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Abstract: - Coherence is often encountered in sonar, radar or mobile communications. Performance of the 
beamspace MUSIC (MUltiple Signal Classification) deteriorates as coherent arrivals become closely space. An 
improvement for the beamspace MUSIC resolution is presented. Decorrelation as a preprocessing is performed 
by the techniques called forward-backward spatial smoothing. Based on the fact that signal eigenvectors of the 
smoothed correlation matrix of the received signals contains the DOA vectors, combining all signal 
eigenvectors into a signal sequence enable us to obtain estimated DOAs. This combined signal eigenvector is 
equivalent to an array output impinged by the partially correlated sources. As a consequence, forward-
backward averaging is presented to decorrelate the coherence in the correlation matrix of the combined signal 
eigenvector before applying the beamspace MUSIC to extract the DOA information. Evaluations are given to 
illustrate the capability of the proposed method to distinguish closely spaced directions and reduce estimation 
errors in the presence of fully correlation. Performance analysis of BPSK and QPSK modulations are derived 
and compared with the simulation results.  
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1 Introduction 
Application of the antenna array for direction 
finding or source localization has been interested in 
sonar, radar especially in spatial division multiple 
access (SDMA) used in mobile communications [1]. 
Subspace-based methods such as element space 
MUSIC, beamspace MUSIC, ESPRIT and 
MinNorm are efficient to estimate directions of 
arrival (DOAs) utilizing a task of space-time 
processing. Except for the reduction of computation, 
the beamspace MUSIC has several advantages 
compared with the element space MUSIC in small 
samples such as reduced sensitivity of system errors, 
reduced resolution threshold, reduced bias in 
estimates, increased probabilities of resolution [2], 
[3]. Therefore, it is of interest to exploit the 
beamspace processing for the DOA estimation. 
However, the main limitation of such subspace-
based method is that it performs poorly in the 
presence of highly correlated and coherent 
(perfectly correlated) incoming signals. A number 
of high resolution direction finding approaches have 
been proposed to improve the resolution of the 
beamspace MUSIC for coherent sources [4]-[11].        

To decorrelate, the forward-backward spatial 
smoothing [4] is presented as a preprocessor of the 
beamspace MUSIC. Smoothed correlation matrix 

can recover the reduced rank of the covariance 
matrix due to the coherence of signal sources [5], 
[6]. The recovered rank is needed to be equal to the 
number of signals impinging on the antenna array. 
In [5], the DOAs that are shown in the simulation 
results are not very close which are 

between10 13 . The method called the quadratic 
spatial smoothing technique [6] by squaring the 
array covariance matrix before forming the 
smoothed covariance matrix can improve the 
resolution of coherent signals.  Constrain beamspace 
MUSIC in [7] assumes that some of the signal 
directions are priori known precisely and some of 
them are known approximately. This can reduce the 
variance of DOA estimation error. In [8], designing 
a beamformer is introduced to enhance the 
resolution performance of the beamspace MUSIC. 
The approach constructs the beamforming matrix to 
maximize the metric for a selected cluster. As a 
result, the performance depends on the cluster 
selection. An analysis of a beamspace version of the 
MUSIC algorithm applicable to two closely spaced 
emitters in diverse scenarios is given in [9]. The 
approach presented in [10] is a modified beamspace 
MUSIC algorithm for high resolution array 
processing. However, an appropriate prior 
knowledge of the source localization sectors is still 
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required and the algorithm needs more computations 
than the conventional beamspace MUSIC. When a 
subset of the sources is found to be coherent, an 
iterative method given to estimate azimuth-elevation 
angles is high complex [11]. The coarse and fine 
estimation can make the beamspace MUSIC have 
high-speed DOA estimation [12]. A high resolution 
DOA estimation approach for coherent/noncoherent 
sources is based on the fact that signal eigenvectors 
of the covariance matrix are a linear combination of 
steering vector [13]. Correspondingly, employing 
the benefits of the technique of the forward-
backward spatial smoothing and the signal 
eigenvector would result in an improvement of the 
beamspace MUSIC.    

This paper is organized as follows. It begins with 
a correlated signal model in section 2. Then, an 
overview of the beamspace MUSIC is given in 
section 3. Section 4 describes the forward-backward 
spatially smoothing. Combined signal eigenvector is 
explained in section 5. An algorithm to improve 
angular resolution of beamspace MUSIC is 
proposed in section 6. In section 7, its application to 
BPSK (Binary Phase Shift Keying) and QPSK 
(Quadrature Phase Shift Keying) coherent arrivals 
are shown to derive expressions of probability of bit 
errors and probability of symbol errors. Simulation 
results to illustrate the performance are presented in 
section 8 followed by conclusion in section 9.   
 
 

2 Correlated Signal Model 
Consider a linear array of L  omnidirectional 
elements. In far field, two sinusoidal sources 
consists of signal source, )(nms , and interference 

)(nmi . Let sp  and ip  represent power of the signal 
source and the interference, respectively. Define an 

1L  dimensional vector )(nx  to represent L  
waveform outputs from the L  elements of the array 
at time n  as [2] 
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where a complex scalar   represents the correlation 
coefficients between the two sources. The vectors 

)( sa  and  )( ia  are steering vectors in the 

directions of arrival s and i , respectively, given 
by [14] 
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Let s be the DOA of the signal source while i  be 

the DOA of the interference. We use 5.0d . That 
is the element spacing d is a half of wavelength . 
The vector )(nn  represents Gaussian noise vector 

with zero mean and variance 2
n  on each antenna 

element which is the temporal narrowband spectrum 
and spatially white spectrum. The operator * 
denotes the complex conjugate and superscript 
T denotes the transpose operation. Note that the 
value   indicates the quantity of the correlation 
field. When 1 , the two sources are coherent 

with their fixed phase difference. If 
1 , the two 

sources are partially correlated. For 0 , there is 
no correlation between such two sources.  

Equation (1) can be written in a matrix form as  
 

)()()( nnn nAsx                          (3) 
               

where the steering matrix A  can be expressed as  
 

  2)()(  Lis  aaA                     (4) 

 
and the vector of coherent sources is 
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The array correlation matrix xR  can be expressed as  
 

[ ( ) ( )]HE n nxR x x .                      (6) 

 
Substituting Eq. (3) into Eq. (6), this yields 
 

         

2H
n x sR AR A I                      (7) 

 

where [ ( ) ( )]HE n nsR s s . The superscript 
H denotes the complex conjugate transposition of a 
vector or a matrix. In practice, the array correlation 

matrix can be estimated as ( ) ( )H

n
n nxR x x  as 

an average of signal samples. 
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3 Beamspace MUSIC 
In the beamspace MUSIC [5], beamforming is a 
preprocessor prior to the element-space MUSIC as 
shown in Fig. 1. The preprocessor generates B  
beams for the received signal by  
 

)()( nny H xW                            (8) 
 

where W  is an BL  beamforming matrix with 
LB  . The columns form beams toward B expected 

directions. Using the conventional beamformer [2], 
each column of matrix W  is defined as 
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Fig. 1 Beamspace MUSIC 

 
The BB  beamspace covariance matrix is given 

by  
 

H
y  xR W R W                         (10) 

 
which can be represented in term of eigenvalues 
( i ) and eigenvectors ( iu ) as 
 













B

Mi

H
iii

M

i

H
iii

B

i

H
iiiy

11

1

uuuu

uuR





              (11) 

 
where M is the number of sources. According to 
Eq. (11), the beamspace covariance matrix is a sum 
of the signal subspace  MuuS ,,1   and the noise 

subspace  BM uuN ,,1  . Due to the orthogonality 
between the steering vector and the noise subspace, 
the beamspace MUSIC can form a spatial spectrum 
as 
 

2
( ) ( ) .HP  


 a WN                     (12) 

 
The DOA estimates are located at the peaks of 

)(P . However, the beamspace MUSIC algorithm 
can fail if sources are coherent. By applying the 
forward-backward spatial smoothing method before 
the preprocessed beamforming, the correlation 
effects can be alleviated. 
 
 

4 Forward-Backward Spatial 
Smoothing   
Signal correlation can occur when a source is 
arriving from different DOAs. On the other word, 
two directional signals are said to be fully correlated 
or coherent when one is delayed and scaled version 
of the other. This correlation limits the applicability 
of the beamspace MUSIC method due to the rank of 

yR is reduced. To restore the rank of the beamspace 

covariance matrix, decorrelation can be achieved by 
the forward-backward spatial smoothing method.    

To remove the signal correlation, the L element 
antenna array is divided into K  subarrays of size 

0L  such that the first subarray consists of Element 1 

to Element 0L , the second one consists of Element 2 

to Element 10 L  and so on as shown in Fig. 2. To 

keep K  subarrays of size 0L , one needs 

10  KLL elements/subarray. In Fig. 2, the arrow 
directions to the right side indicate the forward 
smoothing while the left direction is for the 
backward smoothing. 

f
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f
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b
Kx

b
1x

b
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Fig. 2 Forward and backward subarrays 

 
The output of the 

thk  forward subarray is 
denoted by [2], [4], [5] 
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and the output of the thk  backward subarray is 
denoted by  
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LLkLkLkL

b
k nxnxnxn

10

*
20
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for Kk ,,1 . An 00 LL   forward-backward 

spatially smoothed matrix fb
xR can be calculated as  
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for N  snapshots. Substituting fb
xR  into xR of Eq. 

(10), it allows us to apply the beamspace MUSIC 
algorithm to estimate DOAs of coherent arrivals. 
Besides the beamspace MUSIC scheme, we can 

extract DOA information using eigenvectors of fb
xR  

as described in the next section. 
 
 

5 Combined Signal Eigenvectors 
In [13], it is shown that each signal eigenvector of 
the covariance matrix is a linear combination of the 
direction vectors. Therefore, combining all signal 
eigenvectors into a single vector enables to estimate 
the DOAs from this combined signal eigenvector. 
The signal eigenvector can be combined as    
 

       
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i
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ec                                (16) 

 

where ie is an eigenvector of fb
xR  corresponding to 

one of the M  largest eigenvalues ( i ). The weights 
are calculated by 
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The estimated variance noise is  
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which depends on the ML 0  smallest eigenvalues 

of fb
xR . Equation (16) can be viewed as an array 

output as same as Eq. (1) since these equations 
contains the DOA information. As a result, we can 

apply a subspace method (e.g. MUSIC) to the 
combined signal eigenvectors to extract DOA 
information. 
 
 

6 Improved Beamspace MUSIC 
In this section, we presented an algorithm to 
improve angular resolution of the beamspace 
MUSIC in order to estimate DOAs of coherent 
arrivals. The procedure presented in Fig. 3 performs 
the following steps. 
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Fig. 3 Improved Beamspace MUSIC 

 
1) Forward-backward spatial smoothing to 

obtain a decorrelated correlation matrix 
fb
xR . 

2) Find the combined signal eigenvector c  of 
fb
xR . 

3) Forward-backward averaging the sequence 

c . The output thk  forward subsequence is 

 T
cLkkk

f
k ccc 11  c and the output thk  

backward subsequence is 

 TkcLLLkL
b
k ccc *

20
*

10
*

10  c
 

where 

cL  denotes the length of a subsequence. 
The correlation matrix of the forward-
backward averaging on the combined 
eigenvectors is given by 
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where the number of subsequences is 

10  cLLK .  

4) Replace 
fb
cR  to fb

xR  in Eq. (10) and then 

perform the beamspace MUSIC. 
 
The procedure first decorrelates the coherence by 
smoothing the covariance matrix of the received 
signal. After decorrelating, we generate a signal 
eigenvector, since eigenvectors of the smoothed 
covariance matrix is a linear combination of DOA 
vectors. To remove correlation perfectly, a spatial 
averaging is the third step. In step 4, calculate the 
covariance matrix of the signal eigenvector to 
replace that of received signal. Finally, the 
beamspace MUSIC can estimate the closely spaced 
DOAs of coherent sources.    
 

7 Applications to BPSK and QPSK 
Demodulation 
As shown in Fig. 4, we apply the proposed DOA 
estimation and the optimal beamformer to BPSK 
and QPSK transmissions. Denoting signals induced 
on all antenna elements as 
 

 TLL nxnxnxn 121 )()()()(  x               (20) 

 
and the weight vector of array system as 
 

     TLLwww 121  w  .                      (21) 

 
The array system output becomes 
 

)()( nny H xw .                          (22) 
 

In the optimal beamformer, the weight vector is 
given by [2] 
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Fig. 4 Application of Improved beamspace MUSIC 
 

 
7.1 Performance Analysis for BPSK 
The BPSK signals can be modeled as [15] 

 

   

1

2

( ) cos( ) for bit"1"

( ) cos( ) for bit"-1"

s s

s s

s n p n

s n p n







 
         (24) 

 
where s  is a carrier frequency. Using Eq. (1), the 
received signal at the antenna array in Fig. 4 is 
given by 
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The optimal beamformer can form a mainbeam at 
the desired DOA at s and cancel the interference at 

the DOA at i due to 1)( s
H aw and 0)( i

H aw . 
Therefore, it yields the output of the beamformer as 
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As illustrated in Fig. 5, )(ny is demodulated by 
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The decision variable is 
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of cosine signal is zero if number of periods in the 
N  samples is an integer.  

The expected value of the decision variable is 
found by 
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We have   0~ nE since   0)( nE n . 
The variance of the decision variable is defined as 
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By using 
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Substitute ]~[ 2nE  and ][ 2rE  into Eq. (30), the 
variance can be obtained as 
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Using a beamformer before demodulation, the 
probability of bit error using BPSK modulation 
becomes [15] 
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where b sE p N  is energy per bit and 2
0 2 nN 
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Without a beamformer (no array), the probability of 

bit error is ,
0

2 b
e BPSK

E
P Q

N

 
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 
. This indicates 

that if we use a beamformer before demodulation, 
the probability of bit error decreases due to the 
gained L  times of energy per bit. 
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Fig. 5 BPSK demodulation 

 
 

7.2 Performance Analysis for QPSK 
Using the demodulator shown in Fig. 6, the 
probability of symbol error rate is 
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where cP denotes the probability which both two 
bits of a symbol are correctly detected given as 
 

 
 

 2,1 BPSKec PP                       (37) 

 

)(nr

)sin(
2

)(2 n
N

n c 

)cos(
2

)(1 n
N

n c 






1

0

N

n






1

0

N

n

X

Y

X

Y
arctan

̂
 ˆm

Compute Choose
Smallest

d̂

Fig. 6 QPSK demodulation 
 
 

8 Simulation Results 
We illustrate the performance of the proposed 
algorithm referring as (FBCA BMUSIC = Forward-
backward spatial smoothing, combined signal 
eigenvector averaging, beamspace MUSIC) in 
comparison to  

1. MUSIC 
2. FB MUSIC = Forward-backward spatial 

smoothing, MUSIC  
3. CFBA MUSIC = Combined signal 

eigenvector, forward-backward averaging, 
MUSIC  

4. BMUSIC = Beamspace MUSIC 
5. FB BMUSIC = Forward-backward spatial 

smoothing, beamspace MUSIC 
6. CFBA BMUSIC =  Combined signal 

eigenvector, forward-backward averaging, 
beamspace MUSIC  

 
     Consider two coherent sources with DOAs at 

1s ,

 

1i  and correlation coefficient 

48.0




j

e  impinging on an array of 

21L elements. It is divided into 6K subarrays. 
The number of snapshots is 100N . The signal to 

noise ratio defined as 
2

1010 log ( )nSNR    is 10 

dB. In the beamspace MUSIC, the five main beams 

are expected at }10,6,1,1,8{  B as plotted in 
Fig. 7. Fig. 8 forms other five expected beams at 

}10,6,5.0,5.0,8{  B . When the DOAs 
become closer, the DOA estimation based on either 
MUSIC or BMUSIC is improved if we use the 
proposed procedure (FBCA BMUSIC) as shown in 
Figs. 9-10. The FBCA BMUSIC gives the most 
accurate estimation with high separated magnitudes. 

Moreover, the performance is evaluated in terms 
of mean squared errors (MSEs) [16] versus (1) 
magnitude of correlation coefficients, (2) noise 
variances and (3) SNRs. The mean squared errors 
between the actual and estimated DOAs are 
averaged by 100 Monte Carlo trials at each fix 
correlation value or noise variance or SNR. As the 
magnitude of absolute correlation value approaches 
to one, the signal sources are fully correlated. 
Accordingly, the errors are increased as the 
correlation coefficient increases as seen in Fig. 
11(a)-(b). Fig. 11(a) shows the MSEs of the 

estimated DOA for  1s  while Fig. 11(b) shows 

the MSEs of the estimated DOA for 1i . The 
FBCA BMUSIC outperforms than others. The 
MSEs illustrated in Figs. 12(a)-(b) varies to noise 
variances whereas the MSEs illustrated in Figs. 
13(a)-(b) varies to SNRs. The error is the more or 

less 1 , if the noise variance increases or the SNR 
decrease. However, using the proposed estimation 
method, FBCA BMUSIC, reduces the estimation 
errors. Among three evaluations, the proposed 
algorithm can improve the angular resolution of the 
beamspace MUSIC. Also, the probability of 
resolution is the highest than other methods in low 
SNRs as plotted in Fig. 14. To show capability of 
the improved angular resolution, three DOA 

estimates at  0,3  and 3 can be well separated by 
the proposed FBCA BMUSIC method. 
 For bit error rate (BER) and symbol error rate 
(SER) evaluations, using the proposed FBCA 
BMUSIC method can achieve less errors. For both 
BPSK and QPSK, The application of the proposed 
DOA estimation can reduce BER and SER of the 
conventional demodulation (no array) as shown in 
Figs. 16-17, respectively. Fig. 18 shows a 
comparison between simulation results and analytic 
formulas of probability of bit errors using BPSK 
modulation given in Eq. (34). The analytic result is 
less than the simulation result due to the 
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approximation. For QPSK modulation, the 
comparison is shown in Fig. 19 which Eq. (36) is 
used to compute the probability of symbol errors. 
The results are similar to that of BPSK transmission.   
 

 
Fig. 7 Beamforming of expected DOAs at 

}10,6,1,1,8{  B  

 
Fig. 8 Beamforming of expected DOAs at 

}10,6,5.0,5.0,8{  B  
 

 
Fig. 9 DOA estimation at  1and1   

 

 
Fig. 10 DOA estimation at  5.0and5.0   

 
    (a) 

     (b) 

Fig. 11 MSE versus correlation (a) 1s (b) 
1i
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(a) 

 
(b) 

Fig. 12 MSE versus noise variance (a) 1s  (b) 
1i  

 
(a) 

 
(b) 

Fig. 13 MSE versus SNR (a) 1s  (b) 1i  

 
Fig. 14 Probability of Resolution versus SNR 

 

 

Fig. 15 DOA estimation at  0,3 and 3  
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Fig. 16 Bit error rate (BPSK) 

 
Fig. 17 Symbol error rate (QPSK)  

 
Fig. 18 Probability of bit errors (BPSK) 

 
Fig. 19 Probability of symbol errors (QPSK) 

 

 

9 Conclusion 
An improved angular resolution of beamspace 
MUSIC is presented for finding directions of 
coherent sources. Decorrelation is achieved by 
forward-backward spatial smoothing. Combined 
signal eigenvectors are generated as a virtual 
received signal. Forward-backward averaging is 
used to smooth the combined signal sequence. After 
decorrelating the coherent incident waveforms, the 
beamspace MUSIC can distinguish closely space 
directions.  It is applied to BPSK and QPSK 
demodulation which able to decrease BERs and 
SERs as well.   
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