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Abstract: -  In this paper, we investigate the use of Field-Programmable Gate Arrays (FPGAs) in the design of a 

highly scalable Variable Block Size Motion Estimation architecture for the H.264/AVC video encoding 

standard. The scalability of the architecture allows one to incorporate the system into low cost single FPGA 

solutions for low-resolution video encoding applications as well as into high performance multi-FPGA 

solutions targeting high-resolution applications. To overcome the performance gap between FPGAs and 

Application Specific Integrated Circuits, our design minimizes the increase in memory bandwidth as the design 

scales. The core computing unit of the architecture is implemented on FPGAs and its performance is reported. 

It is shown that the computing unit is able to achieve 58 frames per second (fps) performance for 640x480 

resolution VGA video while incurring only 4.5% LUT and 6.3% DFF utilization on a Xilinx XC5VLX330 

FPGA. With 8 computing units at 38% LUT and 55% DFF utilization, the architecture is able to achieve 50 fps 

performance for encoding full 1920x1088 progressive HDTV video. 
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1 Introduction 
The Variable Block Size Motion Estimation 

(VBSME) algorithm is an essential part of the 

H.264/AVC video-encoding standard. Relative to 

Fixed Block Size Motion Estimation algorithms, 

VBSME provides much higher compression ratios 

and picture quality. VBSME algorithms, however, 

are much more computationally expensive. In 

particular, the H.264/AVC standard calls for up to 41 

motion vectors for each macroblock and its 

corresponding subblocks. Due to this high 

computing demand, many hardware architectures 

have been proposed to accelerate the computation of 

VBSME motion vectors for H.264/AVC [1]–[8]. 

Most of the architectures, however, have been 

implemented in Application Specific Integrated 

Circuit (ASIC) technology. Except for limited 

commercial implementations [9]–[11], little 

information exists on how these algorithms would 

perform on reconfigurable technologies such as 

Field-Programmable Gate Arrays (FPGAs). In 

particular, the FPGA implementation presented in 

[12] specifically targets portable multimedia devices 

with CIF-level resolution and cannot be easily 

scaled. The FPGA implementation presented in [13], 

on the other hand, only reaches VGA-level 

resolution and 27 fps performance. It too cannot be 

scaled. In this work, we propose a scalable hardware 

VBSME architecture based on the Propagate Partial 

SAD architecture [8] and measure its performance 

on FPGAs as the design scales. 

 The use of FPGAs encourages design reuse and 

can greatly enhance the upgradability of digital 

systems. The programmability of FPGAs is 

particularly useful for highly flexible encoding 

systems that can accommodate a multitude of 

existing standards as well as the emergence of new 

standards. In particular, our design can be 

incorporated into single FPGA solutions targeting 

low cost low-resolution applications as well as into 

multiple FPGA designs for high performance high-

resolution applications.  

 Comparing to other programmable options such 

as Digital Signal Processors (DSPs) including Texas 

Instrument DaVinchi [14] and Analog Device 

Blackfin [15], FPGAs can offer considerably higher 

performances for implementing highly parallel data 

streaming applications such as motion estimation. In 

particular, while real time implementations of 

motion estimation algorithms on DSPs are limited to 

fast-search algorithms, FPGAs can efficiently 

implement full-search motion estimation algorithms 

in real time. 
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 Unlike full-search algorithms, fast-search 

algorithms [16]–[18] trade quality for performance 

by searching through only a subset of an entire 

search space while following a set of pre-defined 

search patterns. During the search process, the 

algorithms constantly check the quality of the motion 

estimation results and terminate the motion 

estimation process as soon as the quality of the 

results reaches an acceptable level. 

 Full-search motion estimation algorithms [1]–[8], 

on the other hand, always find the best motion 

estimation solution by exhaustively searching 

through the entire search space. Comparing to fast-

search algorithms, full-search algorithms offer better 

video quality and higher compression ratios since 

exhaustive search guarantees optimal results that are 

independent of the actual situation of motion in 

videos. 

 The benefits of full-search algorithms do come at 

a much higher computing cost. The full-search 

algorithms, however, are particularly well suited for 

hardware acceleration due to their highly parallel 

datapath, simple control logic and regular memory 

access patterns. 

 Our proposed architecture is based on one of the 

three widely used full-search VBSME architectures 

— the Propagate Partial SAD [1] [8], SAD Tree [7], 

and the Parallel Sub-Tree [6]. The Propagate Partial 

SAD architecture was selected due to its unique 

blend of efficiency and scalability. While the SAD 

Tree architecture has the highest performance 

amongst the three [7], it requires the support of a 

complex array of shifting registers that must have the 

capability of shifting in both horizontal and vertical 

directions. This array, while efficient to implement 

in ASICs, consumes a large amount of FPGA 

resources. The Parallel Sub-Tree architecture, on the 

other hand, is the most compact design amongst the 

three. The architecture, however, inherently does not 

scale well for high performance applications [6].  

 As proposed in [1] and [8], the Propagate Partial 

SAD architecture processes a single group of 16 

reference blocks at a time. Our design enhances the 

original design by allowing it to be scaled to process 

several groups of 16 reference blocks 

simultaneously. These groups share a large amount 

of their reference pixels. This sharing minimizes the 

increase in memory bandwidth as the design scales 

and makes high performance FPGA-based design 

feasible. The performance of the scalable design is 

further enhanced by a new row adder tree design, 

which reorganizes the addition process in order to 

achieve more efficient pipelining. The reorganization 

eliminates retiming registers and further increases 

circuit throughput and performance. 

 An early version of this paper appeared in [19]. 

This work augments that work with an extended 

investigation on the effect of pipelining on the pixel 

processing unit – a critical component of the 

VBSME architecture. It is found that a two-stage-

pipelined design of row adder trees can significantly 

increase performance while the three-stage-pipelined 

design only results in limited performance benefits. 

 The remainder of this paper is organized as 

follows: Section 2 introduces the general Motion 

Estimation algorithm and the Propagate Partial SAD 

architecture, Section 3 presents the scalable VBSME 

architecture, Section 4 describes the detailed design 

of the pipelined pixel processing unit, Section 5 

describes the corresponding memory architecture, 

Section 6 evaluates the system performance, and 

Section 7 concludes. 

 

 

2 Hardware Motion Estimation 
Video encoding algorithms typically process one 

16x16 block of pixels (called a macroblock) at a 

time. The frame that contains the macroblocks 

currently being processed is referred to as the current 

frame. During the encoding process, the goal of 

Motion Estimation (ME) is to find the best match for 

a macroblock from a set of reference pixels (where 

the set is called a search window, and the frame that 

contains the search window is called a reference 

frame). To this end all ME algorithms accomplish 

this goal through three distinct stages of 

computation. First the macroblock is mapped onto a 

16x16 block of pixels (called a reference block) in 

the search window, and the absolute difference 

values between the macroblock pixels and the 

corresponding reference block pixels are calculated. 

Second, the Sum of the Absolute Differences (SAD) 

is calculated for the reference block by summing the 

absolute difference values over the entire block. This 

process repeats until a SAD value is calculated for 

each of the reference blocks in the search window. 

Thirdly, the minimum of all the SAD values in the 

search window is computed and the corresponding 

reference block is used by the encoder to calculate 

the best-match Motion Vector (MV) for the 

macroblock currently being processed. 

 Equation 1 and 2 show the arithmetic for 

calculating the SAD value of a reference block such 

that pixel (x, y) in the macroblock is mapped to pixel 

(rx + x, ry + y) in the search window. 
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Fig. 1  Macroblock and Subblocks in VBSME 

 
Fig. 2  A Group of 16 Reference Blocks 

 Here, W and H represent the width and height of 

the macroblock. RW and RH represent the width and 

height of the search window. C(x, y) represents the 

value of pixel (x, y) in the macroblock while R(rx + 

x, ry + y) represents the value of pixel (rx + x, ry + 

y) in the search window. Note that this paper uses a 

horizontal search range of [-24, +23] pixels and a 

vertical search range of [-16, +16] pixels for each 

macroblock. These search range values translate to 

an RW value of 63 and RH value of 48. 

 Instead of just calculating one SAD per 

macroblock/reference-block pair, VBSME 

algorithms subdivide a 16x16 macroblock into a set 

of subblocks. Correspondingly, the reference block 

is also divided into subblocks and SAD values are 

then calculated for each of the subblocks in addition 

to the macroblock. In particular, as shown in Figure 

1, the H.264/AVC standard subdivides a macroblock 

into 40 subblocks of size 16x8, 8x16, 8x8, 8x4, 4x8, 

and 4x4. Consequently, for a macroblock, 41 SAD 

values are needed per reference block. 

 The Propagate Partial SAD architecture speeds up 

VBSME algorithms by simultaneously calculating 

SAD values for 16 reference blocks at a time. In 

particular, the architecture takes advantage of the 

fact that, in a search window, every vertical group of 

16 reference blocks share a common row of 16-

pixels (as shown in Figure 2). In the Propagate 

Partial SAD architecture, this common row is then 

used to simultaneously calculate 16 absolute 

difference values for each of the 16 reference blocks. 

A specialized pipeline structure is then used to 

accumulate these absolute difference values to 

produce the 41 SAD values per reference block at 

every clock cycle. 
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Fig. 3  The Scalable VBSME Architecture 

 

3 System Architecture 
The overall structure of the scalable VBSME 

architecture is shown in Figure 3. It consists of a 

bank of memory that stores the search window, an 

input distribution unit, n Pixel Processing Units 

(PPUs), and two sets of comparators. As in [8], the 

memory storing the search window is divided into 

two partitions. Each partition contains an output of 

15+n pixels. These outputs are expanded into 2n 

buses by the input distribution unit, where each bus 

contains 16 pixels. The 2n buses are then fed into n 

PPUs, which have been initialized with a 

macroblock’s pixel values. 

 The PPUs are used to produce n x 41 SAD values 

at each clock cycle. These n x 41 SAD values are 

then used to compute the minimum SAD values of 

the search window in two steps. First, the n x 41 

SADs are fed into the local parallel comparator tree. 

This tree computes 41 minimum SAD values from 

its n x 41 inputs. The local minimum SAD values are 

forwarded to the global sequential comparator, 

which determines the 41 minimum SAD values for 

the entire search window. Note that the global 

comparator is of a conventional less-than comparator 

design [8] and the scaling of the VBSME 

architecture does not affect its complexity. 

ref blk 0 

16 pixels 

16 pixels 

ref blk 15 
ref blk 14 

A Row of 16 Pixels 
Shared Among 16 
Reference Blocks 
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Fig. 4   Input Distribution Unit, PPUs and Local 

Comparators 

 The detailed design of the input distribution unit, 

the PPUs, and the local parallel comparator tree is 

shown in Figure 4. As shown, the core of the 

scalable VBSME architecture is the PPUs, which are 

based on the Propagate Partial SAD architecture. As 

discussed in Section 2, each PPU produces 41 SAD 

values (corresponding to an entire set of SADs for a 

single reference block) at every clock cycle. The 

number of PPUs utilized in the scalable architecture, 

therefore, corresponds directly to the number of 

reference blocks that can be processed in a clock 

cycle and the overall performance of the system. 

However, as the number of PPUs increases, the 

output bandwidth required for the search window 

memory increases as well. In particular, in order to 

keep a PPU fully utilized during motion estimation, 

one would require two rows of 16-pixels to be 

forwarded from the search window memory to the 

PPU at every clock cycle (one row from each of the 

search window memory partitions) [8]. Typically, a 

byte is used to encode a pixel, therefore one needs to 

transport 32 bytes from the search window to a PPU 

in every clock cycle. 

 A naive approach would be to simply increase the 

output of the search window memory by 32 bytes for 

every additional PPU. However, this can quickly 

exhaust the internal memory bandwidth of an FPGA 

(if the search window is stored on the same chip as 

the PPUs) or the IO pin limit of even the largest 

modern FPGAs (if the search window is stored off 

chip). For example, the Xilinx XC5VLX330 is the 

largest device that Xilinx currently offers. It contains 

1200 available IO pins. Assume that the search 

window is stored off chip. Implementing a single 

PPU on the XC5VLX330 would require 256 input 

pins. Implementing four PPU copies would require 

1024 pins (over 85% of the available IOs on the 

XC5VLX330) – leaving an insufficient number of 

IOs for output and control signals. 

 16 pixels 

16 pixels 

15 Pixels Shared 
between PPU x 
and PPU (x + 1) 

Pixel for PPU (x + 1) 

Pixel for PPU x 

16 Reference Blocks 
for PPU (x + 1) 

16 Reference Blocks 
for PPU x 

1 pixel 

16 pixels 

 
Fig. 5   Sharing of Pixels among PPUs 

 More importantly, the above approach does not 

take into account the large number of pixels that are 

shared among the reference blocks. For example, 
Figure 5 shows 32 reference blocks in a search 

window. These blocks are divided into two groups 

where each group contains 16 reference blocks. 
Within a group, the reference blocks are organized as 

in Figure 2, where all blocks are contained within a 

single 16-pixel wide column and one block is offset 
from the next by a single row of pixels. 

 As in Figure 2, 16 reference blocks from the same 

group share a row of 16 common pixels. 

Furthermore, since one group is offset from another 

by a single column of pixels, all 32 blocks in Figure 

5 share 15 common pixels. 

 To increase performance, these two groups can be 

simultaneously processed by two PPUs (shown as 

PPU x and PPU (x+1) in the figure). Since 15 pixels 
are shared between the groups, one would require 17 

pixels (instead of 32) to be read from the search 

window (per single bus) at a time. In particular, if 
pixels (a, y), (a+1, y), …, (a+15, y) of the search 

window are being processed by PPU x, pixels (a+1, 

y), (a+2, y), …, (a+16, y) should be simultaneously 

processed by PPU (x+1). 

 In general, to fully utilize n PPUs, one would 

require (15 + n) pixels to be read from each partition 

of the search window memory for every clock cycle. 

These signals should then be distributed using the 

topology shown in Figure 4. 
 At its output, each PPU shown in Figure 4 

produces 41 SAD values at every clock cycle. These 

SAD values amount to 573 bits of data. To keep the 

output width constant as the number of PPUs 

increases, the local parallel comparator tree can be 

implemented on the same FPGA as the PPUs. Note 
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that the number of comparator tree stages is equal to 

 )(log2 n  where n is the number of PPUs that the 

architecture contains. We observe that by registering 
the values produced at each stage of the comparator 

tree one can ensure that the comparator tree does not 

become the critical path of the system. 

Consequently, the overall system performance does 

not degrade significantly when an increasing number 

of PPUs are used. (Note that, as shown in Table 2 

there is a variation in clock frequency as the number 

of PPUs is increased from 1 to 12 units. This 

variation is due to increases in routing delay as the 

size of the design increases and is not due to 
increases in the logic delay of the comparator tree.) 

 
Fig. 6  PPU Structure 

 
Fig. 7  Absolute Difference Unit at Column x and 

Row y 

 

4 Pipelining the Pixel Processing Unit 
To simultaneously compute SAD values for the 16 

reference blocks as shown in Figure 2, the work in 
[8] employs a three stage PPU design as shown in 

Figure 6. The first stage consists of 256 absolute 

difference units arranged in a 16 x 16 array. Each 

unit as shown in Figure 7 computes the absolute 

difference value between one of the 16 shared 

reference pixels and its corresponding macroblock 

pixel. In particular, column x row y of the array 

computes the absolute difference value for the pixel 

located at column x and row y in the yth reference 
block as shown in Figure 2. (Note that within each 

reference block the rows are labeled from top to 

bottom and the columns are labeled from left to 

right.) The absolute difference values are 
accumulated into 16 4 x 4 SADs through 16 systolic 

arrays in stage 2. These 4 x 4 SADs are then used to 

calculate the remaining 25 SADs in stage 3. 

 
Fig. 8  A Systolic Array at Column X and Row Y 

 As shown in Figure 6, at stage 2 the systolic 

arrays are arranged in four columns and four rows. 

As shown in Figure 8, each array contains four row 

adder trees and each tree generates a SAD output by 

adding four absolute difference value inputs to a 

SAD input. In particular, for the array located at 

column X and row Y, the kth row adder tree outputs a 

SAD that is accumulated from columns 4X to 4X + 3 

and rows 4Y to 4Y + k in reference block 4Y + k. The 
SAD is then registered and fed to the next row adder 

tree in the array, which processes reference block 4Y 

+ k + 1. Note that in the figure the highlighted y 

coordinate of each ABS value is equal to the block 

number, also highlighted, of its reference block and 

this equality is required to maintain the 16-pixel-per-

clock-cycle memory bandwidth shown in Figure 2. 
 Figure 9 shows the four implementations of row 

adder trees that are investigated in this work. Figure 

9(a) shows the original design as described in [8] 
where the five inputs are summed through three 

Carry Save Addition (CSA) adders and a ripple carry 

adder. While this design is highly efficient for VLSI 
implementations, its performance can be improved 

on FPGAs through pipelining. 

 Figure 9(b) shows a directly pipelined version of 

the original design. Note that the additional pipeline 

stage creates one clock cycle delay between the input 

SAD and the output SAD. Due to the pipeline delay, 

the systolic array employing the design must include 

24 retiming registers as shown in Figure 10 in order 

to produce one 4 x 4 SAD for every clock cycle 
while still maintaining the equality between the y 

coordinates of the ABS values and their reference 

block numbers (and consequently the 16-pixel-per-
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clock-cycle memory bandwidth shown in Figure 2) – 
without the retiming registers, the 16 pixel 

bandwidth would limit the systolic array to produce 

only one 4 x 4 SAD for every two clock cycles or 

one would need to quadruple the output bandwidth 

of the search window memory. (Note that with the 

pipelined design the PPU simultaneously processes 

20, instead of 16, reference blocks as shown in 

Figure 11.) 

 
Fig. 9  Pipelining the Row Adder Tree 

 

 
Fig. 10  Retiming Registeres Required for the 

Pipelined Row Adder Tree Design As 

Shown in Figure 9(b) 

 
Fig. 11  A Group of 20 Reference Blocks 
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Fig. 12  Systolic Array Design Based on Figure 9(c) 

 To eliminate the retiming registers, the designs 

shown in Figure 9(c) and Figure 9(d) reorganize the 
addition of the row adder tree inputs. In Figure 9(c), 

a CSA adder is substituted by a ripple carry adder. 

The substitution allows the SAD input to bypass the 

first pipeline stage and be directly connected to the 

second pipeline stage. As shown in Figure 12, a 

systolic array employing the design can produce one 

4 x 4 SAD for every clock cycle while requiring no 

retiming registers, and the number of simultaneously 

processed reference blocks is reduced from 20 to 17. 
 Similarly, a three stage pipelined design is shown 

in Figure 9(d). Here all three CSA adders are 

substituted by ripple carry adders. The SAD input is 
directly fed into the last pipeline stage. Again, 

without the retiming registers, the three stage 

pipelined design allows each systolic array to 
produce one 4 x 4 SAD every clock cycle while the 

PPU simultaneously processes 18 reference blocks. 

 

5 On-Chip Memory Organization 
When targeting an FPGA with a moderate number of 

user-available IO pins, the scalable system shown in 

Figure 4 may still become an IO bottleneck. 
Consider the case of a system scaled to 16 PPUs. 

With each pixel encoded using a single byte, the 

input pixels will amount to 62 bytes (16 bytes from 

each partition of the search window memory for the 
initial PPU followed by 1 extra byte from each 

partition for the 15 additional PPUs). The output will 

consist of 41 SAD values (independent of the 

number of PPUs used) and would consume 72 bytes 

of IO. When control signals are considered, the total 

IO requirement of the circuit shown in Figure 4 

becomes 135 bytes or 1080 IO pins (bits). 
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Fig. 13  Search Window Partition (16 PPUs) 
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Fig. 14  Physical Layout of a Buffer (16 PPUs) 
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Fig. 16  Search Window Partition (8 PPUs) 
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 On devices where such a number of IOs is not 
available, the on-chip RAM blocks available on most 

modern FPGAs can be utilized to buffer the search 

window. For a search window of 63 x 48 pixels, this 

translates to 3024 bytes of data per search window. 

Using double buffering, while the current search 

window is being processed, another 3024 bytes of 

on-chip memory can be utilized to receive the next 

search window, hence reducing the number of 

required IOs. 
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Fig. 17  Physical Layout of a Buffer (8 PPUs) 

Table 1: Lower Bound on Input Bandwidth 

# of 
PPUs 

Search Window 
Macroblock  Without On-Chip 

Memory 
With On-Chip 

Memory 

Bytes 
Input Pins 

(bits) 
Bytes 

Input Pins 
(bits) 

Input Pins 
(bits) 

1 32 256 1.94 15.6 0.33 

2 34 272 3.88 31.1 0.65 

4 38 304 7.76 62.1 1.30 

8 46 368 15.6 124.2 2.59 

12 54 432 23.3 186.2 3.88 
16 62 496 31.1 248.3 5.18 

 The memory system design for a 16 PPU system 

is shown in Figures 13 to 15. As shown, each buffer 

is used to store a search window. To simplify the 

design process, the search window is extended by 

one column of pixels to 64 x 48. As in [8], the search 

window is divided into two partitions, where 

Partition A contains row 0 to 32 and Partition B 
contains row 33 to 47. 

 Each partition is then logically subdivided into 

four sub-partitions. In particular, Partition A is 
divided into L0_A, L1_A, L2_A, and L3_A. L0_A is 

then physically grouped with L2_A and L1_A is 

physically grouped with L3_A. As shown in Figure 
14(a), this results in two banks of memory each 

containing 66 x 16 pixels. This memory organization 

allows the PPUs to access all pixels contained in 

columns 0 to 30 (from sub-partitions L0_A and 

L1_A), 16 to 46 (from sub-partitions L1_A and 
L2_A), and 32 to 62 (from sub-partitions L2_A and 

L3_A) of Partition A in 99 cycles [6]. Partition B is 

similarly organized, as shown in Figure 14(b), and 

can be processed in 45 cycles. These 45 cycles 

overlap the 99 cycles of Partition A [8]. This results 

in an overall process time of 99 cycles per buffer. 

 To ensure full utilization of the PPUs, each buffer 

must be filled within the 99-cycle processing time. 

This imposes a lower limit on the input bandwidth of 

the buffers. In particular, an input-width of 32 bytes 
allows the 64 x 48 byte search window to be updated 

in 96 cycles to fully utilize a 16 PPU system. Figure 

15 shows the overall structure of the double-buffered 

memory organization for a 16-PPU system. 

 Similarly, the 16 x 16 pixel macroblock is also 

double-buffered. Each buffer is updated after every 

four search windows are processed (each window 

being from a unique reference frame). Consequently, 

the buffers need to be updated within every 396 
cycles for the 16-PPU system. A one-byte-wide 

input can be used to update each macroblock buffer 

in 256 cycles (being well within the 396 cycle limit). 
 Note that the required input bandwidth decreases 

as the number of PPUs is reduced. Figures 16 and 17 

show the memory organization for an eight PPU 

based buffer. As shown, each partition is logically 

subdivided into eight sub-partitions. Within each 

partition, the sub-partitions are organized physically 

into three banks. The organization allows the PPUs 

to access all pixels in columns 0 to 22, 8 to 30, 16 to 

38, 24 to 46, 32 to 54, and 40 to 62 in 198 clock 
cycles. This results in a minimum input bandwidth of 

15.6 bytes for the search window and 2.59 bits for 

the macroblock. Table 1 summarizes the input 
bandwidth requirements for systems containing 1, 2, 

4, 8, 12, and 16 PPUs. 

 
 

6 Experimental Results 
To evaluate the performance and area efficiency of 

the scalable VBSME architecture, we implemented 

five variations of the design shown in Figure 4 on a 

Xilinx Virtex 5 XC5VLX330 FPGA. Each variation 

of the design contains 1, 2, 4, 8, or 12 PPUs and is 
implemented in three versions based on the original, 

the two-stage-pipelined, and the three-stage-

pipelined row adder tree designs shown in Figure 
9(a), Figure 9(c), and Figure 9(d), respectively. As 

the design scales, the target resolution is scaled from 

VGA (640x480) to High-Definition (HD) Video 

(1920x1088) and pipelining is used in conjunction 

with ISE Equivalent Register Removal to improve 

the performance of high fanout signals. 
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 Each version of the motion estimation unit are 
implemented in Verilog and mapped onto FPGAs 

using the Xilinx Integrated Software Environment 

(ISE). The synthesis and mapping constraints are set 

to maximize performance. All designs meet the IO 

constraint of XC5VLX330 with 80%, 82%, 85%, 

90%, and 95% IO utilization, respectively. The 

performance and area of each implementation are 

summarized in detail in Table 2, Table 3, and Table 

4. 

Table 2: Area and Performance – Original Design 

# of 
PPUs 

Area Performance 

Slice LUTs Slice DFFs 
Target Resolution 

Freq. 
(MHz) 

Fps 
# (K) % # (K) % 

1  8.69 4.19 6.76 3.26 640x480 (VGA) 193.7 25 

2  18.6 8.97 15.6 7.54 800x608 (SVGA) 199.9 33 

4  37.9 18.3 33.1 16.0 1024x768 (XVGA) 195.3 40 

8  76.5 36.9 68.4 33.0 1920x1088 (HD Video) 191.5 29 

12 115.1 55.5 103.5 49.9 1920x1088 (HD Video) 149.6 34 

Table 3: Area and Performance – Two-Stage-

Pipelined  

# of 
PPUs 

Area Performance 

Slice LUTs Slice DFFs 
Target Resolution 

Freq. 
(MHz) 

Fps 
# (K) % # (K) % 

1 9.00 4.34 12.4 5.97 640x480 (VGA) 421.1 55 

2 19.2 9.26 26.9 13.0 800x608 (SVGA) 398.1 66 

4 39.1 18.9 55.6 26.8 1024x768 (XVGA) 365.9 74 
8 79.0 38.1 113.4 54.7 1920x1088 (HD Video) 327.5 50 

12 99.0 47.7 113.8 54.9 1920x1088 (HD Video) 250.8 56 

Table 4: Area and Performance – Three-Stage-

Pipelined 

# of 
PPUs 

Area Performance 

Slice LUTs Slice DFFs 
Target Resolution 

Freq. 
(MHz) 

Fps 
# (K) % # (K) % 

1 9.33 4.50 13.1 6.31 640x480 (VGA) 439.2 58 

2 19.9 9.59 28.3 13.6 800x608 (SVGA) 393.2 65 

4 40.5 19.5 58.4 28.2 1024x768 (XVGA) 360.2 73 

8 81.6 39.4 119.0 57.4 1920x1088 (HD Video) 297.8 45 

12 103.0 49.7 122.2 59.0 1920x1088 (HD Video) 223.3 50 

 

 Table 2 employs the original row adder tree 

design as shown in Figure 9(a). Column 1 of the 

table lists the number of PPUs in the design. 
Columns 2 and 3 lists the number of Slice LUTs 

required for the design and the number of Slice 

LUTs required as a percentage of the total number of 
Slice LUTs in the FPGA, respectively. The same 

values are summarized in column 4 and 5 for Slice 

DFFs. Finally column 6 lists the target resolution of 

each design. The maximum operating frequencies of 

the circuits are shown in column 7 and their 

corresponding frame-per-second performances are 

shown in column 8 (using 4 reference frames per 

macroblock). Similarly, Table 3 shows the area and 

performance results for the two-stage-pipelined row 
adder tree design and Table 4 shows the area and 

performance results for the three-stage-pipelined row 

adder tree design. 

 As shown the original row adder tree 
implementation achieves 25 (1 PPU at VGA 

resolution) to 40 (4 PPUs at XVGA resolution) 

frame-per-second performance as the target 

resolution is scaled from VGA to HD Video. In 

particular, the 12-PPU design is able to achieve 34 

frame-per-second performance for HD Video while 

utilizing 115.1K LUTs and 103.5K DFFs. 

 As shown in Table 3, the use of the two-stage-

pipelined row adder trees significantly improves 

circuit performance. In particular, the maximum 
clock frequency for the 1 PPU design is increased 

from 193.7 MHz to 421.1 MHz, which corresponds 

to a frame rate increase of 120%. For the 12 PPU 

design the clock frequency is increased from 149.6 

MHz to 250.8 MHz, which corresponds to a frame 

rate increase of 65%. In contrast, increasing the 

number of pipeline stages from 2 to 3 only slightly 

increases the performance of the 1 PPU design and 

decreases the performance of the 2, 4, 8, and 12 PPU 
designs due to an increase in LUT and DFF count 

and the subsequent increase in routing delay. 

 The data demonstrate that as the number of 
pipeline stages is increased from 2 to 3, the row 

adder trees are no longer the critical path of the 

FPGA implementation. Consequently, techniques to 

further increase the number of pipeline stages in row 

adder trees beyond 2 stages will not further increase 

performance. 

 We also implemented the 12-PPU system with 

on-chip double buffering using the two stage 

pipelined row adder tree. The implementation 
consumes 28 18Kbit Block RAM, 102.0K Slice 

LUTs and 115.4K Slice DFFs. The system 

performance is lowered from 250.8 MHz to 224.3 
MHz due to an increase in routing delay resulting 

from the addition of memory. The performance 

corresponds to a frame-per-second performance of 
51 fps. 

 The circuit performance of the designs employing 

the two-stage-pipelined and three-stage-pipelined 

row adder trees remains consistently over 30 frames 

per second as the design scales from 1 to 12 PPUs 

and the target resolution scales from VGA to HD 

Video for FPGA-based H.264/AVC motion 

estimation. The results show that real time motion 

estimation performances can be achieved with 1, 2, 

4, and 8 PPUs for the resolutions of VGA, SVGA, 
XVGA, and HD Video, respectively. It also shows 

that 8 or more PPUs can achieve real time motion 

estimation for resolutions that are beyond HD Video. 
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7 Conclusions 
It is shown that the proposed architecture is able to 
perform real time (50 - 56fps) H.264/AVC Motion 

Estimation on 1920x1088 progressive HD video and 

is capable of being scaled for higher resolutions. The 

performance is measured with four reference frames 

and a search window size of 63 x 48 pixels. When 

scaled for HD-level performance, the architecture 
utilizes 79K LUTs and 113K DFFs (with 8 

processing units), and has a maximum clock 

frequency of 328 MHz when implemented on a 
Xilinx XC5VLX330 (Virtex-5) FPGA. Furthermore, 

the scalability of the architecture makes it suitable 

for FPGA-based applications where the 

upgradeability and flexibility of the video encoder 

are essential requirements. 
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