain implementation of DCT requires special 

algorithms or lookup tables for computation of 

trigonometric functions [4]. In present days the 

coding standard recommended by ITU-T and 

MPEG, H.264/MPEG-4 AVC employs a 4×4 

integer cosine transform (ICT) due to its low 

complexity [5]. There are many DCT compression 

algorithms which can be computed in a fast way by 

means of direct or indirect methods. A direct 

polynomial transform technique for two dimensional 

(2-D) DCT is proposed by Duhamel et al. [6]. Feig 

and Winogard [7] proposed another fast algorithm 

for direct cosine transform. These conventional 

direct methods are row-column methods which 

computes N point 1-D DCTs for both row and 

column directions to evaluate 2N sets of data points. 

Vetterli [8] proposed an indirect method to calculate 

2-D DCT by mapping it into a 2-D DFT plus a 

number of rotations.     

    The above algorithms assume same number of 

input and output points. However, in image coding 

applications, the most useful information about the 

image data is kept in the low-frequency DCT 

coefficients. Therefore, only these coefficients could 

be computed. This gives rise to the application of 

pruning technique. Using this idea, additional 

processing speed-up is also possible. 

    Several algorithms for pruning the 1-D DCT in 

[9]-[13] and 2-D DCT in [14]-[17] has been 

addressed. In [10], the output-pruned DCT and DST 

ware computed by slightly modifying output-pruned 

FFT algorithms for real valued data of the same 
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size. A recursive pruned DCT algorithm has been 

presented in [11] with a structure that allows the 

generation of next higher order pruned DCT from 

two identical lower order pruned DCTs. In [12] a 

fast pruning algorithm is proposed which compute

0N lowest frequency components of length- N

discrete cosine transform, where 0N is any integer. 

A generalized output pruning algorithm for matrix –

vector multiplications is proposed in [13], which 

eliminate thoroughly the unnecessary operations for 

computing an output pruning DCT. Peng [14] has 

presented a DCT-based computational complexity 

scalable video decoder via properly pruning the 

DCT data. Experimental results showed that the 

complexity can be scaled from 100% to 38% with 

graceful quality degradation. Walmsley et. al [15] 

uses pruning method in JPEG standard. They have 

shown that for an 8×8 image block it is only 

necessary to calculate a 4×4 subset of DCT values to 

retain acceptable image quality. The effects of 

pruning on parallelization and speedup process are 

also discussed. In [16], an in-place decimation-in-

space (DIS) vector-radix fast cosine transform is 

presented and two pruning algorithms are derived. 

The first pruning algorithm discusses the 

computation of 00 NN  out of NN DCT points, 

where both 0N  and N are powers of 2. The second 

one presents a recursive pruning method for 

computation of any number of points for arbitrary 

shaped regions. The two pruning algorithms are 

compared with row-column approach in terms of 

computational complexities. The pruning algorithm 

in [17] makes use of the algorithm in [7] for any 

number of low-frequency components. The pruning 

algorithm in [15] and [17] computes a set of 

coefficients included in a top-left triangle. It 

corresponds to zigzag scanning where all 

coefficients in each diagonal are computed. In [10] 

and [14], a sub-block of coefficients out of NN is 

computed. 

The Discrete Tchebichef Transform (DTT) is 

another linear orthonormal version of orthogonal 

Tchebichef polynomials, that has very similar 

energy compactness for natural and artificial 

images. DTT can be also utilized in image feature 

extraction and pattern recognition [18]. Recently, 

4×4 DTT fast algorithms for image compression 

have been proposed [21]-[24]. A 2×2 block pruned 

out of 4×4 DTT algorithm which computes the 

upper left quarter of 4×4 image blocks is proposed 

in [23].In [24], Saleh proposed a fast 4×4 algorithm 

suitable for different block sizes. 

Having surveyed on different DCT pruning 

algorithms, we presume that, zigzag pruning 

algorithm can be a potential candidate for 

image/video coding applications. In this paper we 

propose a fast zigzag pruning DTT algorithm of 

different prune lengths. A comparison with the 

existing DTT fast algorithms available in the 

literature till date is made. Finally the reconstructed 

image quality of different pruned length is evaluated 

both subjectively and objectively. 

The remainder of the paper is organized as 

follows: Section 2 focuses the mathematical 

formulation of Discrete Tchebichef algorithm. 

Comparison of the similar properties between DTT 

and DCT is made in Section 3. Section 4 presents 

the proposed zigzag pruning algorithm. The 

computational complexities of the proposed 

algorithm are compared with other algorithms in 

Section 5. Section 6 shows the hardware 

implementation of DTT algorithms in a Xilinx 

XC2VP30 device. Section 7 demonstrates the PSNR 

reconstruction of different standard images using 

block pruned DTT and zigzag- pruned DTT. Finally 

Section  8 provides the conclusion and future work. 
 

 

2   The Discrete Tchebichef Transform 
The Discrete Tchebichef Transform (DTT) is 

relatively a new transform that uses the Tchebichef 

moments to provide a basis matrix. As with DCT, 

the DTT is derived from the orthonormal 

Tchebichef polynomials. This leads to presume that 

it will exhibit similar energy compaction properties 

[19].  

    For a 2-D image function ),( yxf  on the discrete 

domain of ],1,0[]1,0[ MN  the  discrete 

forward Tchebichef Transform of order )( qp  is 

defined as  
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Given a set of Tchebichef transform pqT  for a 

digital image ),( yxf , the inverse transformation of 

Tchebichef moment can be defined as 
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The scaled Tchebichef polynomials )(
~

xtp  are 

defined using the following recurrence relation [20]: 
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The definition as specified above uses the following 

scale factor [3] for the polynomial of degree p  as 
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The set )}(
~

{ xti has a squared-norm given by 
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The values of the squared-norm affect the 

magnitudes of the corresponding moments pqT  (1). 

As specified in [3], the computation of pqT can lead 

to erroneous results when N is large. This problem 

can be solved by constructing orthonormal versions 

of Tchebichef polynomials by modifying the scale 

factor in (4) as 
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By denoting the new set of polynomials with the 

above scale factor as },{ it the recurrence relation 

given in (3) can change to the following 
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The starting values for the above recursion can be 

obtained from the following equations 
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Denoting the squared norm by ),,(~ Np
 
so that 
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The moment equation in (1) now reduce to 
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The inverse moment transform becomes 
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Equation (12) can also be expressed using a series 

representation involving matrices as follows 
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where, pqG is called basis image. Assuming equal 

image dimension ,8MN  the basis image pqG  is 

defined as: 
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                                                                                     (14)    
 

 

3 Similarity in Properties between 

DTT and DCT 

 
3.1   Separability 
The definition of DTT can be written in separable 

form as: 
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Therefore it can be evaluated using two dimensional 

transforms as follows: 
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The transform equation of DCT can be expressed as: 
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From Equation (17) and (18) it is clear that 2-D 

DTT and 2-D DCT are just one dimensional DTT 

and DCT applied twice by successive 1-D 

operations, once in x-direction, and once  in y-

direction.  

 

3.2  Even Symmetry 
From [19], it can be shown that Tchebichef 

polynomials satisfy the property 
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For DCT: 
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The above two properties are commonly used in 

transform coding methods to get substantial 

reduction in the number of arithmetic operations. 

 

3.3  Orthogonality 
DTT and DCT basis functions are orthogonal. Thus, 

the inverse transformation matrix of A is equal to its 

transpose. Therefore, this property renders some 

reduction in the pre-computation complexity.2-D 

basis images of DTT and DCT are shown in Fig 1.            

    

 
 

(a) 

 

 
 

(b) 

 

Fig. 1. Basis images of (a) DTT (b) DCT 

 

From Fig 1, it is clear that the basis images of DTT 

and DCT are quite similar in nature. Rows in the 
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spectrum are increase in horizontal frequencies 

while columns are increase in vertical frequencies. 

For both images low frequencies resides in the 

upper part of spectrum.  

 

3.4  Energy Compaction 
Efficiency of a transformation scheme can be 

gauged by its ability to pack input energy into as 

many few coefficients as possible. Further, the 

quantizer discard coefficients with relatively small 

amplitudes without introducing visual distortion in 

the reconstructed image. DTT and DCT exhibit 

excellent energy compaction properties for highly 

correlated images. The energy of the image is 

packed into low frequency region i.e. top left region. 
 

 

4    Proposed Zigzag Pruned 4×4 DTT- 

Algorithm 
The 2-D DTT can be expressed in matrix form as 

 

                   '.FT                                     (21) 

 

where F  is the 2-D input data, τ is the Tchebichef 

basis and T  is the 2-D matrix of transformed 

coefficients. The transform kernel for 4 point DTT 

can be defined from (11) as 
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By defining 2/1x  and 5/1y , (22) can be 

written as: 
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Factorizing (23) we will get 
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S  is a scaling matrix and can be separated from the 

core transform computation.  

 

The expression in (21) can be factorized as: 
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Symbol  indicates element-by-element 

multiplication. Since ˆ is orthogonal, but not 

orthonormal. Normalization can be done by merging 

Ŝ  into the quantization matrix. 

     By substituting (23) in (21), we can calculate 

each transformed coefficients for the input matrix 

F . Furthermore, the even symmetry property allow 

us to group terms of the form )3,()1,( xfxf for 

3,2,1,0x  
to further reduce the number of 

arithmetic operations. The coefficients are selected 

in a zigzag pruned way and the computational 

complexity is compared with that of equal number 

of block pruned coefficients as specified in [24].  

For the specific case, we have compared with nine 

zigzag pruned coefficients and nine block pruned 

coefficients. Starting from upper left coefficients, 

the normalized nine zigzag pruned coefficients, 

sT ji 'ˆ from (25) are given as: 
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where,  
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Fig 2 shows the signal flow graph of nine zigzag 

pruned coefficients.  
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The nine normalized block pruned coefficients are 

given as: 

222120121110020100
ˆ,ˆ,ˆ,ˆ,ˆ,ˆ,ˆ,ˆ,ˆ TTTTTTTTT .               (28) 

 

The expressions for all the coefficients are same as 

that of zigzag pruned coefficients defined in (26),  

except, coefficient 22T̂  which is can be expressed as: 

 

)}].(){()}()[{(ˆ
22 OMKIGECAT  (29) 

 

5  Computational Complexity Analysis 
The proposed zigzag pruned DTT algorithm is 

compared with the recently proposed algorithms in 

[21]-[24] and the traditional separability-symmetry 

algorithm. For a nn pruned block, we need 
2n  

coefficients for image reconstruction. Therefore, it 

is obvious that comparison should be made between 

nn block pruned with 
2n zigzag pruned.  

       Table 1 shows that our zigzag pruned algorithm 

gives lower computation complexity than other 

algorithms. Specifically comparing with recently 

proposed block pruned method [24], our algorithm 

has lower computational complexities for any 

pruned sizes. By using only one coefficient (dc 

component) we need 15 additions to compute 00T̂ . 

For 4-coefficients pruned size, we need 39 additions 

and 5 shift operations, as compared with 2×2 pruned 

size which needs 2- multiplications, 39 additions 

and 7 shift operations. Similarly for 9 coefficient 

pruned size our algorithm needs 66 additions and 11 

shift operations compared to 6-multiplications, 66 

additions and 14 shift operations in 3×3 block 

pruned algorithm. A substantial reduction in 

computational complexities is achieved. This is due 

to the fact that, we have normalized the coefficients 

by merging the multiplication terms with the 

quantization matrix.   

      It is also clear that proposed algorithm 

complexity is lower than that of algorithm in 

algorithm in [23] for 2×2 pruned block. The DTT 

algorithm presented in [22] is a full 4×4 DTT 

algorithm which is having same complexity as the 

full 16-coefficient zigzag algorithm.  

 

6   Hardware Implementation 
The proposed algorithm is implemented on Xilinx 

XC2VP30 FPGA device. We developed a 

distributed arithmetic based approach to compute   

1-D and 2-D DTT transform on Xilinx XC2VP30 

platform. This is due to the fact that, DA [25] is free 

from multiplications. All the coefficients are 

determined by integer shift and addition operations. 

Table 1 shows the hardware resource utilization of 

1-D floating point DTT algorithm.  The number of 

slices and 4 input LUTs are 2% and 1.2% of the 

available resources. This is much higher than 1D 

integer DTT as shown in table 4. 

Considering the case of 2D DTT, it can be seen 

from table 3 that, pruned DTT do not require any 

flip flops (memory) in contrast to 2D DTT in Table 

2, which requires almost 1% of the resources. This 

makes the transform a combinational circuit, instead 

of a sequential one. This is a major advantage of 

using pruning method. Further, the number of slices 

and 4 input LUTs are 2.3% and 2% lesser in 9-

pruned DTT than 2D float point DTT.  Number of 

bonded IOBs are 37% more in pruned DTT, which 

is the only drawback.  

Table 2 and table 5 show the resource utilization 

summery of floating point and integer based 2D 

DTT. By looking at table 5, it can be said that, using 

integer based transform much less hardware 

resources can be saved.  The pruned DTT is 

calculated using direct approach rather than row-

column approach. The merit of direct approach in 

calculating transform is that, it does not need any 

memory elements, which is obvious in table 3. 

Figure 2 shows the signal flow graph of 9- pruned 

normalized coefficients. The values of A,B,..P are 

the values obtained from equation (7). In the signal 

flow graph, multiplications with 3 are implemented 

as a left shift and add operations. 
 

Table 1. H/W utilization of 1D floating point DTT in 

Xilinx XC2VP30. 

Resources Available Utilise %  Utilisation 

No of Slices 13696 277 2 

Flip Flops 27392 0 0 

4 input LUTs 27392 493 1.2 

Bonded IOBs 556 76 13 

 

Table 2. H/W utilization of 2D floating point DTT on 

Xilinx XC2VP30 

 

Table 3. H/W utilization of pruned DTT on Xilinx 

XC2VP30 device. 

Resources Available Utilise %  Utilisation 

No of Slices 13696 707 5 

Flip Flops 27392 204 0.9 

4 input LUTs 27392 1286 4 

Bonded IOBs 556 59 10 

Resources Available Utilise %  Utilisation 

No of Slices 13696 380 2.7 

Flip Flops 27392 0 0 

4 input LUTs 27392 715 2 

Bonded IOBs 556 263 47 
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Table 4 H/W utilization of 1D Integer DTT on Xilinx 

XC2VP30 device. 

 

Table 5. H/W utilization 2D integer DTT on Xilinx 

XC2VP30 device. 

 

7 Results and Discussion of Block-

Pruned and Zigzag-Pruned DTT/DCT 
The proposed algorithm is tested for compression on 

a set of standard images. A comparison of 

reconstructed image quality (PSNR in dB) is made  

between block-pruned sizes of dc component, 2x2 

and 3x3 with that of dc component, 4 points and 9  

points  zigzag  pruned  sizes  respectively.  Table 7 

Shows the PSNR comparison between block pruned 

DTT and zigzag pruned DTT. From the Table 7(a) 

and (b), it can be observed that the PSNR of 

reconstructed images using 9- coefficients zigzag 

pruned sizes are higher than that of the PSNR of 

3×3 block-pruned image sizes. Comparing with 4-

coefficients zigzag pruned sizes and 2×2 block 

pruned sizes, the PSNR of block pruned sizes are 

higher than that of zigzag pruned sizes. 

Nevertheless, there is advantage of computational 

complexities in both cases. Similarly, in table 8(a) 

and (b) an exhaustive comparison is made between 

block-pruned DTT with block-pruned DCT and 

zigzag-pruned DTT with zigzag-pruned DCT. It has  

seen observed that, 9- coefficients zigzag pruned 

DTT/DCT shows always a higher PSNR than that of  

its 3×3 block-pruned counterpart. For example, in 

case of Lena image DTT shows a PSNR gain of 0.7 

dB, Barbara shows a significant gain of 1.54 dB, for 

crowd image DTT shows a PSNR gain of 1.02 dB. 

Similar performance improvement is also present in 

DCT 9-pruned images.  Furthermore, for images 

such as (a) Lena, (b) Barbara and (c) Crowd, DCT 

shows slight better performance than that of DTT. 

For images (d) Finger print, (e) Mountain and (f) 

Library, DTT outperforms DCT of any pruning 

sizes. For instance, Finger print image shows a 

PSNR gain of 1.27 dB, in 9-prune sizes and 0.27 dB 

in 4- prune sizes. For Mountain and Library images 

the PSNR gain is only 0.02 to 0.03 dB. Hence, 9-

coefficients pruned sizes are enough for practical 

image or video coding applications.   

 

8    Conclusion 
In this paper, a fast algorithm of 2-D 4×4 DTT has 

been proposed which pruned the coefficients in a 

zigzag fashion. This zigzag order pruning can be 

more suitable for still images and video coding 

applications because of considerable improvement 

in objective image quality and fast processing. The 

pruning algorithm is implemented in a Xilinx 

XC2VP30 FPGA, which shows considerable 

amount of hardware savings than a 4x4 floating 

point DTT. Furthermore, it has been shown that 

DTT compression is very similar to DCT 

compression for natural and artificial images. Future 

research direction is to develop a fast 8x8 DTT 

algorithm for real time image and video 

compression.  

 

 

        
                (a)                                          (b) 

 

           
                 (b)                                           (d) 

     
                   (e)                                       (f) 

 

Fig. 2. Set of original images used for experimental 

evaluation of the Pruned DTT/DCT, Zigzag 

DTT/DCT.    (a) Lena, (b) Barbara, (c) Crowd,  (d) 

Finger print, (e) Mountain, (f) Library  

Resources Available Utilise %  Utilisation 

No of Slices 13696 61 0.4 

Flip Flops 27392 0 0 

4 input LUTs 27392 112 0.4 

Bonded IOBs 556 84 11 

Resources Available Utilise %  Utilisation 

No of Slices 13696 98 0.7 

Flip Flops 27392 94 0.3 

4 input LUTs 27392 157 0.6 

Bonded IOBs 556 63 11 
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Fig 3.  Signal flow graph of 9 zigzag prune normalized coefficients 

 
 

 

Table 6. Computational complexity comparison  between different DTT algorithms and our proposed 

algorithm 

 
 

 

 

 

 

No. of coefficients 

 used for DTT 

image 

reconstruction 

(Pruned DTT) 

Number of operations 
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& 

  Symmetry 

Nakagaki & 

Mukundnan[21] 

 

Ishwar et. 

al.[22] 

Abdelwaheb 

           [23] 

Block Pruned 

Method[24] 

Proposed 

method 
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- - - - 0/15/1 0/15/0 
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- - - 24/48/0 2/39/7 0/39/5 
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Table 7(a): Comparison of PSNR between block-pruned and zigzag-pruned reconstructed images of (a) 

Lena, (b) Barbara  and (c) Crowd

 

 

 

Table 7(b): Comparison of PSNR between block-pruned and zigzag-pruned reconstructed images of (d) 

Finger print, (e) Mountain and (f) Library

 
 

 

Table 8(a): Comparison of PSNR between DCT and DTT of block pruned and zigzag pruned reconstructed 

images of (a) Lena, (b) Barbara and (c) Crowd 

 
 

 

Table 8(b): Comparison of PSNR between DCT and DTT of block pruned and zigzag pruned reconstructed 

images of (d) Finger print, (e) Mountain and (f) Library

Number of 

DTT 

Coefficients 

retained 

 PSNR(dB)  

Lena Barbara Crowd 

Block prune Zigzag prune Block pruned Zigzag prune Block prune Zigzag prune 

1 26.92 26.92 23.37 23.37 21.62 21.62 

4 33.35 32.35 25.61 25.23 30.13 29.43 

9 39.29 40.00 30.03 31.57 38.54 39.59 

Number of 

DTT 

Coefficients 

retained 

PSNR(dB) 

Finger print Mountain Library 

Block prune Zigzag prune Block prune Zigzag prune Block prune Zigzag prune 

1 11.08 11.08 17.08 17.08 16.25 16.25 

4 14.94 16.84 19.60 19.82 18.90 19.44 

9 22.28 24.38 22.97 23.17 22.69 23.45 

Number of 

coefficients 

retained for 

image 

reconstruction 

 

PSNR(dB)  

Lena Barbara Crowd 

Block prune Zigzag prune Block prune Zigzag prune Block prune Zigzag prune 

DCT DTT DCT DTT DCT DTT DCT DTT DCT DTT DCT DTT 

1 26.92 26.92 26.92 26.92 23.37 23.37 23.37 23.37 21.62 21.62 21.62 21.62 

4 33.43 33.36 32.38 32.35 25.68 25.61 25.29 25.23 30.20 30.12 29.47 29.43 

9 39.65 39.29 40.24 39.99 30.29 30.03 31.78 31.57 39.15 38.54 40.03 39.59 

Number of 

coefficients 

retained for 

image 

reconstruction 

 

PSNR(dB) 

Finger Print Mountain Library 

Block prune Zigzag prune Block prun Zigzag prune Block prune Zigzag prune 

DCT DTT DCT DTT DCT DTT DCT DTT DCT DTT DCT DTT 

1 21.88 21.88 21.88 21.88 17.07 17.07 17.07 17.07 16.25 16.25 16.25 16.25 

4 28.05 28.25 29.11 29.38 19.59 19.59 19.80 19.82 18.90 18.90 19.42 19.44 

9 30.42 30.75 31.94 33.21 22.96 22.97 23.16 23.17 22.69 22.69 23.42 23.45 
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