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Abstract. The aim of the paper is to validate architectures that allow an image processing researcher to develop 
parallel applications. A comparative analysis of the possible software and hardware solutions for real-time 
image and video processing was presented, with emphasis on distributed computing. The challenge was to 
develop algorithms that perform real-time low level operations on digital images able to be executed on a 
cluster of desktop PCs. The experiments on a case study show how to use parallelizable patterns and how to 
optimize the load balancing between the workstations.   
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1 Introduction 
Considering the need for real-time image 
processing and how this need can be met by 
exploiting the inherent parallelism in an algorithm, 
it becomes important to discuss what exactly is 
meant by the term “real-time,” an elusive term that 
is often used to describe a wide variety of image 
processing systems and algorithms. From the 
literature, it can be derived that there are three main 
interpretations of the concept of “real-time”, 
namely real-time in the perceptual sense, real-time 
in the software engineering sense, and real-time in 
the signal processing sense. 
Real-time in the perceptual sense is used mainly to 
describe the interaction between a human and a 
computer device for a near instantaneous response 
of the device to an input by a human user. For 
instance, Bovik defines the concept of “real-time” 
in the context of video processing, describing that 
“the result of processing appears effectively 
‘instantaneously’ (usually in a perceptual sense) 
once the input becomes available”[1].  Note that 
“real-time” imposes a maximum tolerable delay 
based on human perception of delay, which is 
essentially some sort of application-dependent 
bounded response time. 
Real-time in the software engineering sense is 
also based on the concept of a bounded 
response time as in the perceptual sense. 
Dougherty and Laplante [2]  point out that a 

“real-time system is one that must satisfy 
explicit bounded response time constraints to 
avoid failure”. So, soft real-time refers to the 
case where missed real-time deadlines result in 
performance degradation rather than failure.  
Real-time in the signal processing sense is 
based on the idea of completing processing in 
the time available between successive input 
samples [3]. An important item of note here is 
that one way to gauge the “real-time” status of 
an algorithm is to determine some measure of 
the amount of time it takes for the algorithm to 
complete all requisite transferring and 
processing of image data, and then making 
sure that it is less than the allotted time for 
processing. 
  
2 Software operations involved in real 
time image processing 
 
2.1 Levels of image processing operations  
The digital primary processing mainly consists of 
three stages: noise rejection, binary representation, 
and edge extraction. Due to the fact that the noise 
can introduce errors in other stages (like contour 
detection and feature extraction), the image noise 
rejection must be the first stage in any digital 
image processing application. For these algorithms 
it is recommend local operators which act in 
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symmetrical neighborhoods of the considered 
pixels. They have the advantage of simplicity and 
they can be implemented easily implemented on 
dedicated hardware structures. This approach 
changes when considering software processing.  
Digital images are essentially multidimensional 
signals and are thus quite data intensive, requiring 
a significant amount of computation and memory 
resources for their processing. T he key to cope 
with this issue is the concept of parallel processing 
who deals with computations on large data sets. In 
fact, much of what goes into implementing an 
efficient image/video processing system centers on 
how well the implementation, both hardware and 
software, exploits different forms of parallelism in 
an algorithm, which can be data level parallelism - 
DLP or/and instruction level parallelism – ILP [4]. 
DLP manifests itself in the application of the same 
operation on different sets of data, while ILP 
manifests itself in scheduling the simultaneous 
execution of multiple independent operations in a 
pipeline fashion. 
Traditionally, image processing operations have 
been classified into three main levels, namely low, 
intermediate, and high, where each successive level 
differs in its input/output data relationship [5]. 
Low-level operators take an image as their  input 
and produce an image as their output, while 
intermediate-level operators take an image as their 
input and generate image attributes as their output, 
and finally high-level operators take image 
attributes as their inputs and interpret the attributes, 
usually producing some kind of knowledge-based 
control at their output.  
One can hope that with an adequate task scheduling 
and a well designed cluster of processors one can 
perform in real time low-level operations by 
software parallelization. 
Low-level operations transform image data to 
image data. This means that such operators deal 
directly with image matrix data at the pixel level. 
Examples of such operations include color 
transformations, gamma correction, linear or 
nonlinear filtering, noise reduction, sharpness 
enhancement, frequency domain transformations, 
etc. The ultimate goal of such operations is to 
either enhance image data, possibly to emphasize 
certain key features, preparing them for viewing by 
humans, or extract features for processing at the 
intermediate-level. These operations can be further 
classified into point, neighborhood (local), and 
global operations [6]. Point operations are the 
simplest of the low-level operations since a given 
input pixel is transformed into an output pixel, 
where the transformation does not depend on any 

of the pixels surrounding the input pixel. Such 
operations include arithmetic operations, logical 
operations, table lookups, threshold operations, etc. 
The inherent DLP in such operations is obvious, as 
depicted in Fig. 1 (a), where the point operation on 
the pixel shown in black needs to be performed 
across all the pixels in the input image. Local 
neighborhood operations are more complex than 
point operations in that the transformation from an 
input pixel to an output pixel depends on a 
neighborhood of the input pixel. Such operations 
include two-dimensional spatial convolution and 
filtering, smoothing, sharpening, image 
enhancement, etc. Since each output pixel is some 
function of the input pixel and its neighbors, these 
operations require a large amount of computations. 
The inherent parallelism in such operations is 
illustrated in Fig. 1 (b), where the local 
neighborhood operation on the pixel shown in 
black needs to be performed across all the pixels in 
the input image. Finally, global operations build 
upon neighborhood operations in which a single 
output pixel depends on every pixel in the input 
image (see Fig. 1 (c)).  

 

 

 
 
Fig.1.Parallelism in low-level image processing:   
a) point b) neighborhood c) global  
 
All low-level operations involve nested looping 
through all the pixels in an input image with the 
innermost loop applying a point, neighborhood, or 
global operator to obtain the pixels forming an 
output image. For this reason low-level operations 
are excellent candidates for exploiting DLP. 
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The higher degree operations are difficult to 
implement for real time execution. Intermediate-
level operations transform image data to a slightly 
more abstract form of information by extracting 
certain attributes or features of interest from an 
image. This means that such operations also deal 
with the image at the pixel level, but a key 
difference is that the transformations involved 
cause a reduction in the amount of data from input 
to output. The goal by carrying out these operations 
(which include segmenting an image into 
regions/objects of interest, extracting edges, lines, 
contours, or other image attributes of interest such 
as statistical features) is to reduce the amount of 
data to form a set of features suitable for further 
high-level processing. Some intermediate-level 
operations are also data intensive with a regular 
processing structure, thus making them suitable 
candidates for exploiting DLP. 
High-level operations interpret the abstract data 
from the intermediate-level, performing high level 
knowledge-based scene analysis on a reduced 
amount of data. These types of operations (for 
example recognition of objects) are usually 
characterized by control or branch-intensive 
operations. Thus, they are less data intensive and 
more inherently sequential rather than parallel.  
 
2.2 Software Architecture Design 
While translating a source code from a research 
development environment to a real-time 
environment is an involved task, it would be 
beneficial if the entire software system is well 
thought out ahead of time. Considering that real-
time image processing systems usually consist of 
thousands of lines of code, proper design principles 
should be practiced from the start in order to ensure 
maintainability, extensibility, and flexibility in 
response to changes in the hardware or the 
algorithm [7]. One key method of dealing with this 
problem is to make the software design modular 
from the start, which involves abstracting out 
algorithmic details and creating standard interfaces 
or application programming interfaces (APIs) to 
provide easy switching among different specific 
implementations of an algorithm. Also beneficial is 
to create a hierarchical, layered architecture where 
standard interfaces exist between the upper layers 
and the hardware layer to allow ease in switching 
out different types of hardware so that if a 
hardware component is changed, only minor 
modifications to the upper layers will be needed. 
In addition, because in real-time image processing 
system, certain tasks or procedures have strict real 
time deadlines, while other tasks have firm or soft 

real-time deadlines, it is useful to utilize a real time 
operating system in order to be able to manage the 
deadlines and ensure a smoothly running system. 
Real-time operating systems allow the assignment 
of different levels of priorities to different tasks. 
With such an assignment capability, it becomes 
possible to assign higher priorities to hard real-time 
deadline tasks and lower priorities to other firm or 
soft real-time tasks [8].  
 
3 Hardware architecture features 
 
There are two classes of digital primary image 
processing operators: the local operators and the 
global operators. The global operators require 
information from the complete image frame. They 
are not suitable for industrial video applications 
because they have two main disadvantages: long 
time execution and edge alteration. On the other 
hand, many functions like noise rejection, binary 
segmentation, edge extraction, erosion, dilation, 
area evaluation, and perimeter evaluation can be 
calculated by the aid of local bi-dimensional filters.  
Software implementation of many image 
processing procedures is not compatible with on-
line, real time operation requirements and with 
hard industrial environment conditions. Moreover, 
most of the required procedures can be hardware 
implemented, using programmable devices. Thus, 
for an efficient industrial image processing system, 
the hardware/software co-design approach is highly 
recommended. Operations like noise rejection, 
edge detection, binary segmentation of image, are 
frequently encountered. 
 
3.1 Desktop PC platforms 
Alongside the developments in hardware 
architectures for image/video processing, there 
have also been many notable developments in the 
application of real-time image/video processing. 
Relevant technologies include automatic, robust 
face recognition, gesture recognition, tracking of 
human or object movement, distributed or 
networked video surveillance with multiple 
cameras, etc. Such systems can be categorized as 
being hard real-time systems and require one to 
address some difficult problems when deployed in 
realworld environments with varying lighting 
conditions.  
A great deal of the present growth in the field of 
image/video processing is primarily due to the 
ever-increasing performance available on standard 
desktop PCs, which has allowed rapid development 
and prototyping of image/video processing 
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algorithms. The desktop PC development 
environment has provided a flexible platform in 
terms of computation resources including memory 
and processing power. In many cases, this platform 
performs quite satisfactorily for algorithm 
development. The situation changes once an 
algorithm is desired to run in real time. This 
involves first applying algorithmic simplifications 
and then writing the algorithm in a standard 
compiled language such as C, after which it is 
ported over to some target hardware platform. 
After the algorithmic simplification process, there 
are different possible hardware implementation 
platforms that one can consider for the real-time 
implementation. For the selection of an appropriate 
hardware platform one must precise what are the 
important features of an image/video processing 
hardware platform and its advantages and 
disadvantages in order to be best suited for the real-
time application under consideration. 
As discussed in the previous section, practical 
image/video processing systems include a diverse 
set of operations from structured, high-bandwidth, 
data-intensive, low-level and intermediate-level 
operations such as filtering and feature extraction, 
to irregular, low-bandwidth, control-intensive, 
high-level operations such as classification. Since 
the most resource demanding operations in terms 
of required computations and memory bandwidth 
involve low-level and intermediate level 
operations, considerable research has been devoted 
to developing hardware architectural features for 
eliminating bottlenecks within the image/video 
processing chain, freeing up more time for 
performing high-level interpretation operations. 
While the major focus has been on speeding up 
low-level and intermediate level operations, there 
have also been architectural developments to speed 
up high-level operations. 
There are two types of General Purpose Processors 
(GPP) on the market today, one geared toward non 
embedded applications such as desktop PCs and 
the other geared toward embedded applications. 
Today’s desktop GPPs are extremely high-
performance processors with highly parallel 
architectures, containing features that help to 
exploit ILP in control-intensive, high-level 
image/video operations. GPPs have been outfitted 
with the multilevel cache feature. This feature 
provides the potential of having low latency 
memory accesses for frequently used data. These 
processors also require an RTOS in order to 
guarantee a real-time execution. Desktop GPPs are 
characterized by their large size, requiring a 
separate chip set for proper operation and 

communication with external memory and 
peripherals. 
Advances in desktop GPPs have allowed the 
standard commercial off-the-shelf desktop PCs to 
be used for implementing non embedded real-time 
image/video processing systems. In [19] it is even 
claimed that the desktop PC is the de facto standard 
for industrial machine vision applications where 
there is usually enough space and power available 
to handle a workstation. It should be noted that 
such systems usually augment the processing 
power of the desktop GPP with vision accelerator 
boards. Recently, a paradigm shift toward 
multicore processor designs for desktop PCs has 
occurred in order to continue making gains in 
processor performance. 
On the embedded front, there are also several GPPs 
available on the market today with high-
performance general-purpose processing capability 
suitable for exploiting ILP coupled with low power 
consumption and SIMD-type extensions for 
moderately accelerating multimedia operations, 
enabling the exploitation of DLP for low-level and 
intermediate-level image/video processing 
operations.  
Both embedded and desktop GPPs are supported 
by mature development tools and efficient 
compilers, allowing quick development cycles. 
While GPPs are quite powerful, they are neither 
created nor specialized to accelerate massively data 
parallel computations. 
 
3.2 Graphics Processing Units 
The early 2000s witnessed the introduction of a 
new type of processor, the graphics processing unit 
(GPU). The primary function of such processors is 
for real-time rendering of three dimensional (3D) 
computer graphics enabling fast frame rates and 
higher levels of realism required for state-of-the-art 
3D graphics in modern computer games. While the 
original GPUs were fixed function accelerators, 
current generation GPUs incorporate more 
flexibility through ever-increasing amounts of 
programmability with programmable vertex and 
texture/fragment units that are useful for 
customizing the rendering of 3D computer 
graphics. In terms of performance, for example, an 
Intel 3.0-GHz Pentium 4 GPP provides 12 
GFLOPS peak floating-point computational 
performance and 5.96-GB/s memory throughput, 
while the ATI Radeon X1800XT GPU provides 
120 GFLOPS peak floating-point performance with 
42-GB/s memory throughput [18]. This shows that 
GPUs can provide huge increases in GFLOPS 
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performance and memory throughput over those of 
a high-performance desktop GPP. 
Due to their floating-point calculation capabilities, 
the increased levels of programmability, and the 
fact that GPUs can be found in almost every 
desktop PC today, many researchers have been 
looking into ways to exploit GPUs for applications 
other than the real-time rendering of 3D computer 
graphics, an area of research referred to as general-
purpose processing on the graphics processing unit 
(GPGPU). GPUs have already been deployed to 
solve real-time image/video processing problems 
including complete computer vision systems [20], 
medical image reconstruction in magnetic 
resonance imaging (MRI) and ultrasonic imaging 
requiring FFT, stereo depth map computation and 
subpixel accurate motion estimation at video rates. 
A relative recent survey paper on the state-of-the-
art in GPGPU [21] also presents several examples 
of how the power of GPUs has been applied to 
calculation-intensive problems in signal and image 
processing. 
 
3.3 GPU-Based Systems 
GPU-based developments in the field of real-time 
image/video processing are fairly new, but can be 
observed in typical examples  including stereo 
depth map computation and subpixel motion 
estimation. The power of the GPU allowed the use 
of advanced features, including multiresolution 
matching, adaptive windowing, and cross-
checking.  It was stated that better performance 
gains could be achieved with the newer PCI 
Express bus. As is shown in [22] GPUs have the 
potential to solve computationally intensive, data 
parallel real-time image/video processing 
problems. The standard use of a GPU is to 
accelerate computationally intensive operations, 
leaving the GPP of its host free to handle other 
tasks. With GPU performance growing at an ever-
increasing rate and the introduction of faster bus 
architectures, such as the PCI Express, the 
popularity of using GPUs for solving real-time 
image/video processing problems is expected to 
increase. 
Recently GPUs have become an incredibly 
powerful computing workhorse for processing 
computationally intensive highly parallel tasks. 
Recently Nvidia released the Compute Unified 
Device Architecture (CUDA) along with the 
G8800 GPU with a theoretical peak speed of 330 
Gflops, which is over two orders of magnitude 
larger than that of a state of the art Intel processor. 
This release provides a C-like API for coding the 
individual processors on the GPU that makes 

general purpose GPU programming much more 
accessible. CUDA programming, however still 
requires much trial and error, and understanding of 
the nonuniform memory architecture to map a 
problem onto it.  
 
3.4 PC-Based Systems 
PC-based systems have also been widely used for 
solving real-time image/video processing 
problems. Such systems are usually equipped with 
a camera and a frame grabber, using the PC as a 
host. In the following are presented four examples 
of such systems, experienced on a test-bed cluster. 
 
3.4.1 Computer Vision System 
A computer vision system involves many diverse 
operations that map well to vision accelerator 
boards. For example, in [19], a generalized, 
scalable and modular architecture for a real-time 
computer vision application based on desktop PCs 
was presented. The architecture consisted of an 
image acquisition module and a PC-based 
processing module, where both modules could be 
scaled to handle more cameras and higher 
processing demands. The system was applied to an 
industrial inspection application involving quality 
control of TV screen manufacturing. 
A more flexible solution is that of the distributed 
computing for real-time video processing, such as 
rendering and/or encoding. It is true that distributed 
computing has mainly been applied to applications 
in which data could be processed in non-real-time, 
but one can perform visual communication, if real-
time constraints that give additional requirements 
to data processing in distributed computing are 
considered. It is necessary to assure the processing 
time of distributed data since processing period for 
one frame of video is limited to 1/25 or 1/30 
second in most cases. Thus, processing delay is a 
critical factor for video processing applications 
especially in the case of non-homogeneous 
computing environment, such as distributed 
computing on the Internet.  
Distributed computing, which requires universal 
access to high-grade computation facilities, is yet 
to be achieved. Average users still suffer from a 
chronic lack of bandwidth and processing power 
for demanding applications. Computation 
complexity and bandwidth necessity make video 
encoding difficult. Thus, parallel and distributed 
architectures for video encoding have been the 
subject of research for the last ten years. Most 
successful attempts have unfortunately remained in 
the dominion of those with high performance 
computers connected by high-speed networks. 
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Commercial grade video encoding and new, high-
quality encoder/decoder are not available to 
average users. Architecture to distribute and 
encode video on the Internet would benefit users 
immensely. It is beneficial to realize state of the art 
video coding, such as MPEG-4 and AVC (H.264), 
by distributed computing architecture. It can also 
be used for the conventional MPEG-2 and MPEG-
1 standards. Another application envisaged is the 
encoding of HDTV and digital cinema, etc. The 
purpose is to empower the user community to be 
able to encode and share high quality video without 
the associated high cost. 
Audio and video exchange continues to dominate 
the traffic on P2P (Peer to Peer) networks today. 
Media capture, streaming, download, voice and 
video chat are important applications for the 
average Internet user. Storage capacity of magnetic 
hard disks has increased exponentially over the 
past few years. CPU processing speed has been 
improved substantially with special instructions for 
audio and video processing. However, is still that 
users cannot generate high-quality video on their 
own, primarily because video encoding has very 
high computation requirements. Though very good 
video encoder/decoder abound, normally users 
cannot easily access to them. Thus, users are stuck 
with grainy videos captured with low-resolution 
cameras while commercially excellent HDTV 
resolution video is available. The video is 
distributed over the processors available and the 
encoded video is returned either to the originator or 
to any other specified machine where it is 
assembled in to syntactically correct bit stream. 
It would be beneficial to design an architecture, 
which enables high quality video encoding over 
open networks like the Internet. This approach 
would enable common users to make use of high 
quality video encoder/decoder and encode high-
resolution videos irrespective of the bandwidth 
constraints. To design such architecture, it is 
necessary to take a look at distributed computing in 
general and grid computing in particular [25]. 
The idea is to be able to share resources at will - 
computers, storage, sensors, networks, etc. This 
takes the concept beyond standard client-server 
with distributed data analysis, computation, and 
collaboration aided by the creation of large or 
small, static or dynamic, multi-institutional virtual 
organizations. 
What this translates into for distributed video 
encoding is that the number of processors 
(machines) available may vary not only from 
session to session but also during the session itself. 
Second, the processors may have varying 

characteristics, processing capabilities and 
instruction sets. Third, there are no guarantees 
regarding the time that will be taken to complete a 
job, or whether it will be completed at all. Fourth, 
the links between the processors may each have 
different characteristics and capacities. Considering 
the special requirements for computation over 
grids, we can design architecture quite different 
than what is used for simple parallel encoding on a 
cluster of networked PCs. 

 
3.4.2 Video Segmentation System 
Another computationally complex problem 
involves real-time segmentation of video data. It 
has been shown in [23] that such a system can be 
implemented using off-the-shelf components 
without the need for high-end and expensive frame 
grabbers. In this reference, the problem of image 
sequence segmentation based on a global camera 
motion compensation, a robust frame differencing, 
and a curve evolution was discussed. The 
segmentation performance achieved was 5 fps for 
160 × 120 images, keeping in mind that the 
implementation was done on a rather slow GPP. 
 
3.4.3 Image Fusion System 
Another example involving the successful use of a 
vision accelerator board is reported in [24], where 
an adaptive image fusion algorithm was 
implemented to aid helicopter pilots. The real-time 
requirement of processing 256 × 256 images at 25 
fps for image registration and a three-level pyramid 
decomposition was met using a hybrid hardware 
and software approach. As revealed from this 
example, standard desktop PCs equipped with 
frame grabbers can be used to solve real-time 
image/video processing problems. Due to their 
large size and high power consumption, however, 
such systems are usually used in industrial 
inspection settings or those applications where size 
and power consumption are not critical design 
issues. 
 
3.4.4 Object Detection System 
Object detection is a computationally complex 
problem, requiring a high-performance processor 
for practical implementations. In [24], the problem 
of object detection in real-time was discussed. A 
point was made that while VLSI, ASIC, or FPGAs 
can be used to meet the real-time constraint for 
video rate object detection, such solutions require a 
low-level hardware design that is often difficult to 
achieve by image processing developers unfamiliar 
with design techniques. Thus, it was decided to use 
the Datacube MaxPCI vision accelerator board that 
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provided the necessary parallel computation power 
and high data throughput to process 1000 × 1000 
images at 30 fps. 
 
4. Performing real time image 
processing on a distributed platform 
 
4.1 Parallel platform model and scheduling 
principles 
Our system model consists of P processor units. 
Each processor pi has capacity ci > 0, i = 1,2,…, P. 
The capacity of a processor is defined as its speed 
relative to a reference processor with unit-capacity. 
We assume for the general case that c1�c2 �… �cP.. 
The total capacity C of the system is defined as 

�
=

=
P

i
icC

1

. A system is called homogeneous when 

c1=c2…=cP. The platform is conceived as a 
distributed system [9]. Each machine is equipped 
with a single processor. In other words, we do not 
consider interconnections of multiprocessors. The 
main difference with multiprocessor systems is that 
in a distributed system, information about the 
system state is spread across the different 
processors. In many cases, migrating a job from 
one processor to another is very costly in terms of 
network bandwidth and service delay [10], and that 
the reason that we have considered for the 
beginning only the case of data parallelism for a 
homogenous system. The intention was to test the 
general case of image processing with both data 
and task parallelism, by developing a   scheduling 
policy with two components [11]. The global 
scheduling policy decides to which processor an 
arriving job must be sent, and when to migrate 
some jobs. At each processor, the local scheduling 
policy decides when the processor serves which of 
the jobs present in its queue.  
Jobs arrive at the system according to one or more 
interarrival-time processes. These processes 
determine the time between the arrivals of two 
consecutive jobs. The arrival time of job j is 
denoted by Aj. Once a job j is completed, it leaves 
the system at its departure time Dj. The response 
time Rj of job j is defined as Rj = Dj – Aj. The 
service time Sj of job j is its response time on a 
unit-capacity processor serving no other jobs; by 
definition, the response time of a job with service 
time s on a processor with capacity c’ is s/c’. We 
define the job set J(t) at time t as the set of jobs 
present in the system at time t:  

}|{)( jj DtAjtJ <≤=  

For each job j∈J(t), we define the remaining work 
)(tW r

j  at time t as the time it would take to serve 

the job to completion on a unit-capacity processor. 
The service rate )(tr

jσ  of job j at time t (Aj� t<Dj) 

is defined as:
τ

τ
σ

τ d

dW
t

r
j

t

r
j

)(
lim)(

→
= . The obtained 

share )(ts
jω of job j at time t (Aj� t<Dj) is defined 

as: Ctt r
j

s
j /)()( σω = . So, )(ts

jω is the fraction of 

the total system capacity C used to serve job j, but 
only if we assume that   )(tW r

j  is always a 

piecewise-linear, continuous function of t. 
Considering jj

r
j SAW =)( and 0)( =j

r
j DW we 

have CSdttdtt j
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One can define an upper bound on the sum of the 
obtained job shares of any set of jobs {1,…,J}as:  

�
=

−=
),min(

1

1
max )(

PJ

i
icCtω . 

 
4.2 A case study: lines detection 
 
4.2.1   Theoretical background  
Usually the problem of detecting lines and linear 
structures in images is solved by considering the 
second order directional derivative in the gradient 
direction, for each possible line direction [12]. 
Theoretically, in two-dimensions, line points are 
detected by considering the second order 
directional derivative in the gradient direction. For 
a line point, the second order directional derivative 
perpendicular to the line is a measure of line 
contrast, given by ),( yxfww=λ where f(x,y) is the 
grey-value function and the indices w denote 
differentiation in the gradient direction. Bright 
lines are observed when � < 0 and dark lines when 
� >0. In practice, one can only measure differential 
expressions at a certain observation scale. By 
considering Gaussian weighted differential 
quotients in the gradient direction, 

),()( yxfGf wwww ∗= σσ , a measure of line 

contrast is given by σ
σσσ

b
fyxr ww

1
),,( 2= where 

�,, the Gaussian standard deviation, denotes the 
scale for observing the line structure, and where 
line brightness b is given by 

{
otherwisefW

fiff
b ww

σ

σσ
σ

−
≤

=
0�
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Line brightness is measured relative to black for 
bright lines, and relative to white level W (255 for 
an 8-bit camera) for dark lines [13]. 
The response of the second order directional 
derivate � does not only depend on the image data, 
but it is also affected by the Gaussian smoothing 
scale �. Because a line has a large spatial extent 
along the line direction, and only a small spatial 
extent (i.e., the line width) perpendicular to the 
line, the Gaussian filter should be tuned to 
optimally accumulate line evidence. For directional 
filtering anisotropic Gaussian filters may be used 
of scale �v and �w, for longest and shortest axis, 
respectively. Line contrast is given by: 

wv

wv

b
yxr f

wwwvwv σσ

σσ
σσσσ ,

, 1
),,,( =′  

The optimal filter orientation may be different for 
each position in the image plane, depending on line 
evidence at the particular image point under 
consideration. The final line detection filter, 
parameterized by orientation �, smoothing scale �v 
in the line direction, and differentiation scale �w 

perpendicular to the line, is given by 

θσσ

θσσ
σσθσσ ,,

,, 1
),,,,(

wv

wv

b
yxr f

wwwvwv =′′  

where ),(),,(,, yxfGf wvwwww
wv ∗= θσσθσσ  

When the filter is correctly aligned with the line, 
and �v, �w are optimally tuned to capture the line, 
filter response is maximal. Hence, the maximum 
per pixel line contrast over the filter parameters 
yields line detection:  

),,,,(maxarg),(
,,

θσσ
θσσ

wvyxryxR
wv

′′=  

The final result is obtained by considering the 
maximum response per pixel over all filter results. 
This yields the optimal orientation �, an estimate of 
line thickness �w, the best smoothing size �v, and 
the line contrast R(x,y). 
 
4.2.2   Software implementation of the directional 
filtering algorithm 
 
There are many different ways to implement a 
directional filtering algorithm.  For example, one 
can create for each orientation a new filter based on 
�v and �w. This yields a rotation of the filters, while 
the orientation of the input image remains fixed. 
Another possibility is to keep the orientation of the 
filters fixed, and to rotate the input image instead. 
Yet another solution is to integrate the notion of 
orientation in the filter operation itself. In this case 
image pixels are accessed not only according to the 
size of the neighborhood of the filter, but also on 
the basis of the given orientation [14]. From these 

solutions, the second, who consists in applying 
fixed filters to rotated image data, seems to be 
more suitable for parallelization. In order to stress 
the possibility to execute parallel operations, let 
consider first the main steps of a sequential 
implementation.   
The first step consists in rotating the original input 
image for a given orientation �. This operation is 
made by a dedicated routine Rotate_Image.  Then, 
for all combinations (�v, �w) the filtering is 
performed by six operations executed in sequence 
by six dedicated routines, as follows: 1) Filter 1 to 
compute θσσ ,, wv

wwf ; 2) Filter 2 to compute θσσ ,, wvb  
(both filtering operations are generalized Gaussian 
convolutions performed by applying two 1-
dimensional filters; 3) Binary_Op1, a binary pixel 
operation having an image as argument; 4) 
Binary_Op2, a binary pixel operation having an 
constant value as argument; 5) Back_Rotate_Image 
to match the orientation of the original input image; 
6) Contrast  to obtain the maximum response. 
It is to note that on a state-of-the-art sequential 
machine the program may take from tens of  
seconds up to minutes to complete, depending on 
the size of the input image and the extent of the 
chosen parameter subspace. Consequently, for the 
directional filtering program parallel execution is 
highly desired. 
The above described program may be processed in 
parallel in two different schedules. In the first 
schedule all dedicated routines are forced to run in 
parallel, using all available processing units. The 
second schedule differs from the first in that the 
last two operations in the innermost loop of the 
program are run on one node only. In both 
schedules the Original_Image structure must be 
broadcast to all nodes. This is because the structure 
is applied in the initial rotation operation. In 
addition, in both schedules the first four operations 
in the innermost loop can be executed locally on 
partial image data structures. The only need for 
communication is in the exchange of image borders 
(shadow regions) in the two Gaussian 
convolutions. 
In the first schedule the last two operations in the 
innermost loop are run in parallel as well. This 
requires the distributed image Binary_Op1 to be 
available in full at each node, because it has an 
access pattern of type 'other' in the back-rotation 
operation. This can be achieved by executing a 
gather-to-all operation, which is logically 
equivalent to a gather operation followed by a 
broadcast. Finally, a partial maximum response 
image Contrast is calculated on each node, which 
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requires a final gather operation to be executed just 
before termination of the program. In the second 
schedule the last two operations are not executed in 
parallel. As a result, the intermediate result image 
after Binary_Op2 that produces both the back-
rotated image needs to be gathered to the single 
node, as well as the complete maximum response 
image. 
 
4.2.3   Experimental results  
A test image was processed first on a single 
processing unit, then on a test network configured 
as a cluster with 2, 4 or 8 nodes, each node being a 
processor unit working at 1 GHz with  128 MByte 
RAM. For each instruction utilized in the 
directional filtering algorithm two measurements 
were executed, for images having 2002 or 10002 
elements. Table 1 offers the measured results for 
the processing times of an image with 1024x1024 
pixels (see fig. 2: a) original, b) after processing 
with 12 orientations and 4 combinations (�v, �w).  

 
     a)         b) 

Fig. 2. Test image for line detection 
 
Table 1. Comparison of processing times for 
different cluster dimensions 

Measured duration [s] 
Number of  
processors Schedule 1 Schedule 2 

1 5.56 5.56 
2 2.90 4.01 
4 1.60 3.22 
6 0.97 2.82 
8 1.21 2.95 

 
A schedule is preferred if the set of operations 
unique to that schedule is faster than the set of 
operations unique to another schedule (i.e., not in 
the set of operations common to both schedules). 
Hence, for the directional filtering program the 
schedule in which all operations are run in parallel 
is preferred if: 
��(Protate(size/N)+Pmax(size/N)+Pbcast(size/N)+Pgather

(size/N)) < ��(Protate(size)+Pmax(size)) 

where N denotes the number of processing units 
and �� denotes the size of the parameter subspace. 
For the first schedule the large number of broadcast 
operations is expected to have the most significant 
impact on performance. For the second schedule, 
on the other hand, the many rotations of non-
partitioned image data are expected to be costly. 
Another difference between the two schedules is 
the fact that the total duration decrease proportional 
with the number of nodes only for schedule 2. For 
the schedule 1 there is an optimal structure with 6 
nodes, then when the number of nodes is grater the 
processing duration begins to rise again. 

5 Conclusions  
The experiments show how to use parallelizable 
patterns, obtained for typical low level image 
processing operations. In our study case the 
performance model is highly accurate for parallel 
processing using convolution functions.  Given the 
results we are confident in that the proposed 
software architecture forms a powerful basis for 
automatic parallelization and optimization of a 
wide range of image processing applications.   
Regarding the potential of the parallel platform for 
image processing, in the near future we will focus 
our attention on the improvement of the scheduling 
component, by using processor units with different 
processing capacities and also other service policy 
for the queue of jobs. We will continue 
implementing example programs to investigate the 
implication of parallelization of typical 
applications in the area of real-time image 
processing, trying to improve the performances by 
supporting the execution of a sequence of 
algorithms on the same block and by dynamical 
reconstruction of the post processed image. 
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