

Parallel image and video processing on distributed
computer systems

RADU DOBRESCU, MATEI DOBRESCU, DAN POPESCU

"Politehnica" University of Bucharest, Faculty of Control and Computers,
313 Splaiul Independentei, Bucharest

ROMANIA
radud@isis.pub.ro

Abstract. The aim of the paper is to validate architectures that allow an image processing researcher to develop
parallel applications. A comparative analysis of the possible software and hardware solutions for real-time
image and video processing was presented, with emphasis on distributed computing. The challenge was to
develop algorithms that perform real-time low level operations on digital images able to be executed on a
cluster of desktop PCs. The experiments on a case study show how to use parallelizable patterns and how to
optimize the load balancing between the workstations.
.

Keywords: real-time image processing, low level operations, parallel and distributed processing, tasks
scheduling, lines detection, directional filtering.

1 Introduction
Considering the need for real-time image
processing and how this need can be met by
exploiting the inherent parallelism in an algorithm,
it becomes important to discuss what exactly is
meant by the term “real-time,” an elusive term that
is often used to describe a wide variety of image
processing systems and algorithms. From the
literature, it can be derived that there are three main
interpretations of the concept of “real-time”,
namely real-time in the perceptual sense, real-time
in the software engineering sense, and real-time in
the signal processing sense.
Real-time in the perceptual sense is used mainly to
describe the interaction between a human and a
computer device for a near instantaneous response
of the device to an input by a human user. For
instance, Bovik defines the concept of “real-time”
in the context of video processing, describing that
“the result of processing appears effectively
‘instantaneously’ (usually in a perceptual sense)
once the input becomes available”[1]. Note that
“real-time” imposes a maximum tolerable delay
based on human perception of delay, which is
essentially some sort of application-dependent
bounded response time.
Real-time in the software engineering sense is
also based on the concept of a bounded
response time as in the perceptual sense.
Dougherty and Laplante [2] point out that a

“real-time system is one that must satisfy
explicit bounded response time constraints to
avoid failure”. So, soft real-time refers to the
case where missed real-time deadlines result in
performance degradation rather than failure.
Real-time in the signal processing sense is
based on the idea of completing processing in
the time available between successive input
samples [3]. An important item of note here is
that one way to gauge the “real-time” status of
an algorithm is to determine some measure of
the amount of time it takes for the algorithm to
complete all requisite transferring and
processing of image data, and then making
sure that it is less than the allotted time for
processing.

2 Software operations involved in real
time image processing

2.1 Levels of image processing operations
The digital primary processing mainly consists of
three stages: noise rejection, binary representation,
and edge extraction. Due to the fact that the noise
can introduce errors in other stages (like contour
detection and feature extraction), the image noise
rejection must be the first stage in any digital
image processing application. For these algorithms
it is recommend local operators which act in

WSEAS TRANSACTIONS on SIGNAL PROCESSING Radu Dobrescu, Matei Dobrescu, Dan Popescu

ISSN: 1790-5052 123 Issue 3, Volume 6, July 2010

symmetrical neighborhoods of the considered
pixels. They have the advantage of simplicity and
they can be implemented easily implemented on
dedicated hardware structures. This approach
changes when considering software processing.
Digital images are essentially multidimensional
signals and are thus quite data intensive, requiring
a significant amount of computation and memory
resources for their processing. T he key to cope
with this issue is the concept of parallel processing
who deals with computations on large data sets. In
fact, much of what goes into implementing an
efficient image/video processing system centers on
how well the implementation, both hardware and
software, exploits different forms of parallelism in
an algorithm, which can be data level parallelism -
DLP or/and instruction level parallelism – ILP [4].
DLP manifests itself in the application of the same
operation on different sets of data, while ILP
manifests itself in scheduling the simultaneous
execution of multiple independent operations in a
pipeline fashion.
Traditionally, image processing operations have
been classified into three main levels, namely low,
intermediate, and high, where each successive level
differs in its input/output data relationship [5].
Low-level operators take an image as their input
and produce an image as their output, while
intermediate-level operators take an image as their
input and generate image attributes as their output,
and finally high-level operators take image
attributes as their inputs and interpret the attributes,
usually producing some kind of knowledge-based
control at their output.
One can hope that with an adequate task scheduling
and a well designed cluster of processors one can
perform in real time low-level operations by
software parallelization.
Low-level operations transform image data to
image data. This means that such operators deal
directly with image matrix data at the pixel level.
Examples of such operations include color
transformations, gamma correction, linear or
nonlinear filtering, noise reduction, sharpness
enhancement, frequency domain transformations,
etc. The ultimate goal of such operations is to
either enhance image data, possibly to emphasize
certain key features, preparing them for viewing by
humans, or extract features for processing at the
intermediate-level. These operations can be further
classified into point, neighborhood (local), and
global operations [6]. Point operations are the
simplest of the low-level operations since a given
input pixel is transformed into an output pixel,
where the transformation does not depend on any

of the pixels surrounding the input pixel. Such
operations include arithmetic operations, logical
operations, table lookups, threshold operations, etc.
The inherent DLP in such operations is obvious, as
depicted in Fig. 1 (a), where the point operation on
the pixel shown in black needs to be performed
across all the pixels in the input image. Local
neighborhood operations are more complex than
point operations in that the transformation from an
input pixel to an output pixel depends on a
neighborhood of the input pixel. Such operations
include two-dimensional spatial convolution and
filtering, smoothing, sharpening, image
enhancement, etc. Since each output pixel is some
function of the input pixel and its neighbors, these
operations require a large amount of computations.
The inherent parallelism in such operations is
illustrated in Fig. 1 (b), where the local
neighborhood operation on the pixel shown in
black needs to be performed across all the pixels in
the input image. Finally, global operations build
upon neighborhood operations in which a single
output pixel depends on every pixel in the input
image (see Fig. 1 (c)).

Fig.1.Parallelism in low-level image processing:
a) point b) neighborhood c) global

All low-level operations involve nested looping
through all the pixels in an input image with the
innermost loop applying a point, neighborhood, or
global operator to obtain the pixels forming an
output image. For this reason low-level operations
are excellent candidates for exploiting DLP.

WSEAS TRANSACTIONS on SIGNAL PROCESSING Radu Dobrescu, Matei Dobrescu, Dan Popescu

ISSN: 1790-5052 124 Issue 3, Volume 6, July 2010

The higher degree operations are difficult to
implement for real time execution. Intermediate-
level operations transform image data to a slightly
more abstract form of information by extracting
certain attributes or features of interest from an
image. This means that such operations also deal
with the image at the pixel level, but a key
difference is that the transformations involved
cause a reduction in the amount of data from input
to output. The goal by carrying out these operations
(which include segmenting an image into
regions/objects of interest, extracting edges, lines,
contours, or other image attributes of interest such
as statistical features) is to reduce the amount of
data to form a set of features suitable for further
high-level processing. Some intermediate-level
operations are also data intensive with a regular
processing structure, thus making them suitable
candidates for exploiting DLP.
High-level operations interpret the abstract data
from the intermediate-level, performing high level
knowledge-based scene analysis on a reduced
amount of data. These types of operations (for
example recognition of objects) are usually
characterized by control or branch-intensive
operations. Thus, they are less data intensive and
more inherently sequential rather than parallel.

2.2 Software Architecture Design
While translating a source code from a research
development environment to a real-time
environment is an involved task, it would be
beneficial if the entire software system is well
thought out ahead of time. Considering that real-
time image processing systems usually consist of
thousands of lines of code, proper design principles
should be practiced from the start in order to ensure
maintainability, extensibility, and flexibility in
response to changes in the hardware or the
algorithm [7]. One key method of dealing with this
problem is to make the software design modular
from the start, which involves abstracting out
algorithmic details and creating standard interfaces
or application programming interfaces (APIs) to
provide easy switching among different specific
implementations of an algorithm. Also beneficial is
to create a hierarchical, layered architecture where
standard interfaces exist between the upper layers
and the hardware layer to allow ease in switching
out different types of hardware so that if a
hardware component is changed, only minor
modifications to the upper layers will be needed.
In addition, because in real-time image processing
system, certain tasks or procedures have strict real
time deadlines, while other tasks have firm or soft

real-time deadlines, it is useful to utilize a real time
operating system in order to be able to manage the
deadlines and ensure a smoothly running system.
Real-time operating systems allow the assignment
of different levels of priorities to different tasks.
With such an assignment capability, it becomes
possible to assign higher priorities to hard real-time
deadline tasks and lower priorities to other firm or
soft real-time tasks [8].

3 Hardware architecture features

There are two classes of digital primary image
processing operators: the local operators and the
global operators. The global operators require
information from the complete image frame. They
are not suitable for industrial video applications
because they have two main disadvantages: long
time execution and edge alteration. On the other
hand, many functions like noise rejection, binary
segmentation, edge extraction, erosion, dilation,
area evaluation, and perimeter evaluation can be
calculated by the aid of local bi-dimensional filters.
Software implementation of many image
processing procedures is not compatible with on-
line, real time operation requirements and with
hard industrial environment conditions. Moreover,
most of the required procedures can be hardware
implemented, using programmable devices. Thus,
for an efficient industrial image processing system,
the hardware/software co-design approach is highly
recommended. Operations like noise rejection,
edge detection, binary segmentation of image, are
frequently encountered.

3.1 Desktop PC platforms
Alongside the developments in hardware
architectures for image/video processing, there
have also been many notable developments in the
application of real-time image/video processing.
Relevant technologies include automatic, robust
face recognition, gesture recognition, tracking of
human or object movement, distributed or
networked video surveillance with multiple
cameras, etc. Such systems can be categorized as
being hard real-time systems and require one to
address some difficult problems when deployed in
realworld environments with varying lighting
conditions.
A great deal of the present growth in the field of
image/video processing is primarily due to the
ever-increasing performance available on standard
desktop PCs, which has allowed rapid development
and prototyping of image/video processing

WSEAS TRANSACTIONS on SIGNAL PROCESSING Radu Dobrescu, Matei Dobrescu, Dan Popescu

ISSN: 1790-5052 125 Issue 3, Volume 6, July 2010

algorithms. The desktop PC development
environment has provided a flexible platform in
terms of computation resources including memory
and processing power. In many cases, this platform
performs quite satisfactorily for algorithm
development. The situation changes once an
algorithm is desired to run in real time. This
involves first applying algorithmic simplifications
and then writing the algorithm in a standard
compiled language such as C, after which it is
ported over to some target hardware platform.
After the algorithmic simplification process, there
are different possible hardware implementation
platforms that one can consider for the real-time
implementation. For the selection of an appropriate
hardware platform one must precise what are the
important features of an image/video processing
hardware platform and its advantages and
disadvantages in order to be best suited for the real-
time application under consideration.
As discussed in the previous section, practical
image/video processing systems include a diverse
set of operations from structured, high-bandwidth,
data-intensive, low-level and intermediate-level
operations such as filtering and feature extraction,
to irregular, low-bandwidth, control-intensive,
high-level operations such as classification. Since
the most resource demanding operations in terms
of required computations and memory bandwidth
involve low-level and intermediate level
operations, considerable research has been devoted
to developing hardware architectural features for
eliminating bottlenecks within the image/video
processing chain, freeing up more time for
performing high-level interpretation operations.
While the major focus has been on speeding up
low-level and intermediate level operations, there
have also been architectural developments to speed
up high-level operations.
There are two types of General Purpose Processors
(GPP) on the market today, one geared toward non
embedded applications such as desktop PCs and
the other geared toward embedded applications.
Today’s desktop GPPs are extremely high-
performance processors with highly parallel
architectures, containing features that help to
exploit ILP in control-intensive, high-level
image/video operations. GPPs have been outfitted
with the multilevel cache feature. This feature
provides the potential of having low latency
memory accesses for frequently used data. These
processors also require an RTOS in order to
guarantee a real-time execution. Desktop GPPs are
characterized by their large size, requiring a
separate chip set for proper operation and

communication with external memory and
peripherals.
Advances in desktop GPPs have allowed the
standard commercial off-the-shelf desktop PCs to
be used for implementing non embedded real-time
image/video processing systems. In [19] it is even
claimed that the desktop PC is the de facto standard
for industrial machine vision applications where
there is usually enough space and power available
to handle a workstation. It should be noted that
such systems usually augment the processing
power of the desktop GPP with vision accelerator
boards. Recently, a paradigm shift toward
multicore processor designs for desktop PCs has
occurred in order to continue making gains in
processor performance.
On the embedded front, there are also several GPPs
available on the market today with high-
performance general-purpose processing capability
suitable for exploiting ILP coupled with low power
consumption and SIMD-type extensions for
moderately accelerating multimedia operations,
enabling the exploitation of DLP for low-level and
intermediate-level image/video processing
operations.
Both embedded and desktop GPPs are supported
by mature development tools and efficient
compilers, allowing quick development cycles.
While GPPs are quite powerful, they are neither
created nor specialized to accelerate massively data
parallel computations.

3.2 Graphics Processing Units
The early 2000s witnessed the introduction of a
new type of processor, the graphics processing unit
(GPU). The primary function of such processors is
for real-time rendering of three dimensional (3D)
computer graphics enabling fast frame rates and
higher levels of realism required for state-of-the-art
3D graphics in modern computer games. While the
original GPUs were fixed function accelerators,
current generation GPUs incorporate more
flexibility through ever-increasing amounts of
programmability with programmable vertex and
texture/fragment units that are useful for
customizing the rendering of 3D computer
graphics. In terms of performance, for example, an
Intel 3.0-GHz Pentium 4 GPP provides 12
GFLOPS peak floating-point computational
performance and 5.96-GB/s memory throughput,
while the ATI Radeon X1800XT GPU provides
120 GFLOPS peak floating-point performance with
42-GB/s memory throughput [18]. This shows that
GPUs can provide huge increases in GFLOPS

WSEAS TRANSACTIONS on SIGNAL PROCESSING Radu Dobrescu, Matei Dobrescu, Dan Popescu

ISSN: 1790-5052 126 Issue 3, Volume 6, July 2010

performance and memory throughput over those of
a high-performance desktop GPP.
Due to their floating-point calculation capabilities,
the increased levels of programmability, and the
fact that GPUs can be found in almost every
desktop PC today, many researchers have been
looking into ways to exploit GPUs for applications
other than the real-time rendering of 3D computer
graphics, an area of research referred to as general-
purpose processing on the graphics processing unit
(GPGPU). GPUs have already been deployed to
solve real-time image/video processing problems
including complete computer vision systems [20],
medical image reconstruction in magnetic
resonance imaging (MRI) and ultrasonic imaging
requiring FFT, stereo depth map computation and
subpixel accurate motion estimation at video rates.
A relative recent survey paper on the state-of-the-
art in GPGPU [21] also presents several examples
of how the power of GPUs has been applied to
calculation-intensive problems in signal and image
processing.

3.3 GPU-Based Systems
GPU-based developments in the field of real-time
image/video processing are fairly new, but can be
observed in typical examples including stereo
depth map computation and subpixel motion
estimation. The power of the GPU allowed the use
of advanced features, including multiresolution
matching, adaptive windowing, and cross-
checking. It was stated that better performance
gains could be achieved with the newer PCI
Express bus. As is shown in [22] GPUs have the
potential to solve computationally intensive, data
parallel real-time image/video processing
problems. The standard use of a GPU is to
accelerate computationally intensive operations,
leaving the GPP of its host free to handle other
tasks. With GPU performance growing at an ever-
increasing rate and the introduction of faster bus
architectures, such as the PCI Express, the
popularity of using GPUs for solving real-time
image/video processing problems is expected to
increase.
Recently GPUs have become an incredibly
powerful computing workhorse for processing
computationally intensive highly parallel tasks.
Recently Nvidia released the Compute Unified
Device Architecture (CUDA) along with the
G8800 GPU with a theoretical peak speed of 330
Gflops, which is over two orders of magnitude
larger than that of a state of the art Intel processor.
This release provides a C-like API for coding the
individual processors on the GPU that makes

general purpose GPU programming much more
accessible. CUDA programming, however still
requires much trial and error, and understanding of
the nonuniform memory architecture to map a
problem onto it.

3.4 PC-Based Systems
PC-based systems have also been widely used for
solving real-time image/video processing
problems. Such systems are usually equipped with
a camera and a frame grabber, using the PC as a
host. In the following are presented four examples
of such systems, experienced on a test-bed cluster.

3.4.1 Computer Vision System
A computer vision system involves many diverse
operations that map well to vision accelerator
boards. For example, in [19], a generalized,
scalable and modular architecture for a real-time
computer vision application based on desktop PCs
was presented. The architecture consisted of an
image acquisition module and a PC-based
processing module, where both modules could be
scaled to handle more cameras and higher
processing demands. The system was applied to an
industrial inspection application involving quality
control of TV screen manufacturing.
A more flexible solution is that of the distributed
computing for real-time video processing, such as
rendering and/or encoding. It is true that distributed
computing has mainly been applied to applications
in which data could be processed in non-real-time,
but one can perform visual communication, if real-
time constraints that give additional requirements
to data processing in distributed computing are
considered. It is necessary to assure the processing
time of distributed data since processing period for
one frame of video is limited to 1/25 or 1/30
second in most cases. Thus, processing delay is a
critical factor for video processing applications
especially in the case of non-homogeneous
computing environment, such as distributed
computing on the Internet.
Distributed computing, which requires universal
access to high-grade computation facilities, is yet
to be achieved. Average users still suffer from a
chronic lack of bandwidth and processing power
for demanding applications. Computation
complexity and bandwidth necessity make video
encoding difficult. Thus, parallel and distributed
architectures for video encoding have been the
subject of research for the last ten years. Most
successful attempts have unfortunately remained in
the dominion of those with high performance
computers connected by high-speed networks.

WSEAS TRANSACTIONS on SIGNAL PROCESSING Radu Dobrescu, Matei Dobrescu, Dan Popescu

ISSN: 1790-5052 127 Issue 3, Volume 6, July 2010

Commercial grade video encoding and new, high-
quality encoder/decoder are not available to
average users. Architecture to distribute and
encode video on the Internet would benefit users
immensely. It is beneficial to realize state of the art
video coding, such as MPEG-4 and AVC (H.264),
by distributed computing architecture. It can also
be used for the conventional MPEG-2 and MPEG-
1 standards. Another application envisaged is the
encoding of HDTV and digital cinema, etc. The
purpose is to empower the user community to be
able to encode and share high quality video without
the associated high cost.
Audio and video exchange continues to dominate
the traffic on P2P (Peer to Peer) networks today.
Media capture, streaming, download, voice and
video chat are important applications for the
average Internet user. Storage capacity of magnetic
hard disks has increased exponentially over the
past few years. CPU processing speed has been
improved substantially with special instructions for
audio and video processing. However, is still that
users cannot generate high-quality video on their
own, primarily because video encoding has very
high computation requirements. Though very good
video encoder/decoder abound, normally users
cannot easily access to them. Thus, users are stuck
with grainy videos captured with low-resolution
cameras while commercially excellent HDTV
resolution video is available. The video is
distributed over the processors available and the
encoded video is returned either to the originator or
to any other specified machine where it is
assembled in to syntactically correct bit stream.
It would be beneficial to design an architecture,
which enables high quality video encoding over
open networks like the Internet. This approach
would enable common users to make use of high
quality video encoder/decoder and encode high-
resolution videos irrespective of the bandwidth
constraints. To design such architecture, it is
necessary to take a look at distributed computing in
general and grid computing in particular [25].
The idea is to be able to share resources at will -
computers, storage, sensors, networks, etc. This
takes the concept beyond standard client-server
with distributed data analysis, computation, and
collaboration aided by the creation of large or
small, static or dynamic, multi-institutional virtual
organizations.
What this translates into for distributed video
encoding is that the number of processors
(machines) available may vary not only from
session to session but also during the session itself.
Second, the processors may have varying

characteristics, processing capabilities and
instruction sets. Third, there are no guarantees
regarding the time that will be taken to complete a
job, or whether it will be completed at all. Fourth,
the links between the processors may each have
different characteristics and capacities. Considering
the special requirements for computation over
grids, we can design architecture quite different
than what is used for simple parallel encoding on a
cluster of networked PCs.

3.4.2 Video Segmentation System
Another computationally complex problem
involves real-time segmentation of video data. It
has been shown in [23] that such a system can be
implemented using off-the-shelf components
without the need for high-end and expensive frame
grabbers. In this reference, the problem of image
sequence segmentation based on a global camera
motion compensation, a robust frame differencing,
and a curve evolution was discussed. The
segmentation performance achieved was 5 fps for
160 × 120 images, keeping in mind that the
implementation was done on a rather slow GPP.

3.4.3 Image Fusion System
Another example involving the successful use of a
vision accelerator board is reported in [24], where
an adaptive image fusion algorithm was
implemented to aid helicopter pilots. The real-time
requirement of processing 256 × 256 images at 25
fps for image registration and a three-level pyramid
decomposition was met using a hybrid hardware
and software approach. As revealed from this
example, standard desktop PCs equipped with
frame grabbers can be used to solve real-time
image/video processing problems. Due to their
large size and high power consumption, however,
such systems are usually used in industrial
inspection settings or those applications where size
and power consumption are not critical design
issues.

3.4.4 Object Detection System
Object detection is a computationally complex
problem, requiring a high-performance processor
for practical implementations. In [24], the problem
of object detection in real-time was discussed. A
point was made that while VLSI, ASIC, or FPGAs
can be used to meet the real-time constraint for
video rate object detection, such solutions require a
low-level hardware design that is often difficult to
achieve by image processing developers unfamiliar
with design techniques. Thus, it was decided to use
the Datacube MaxPCI vision accelerator board that

WSEAS TRANSACTIONS on SIGNAL PROCESSING Radu Dobrescu, Matei Dobrescu, Dan Popescu

ISSN: 1790-5052 128 Issue 3, Volume 6, July 2010

provided the necessary parallel computation power
and high data throughput to process 1000 × 1000
images at 30 fps.

4. Performing real time image
processing on a distributed platform

4.1 Parallel platform model and scheduling
principles
Our system model consists of P processor units.
Each processor pi has capacity ci > 0, i = 1,2,…, P.
The capacity of a processor is defined as its speed
relative to a reference processor with unit-capacity.
We assume for the general case that c1�c2 �… �cP..
The total capacity C of the system is defined as

�
=

=
P

i
icC

1

. A system is called homogeneous when

c1=c2…=cP. The platform is conceived as a
distributed system [9]. Each machine is equipped
with a single processor. In other words, we do not
consider interconnections of multiprocessors. The
main difference with multiprocessor systems is that
in a distributed system, information about the
system state is spread across the different
processors. In many cases, migrating a job from
one processor to another is very costly in terms of
network bandwidth and service delay [10], and that
the reason that we have considered for the
beginning only the case of data parallelism for a
homogenous system. The intention was to test the
general case of image processing with both data
and task parallelism, by developing a scheduling
policy with two components [11]. The global
scheduling policy decides to which processor an
arriving job must be sent, and when to migrate
some jobs. At each processor, the local scheduling
policy decides when the processor serves which of
the jobs present in its queue.
Jobs arrive at the system according to one or more
interarrival-time processes. These processes
determine the time between the arrivals of two
consecutive jobs. The arrival time of job j is
denoted by Aj. Once a job j is completed, it leaves
the system at its departure time Dj. The response
time Rj of job j is defined as Rj = Dj – Aj. The
service time Sj of job j is its response time on a
unit-capacity processor serving no other jobs; by
definition, the response time of a job with service
time s on a processor with capacity c’ is s/c’. We
define the job set J(t) at time t as the set of jobs
present in the system at time t:

}|{)(jj DtAjtJ <≤=

For each job j∈J(t), we define the remaining work
)(tW r

j at time t as the time it would take to serve

the job to completion on a unit-capacity processor.
The service rate)(tr

jσ of job j at time t (Aj� t<Dj)

is defined as:
τ

τ
σ

τ d

dW
t

r
j

t

r
j

)(
lim)(

→
= . The obtained

share)(ts
jω of job j at time t (Aj� t<Dj) is defined

as: Ctt r
j

s
j /)()(σω = . So,)(ts

jω is the fraction of

the total system capacity C used to serve job j, but
only if we assume that)(tW r

j is always a

piecewise-linear, continuous function of t.
Considering jj

r
j SAW =)(and 0)(=j

r
j DW we

have CSdttdtt j

D

A

r
j

D

A

s
j

j

j

j

j

/)()(== �� σω .

One can define an upper bound on the sum of the
obtained job shares of any set of jobs {1,…,J}as:

�
=

−=
),min(

1

1
max)(

PJ

i
icCtω .

4.2 A case study: lines detection

4.2.1 Theoretical background
Usually the problem of detecting lines and linear
structures in images is solved by considering the
second order directional derivative in the gradient
direction, for each possible line direction [12].
Theoretically, in two-dimensions, line points are
detected by considering the second order
directional derivative in the gradient direction. For
a line point, the second order directional derivative
perpendicular to the line is a measure of line
contrast, given by),(yxfww=λ where f(x,y) is the
grey-value function and the indices w denote
differentiation in the gradient direction. Bright
lines are observed when � < 0 and dark lines when
� >0. In practice, one can only measure differential
expressions at a certain observation scale. By
considering Gaussian weighted differential
quotients in the gradient direction,

),()(yxfGf wwww ∗= σσ , a measure of line

contrast is given by σ
σσσ

b
fyxr ww

1
),,(2= where

�,, the Gaussian standard deviation, denotes the
scale for observing the line structure, and where
line brightness b is given by

{
otherwisefW

fiff
b ww

σ

σσ
σ

−
≤

=
0�

WSEAS TRANSACTIONS on SIGNAL PROCESSING Radu Dobrescu, Matei Dobrescu, Dan Popescu

ISSN: 1790-5052 129 Issue 3, Volume 6, July 2010

Line brightness is measured relative to black for
bright lines, and relative to white level W (255 for
an 8-bit camera) for dark lines [13].
The response of the second order directional
derivate � does not only depend on the image data,
but it is also affected by the Gaussian smoothing
scale �. Because a line has a large spatial extent
along the line direction, and only a small spatial
extent (i.e., the line width) perpendicular to the
line, the Gaussian filter should be tuned to
optimally accumulate line evidence. For directional
filtering anisotropic Gaussian filters may be used
of scale �v and �w, for longest and shortest axis,
respectively. Line contrast is given by:

wv

wv

b
yxr f

wwwvwv σσ

σσ
σσσσ ,

, 1
),,,(=′

The optimal filter orientation may be different for
each position in the image plane, depending on line
evidence at the particular image point under
consideration. The final line detection filter,
parameterized by orientation �, smoothing scale �v
in the line direction, and differentiation scale �w

perpendicular to the line, is given by

θσσ

θσσ
σσθσσ ,,

,, 1
),,,,(

wv

wv

b
yxr f

wwwvwv =′′

where),(),,(,, yxfGf wvwwww
wv ∗= θσσθσσ

When the filter is correctly aligned with the line,
and �v, �w are optimally tuned to capture the line,
filter response is maximal. Hence, the maximum
per pixel line contrast over the filter parameters
yields line detection:

),,,,(maxarg),(
,,

θσσ
θσσ

wvyxryxR
wv

′′=

The final result is obtained by considering the
maximum response per pixel over all filter results.
This yields the optimal orientation �, an estimate of
line thickness �w, the best smoothing size �v, and
the line contrast R(x,y).

4.2.2 Software implementation of the directional
filtering algorithm

There are many different ways to implement a
directional filtering algorithm. For example, one
can create for each orientation a new filter based on
�v and �w. This yields a rotation of the filters, while
the orientation of the input image remains fixed.
Another possibility is to keep the orientation of the
filters fixed, and to rotate the input image instead.
Yet another solution is to integrate the notion of
orientation in the filter operation itself. In this case
image pixels are accessed not only according to the
size of the neighborhood of the filter, but also on
the basis of the given orientation [14]. From these

solutions, the second, who consists in applying
fixed filters to rotated image data, seems to be
more suitable for parallelization. In order to stress
the possibility to execute parallel operations, let
consider first the main steps of a sequential
implementation.
The first step consists in rotating the original input
image for a given orientation �. This operation is
made by a dedicated routine Rotate_Image. Then,
for all combinations (�v, �w) the filtering is
performed by six operations executed in sequence
by six dedicated routines, as follows: 1) Filter 1 to
compute θσσ ,, wv

wwf ; 2) Filter 2 to compute θσσ ,, wvb
(both filtering operations are generalized Gaussian
convolutions performed by applying two 1-
dimensional filters; 3) Binary_Op1, a binary pixel
operation having an image as argument; 4)
Binary_Op2, a binary pixel operation having an
constant value as argument; 5) Back_Rotate_Image
to match the orientation of the original input image;
6) Contrast to obtain the maximum response.
It is to note that on a state-of-the-art sequential
machine the program may take from tens of
seconds up to minutes to complete, depending on
the size of the input image and the extent of the
chosen parameter subspace. Consequently, for the
directional filtering program parallel execution is
highly desired.
The above described program may be processed in
parallel in two different schedules. In the first
schedule all dedicated routines are forced to run in
parallel, using all available processing units. The
second schedule differs from the first in that the
last two operations in the innermost loop of the
program are run on one node only. In both
schedules the Original_Image structure must be
broadcast to all nodes. This is because the structure
is applied in the initial rotation operation. In
addition, in both schedules the first four operations
in the innermost loop can be executed locally on
partial image data structures. The only need for
communication is in the exchange of image borders
(shadow regions) in the two Gaussian
convolutions.
In the first schedule the last two operations in the
innermost loop are run in parallel as well. This
requires the distributed image Binary_Op1 to be
available in full at each node, because it has an
access pattern of type 'other' in the back-rotation
operation. This can be achieved by executing a
gather-to-all operation, which is logically
equivalent to a gather operation followed by a
broadcast. Finally, a partial maximum response
image Contrast is calculated on each node, which

WSEAS TRANSACTIONS on SIGNAL PROCESSING Radu Dobrescu, Matei Dobrescu, Dan Popescu

ISSN: 1790-5052 130 Issue 3, Volume 6, July 2010

requires a final gather operation to be executed just
before termination of the program. In the second
schedule the last two operations are not executed in
parallel. As a result, the intermediate result image
after Binary_Op2 that produces both the back-
rotated image needs to be gathered to the single
node, as well as the complete maximum response
image.

4.2.3 Experimental results
A test image was processed first on a single
processing unit, then on a test network configured
as a cluster with 2, 4 or 8 nodes, each node being a
processor unit working at 1 GHz with 128 MByte
RAM. For each instruction utilized in the
directional filtering algorithm two measurements
were executed, for images having 2002 or 10002
elements. Table 1 offers the measured results for
the processing times of an image with 1024x1024
pixels (see fig. 2: a) original, b) after processing
with 12 orientations and 4 combinations (�v, �w).

 a) b)

Fig. 2. Test image for line detection

Table 1. Comparison of processing times for
different cluster dimensions

Measured duration [s]
Number of
processors Schedule 1 Schedule 2

1 5.56 5.56
2 2.90 4.01
4 1.60 3.22
6 0.97 2.82
8 1.21 2.95

A schedule is preferred if the set of operations
unique to that schedule is faster than the set of
operations unique to another schedule (i.e., not in
the set of operations common to both schedules).
Hence, for the directional filtering program the
schedule in which all operations are run in parallel
is preferred if:
��(Protate(size/N)+Pmax(size/N)+Pbcast(size/N)+Pgather

(size/N)) < ��(Protate(size)+Pmax(size))

where N denotes the number of processing units
and �� denotes the size of the parameter subspace.
For the first schedule the large number of broadcast
operations is expected to have the most significant
impact on performance. For the second schedule,
on the other hand, the many rotations of non-
partitioned image data are expected to be costly.
Another difference between the two schedules is
the fact that the total duration decrease proportional
with the number of nodes only for schedule 2. For
the schedule 1 there is an optimal structure with 6
nodes, then when the number of nodes is grater the
processing duration begins to rise again.

5 Conclusions
The experiments show how to use parallelizable
patterns, obtained for typical low level image
processing operations. In our study case the
performance model is highly accurate for parallel
processing using convolution functions. Given the
results we are confident in that the proposed
software architecture forms a powerful basis for
automatic parallelization and optimization of a
wide range of image processing applications.
Regarding the potential of the parallel platform for
image processing, in the near future we will focus
our attention on the improvement of the scheduling
component, by using processor units with different
processing capacities and also other service policy
for the queue of jobs. We will continue
implementing example programs to investigate the
implication of parallelization of typical
applications in the area of real-time image
processing, trying to improve the performances by
supporting the execution of a sequence of
algorithms on the same block and by dynamical
reconstruction of the post processed image.

ACKNOWLEDGEMENTS
This work was partially supported by the
Romanian Ministry of Education and Research
under PN2 Grants 61-031/2007 and 11-031/2007.

References:
[1] A. Bovik, Introduction to Digital Image and
Video Processing, in Handbook of Image & Video
Processing, A. C. Bovik, Ed., Elsevier Academic
Press, 2005.
[2] E. Dougherty and P. Laplante, Introduction to
Real-time Imaging. SPIE Press/IEEE Press, 1995.
[3] N. Kehtarnavaz, Real-Time Digital Signal
Processing Based on the TMS320C6000.
Amsterdam, Elsevier, 2004.

WSEAS TRANSACTIONS on SIGNAL PROCESSING Radu Dobrescu, Matei Dobrescu, Dan Popescu

ISSN: 1790-5052 131 Issue 3, Volume 6, July 2010

[4] H. Hunter and J. Moreno, A New Look at
Exploiting Data Parallelism in Embedded Systems,
Proc. of the Int. Conf. on Compilers, Architectures,
and Synthesis for Embedded Systems, 2003, pp.
159–169.
[5] S. Kyo, S. Okazaki, and T. Arai, An Integrated
Memory Array Processor Architecture for
Embedded Image Recognition Systems,
Proceedings of the 32nd International Symposium
on Computer Architecture, 2005, pp. 134–145.
[6] C. Soviany, Embedding Data and Task
Parallelism in Image Processing Applications,
Ph.D. Dissertation, Delft University of
Technology, The Netherlands, 2003.
[7] R. Sangwan, R. Ludwig, P. Laplante and C.
Neill, Performance Tuning of Imaging
Applications Through Pattern Based Code
Transformation, Proc. of SPIE-IS&T Electronic
Imaging Conf.on Real-Time Imaging, SPIE Vol.
5671, 2005, pp. 1–7.
[8] R. Dobrescu, D. Popescu, M. Nicolae, H.
Humaila, Real time dependable communication
infrastructure for a collaborative groupware
system, Proc. of the 1st Int. Conf. WSEAS
MEQAPS’09, vol.1, p.207-212
[9] D.H.J. Epema and J.F.C.M. de Jongh.
Proportional Share-Scheduling in Single-Server
and Multiple-Server Computing Systems.
Performance Evaluation Review,27(3):7–10, 1999.
[10] G.Agosta, S. Crespi Reghizzi, G. Falauto,
M. Sykora, JIST: Just-in-Time Scheduling
Translation for Parallel Processors, Third Int.
Symp. on Parallel and Distributed Computing
(ISPDC/HeteroPar'04), 2004, pp. 122-132
[11] J.M. Geusebroek, A.W.M. Smeulders, and
H. Geerts. A Minimum Cost Approach for
Segmenting Networks of Lines. International
Journal of Computer Vision, 43(2):99-lll, 2001.
[12] M. Dobrescu. Distributed Image
Processing Techniques for Multimedia
Applications, Ph.D. Thesis, Politehnica Univ. of
Bucharest, 2005.
[13] F.J. Seinstra, D. Koelma, and J.M.
Geusebroek. A Software Architecture for User
Transparent Parallel Image Processing. Parallel
Computing, 28 (7-8), 2002, pp. 967-993.
[14] E. Davies, Machine Vision: Theory,
Algorithms, Practicalities. San Francisco,CA:
Morgan Kauffmann Publishers, 2005.
[15] Z. Ye, H. Mohamadian, Y. Ye, Color
Image with Information Theory Based Quantitative
Measuring, WSEAS Transactions on Signal
Processing, Issue 8, Volume 5, 2009, pp.283-291
[16] D. Popescu, R. Dobrescu, S. Mocanu,
Dedicated Primary Image Processors For Mobile

Robots, WSEAS Transactions on Systems, Issue 8,
Vol.5, August 2006, p. 1932-1939
[17] Udroiu, I., Tache, I., Angelescu, N.,
Caciula, I., Methods of Measure and Analyse of
Video Quality of the Image, WSEAS Transactions
on Signal Processing, Issue 8, Volume 5, 2009,
pp.283-291
[18] H. M. El-Bakry, N. Mastorakis, Fast Image
Matching on Web Pages, WSEAS Transactions on
Signal Processing, Issue 4, Volume 5, 2009,
pp.157-166
[19] J. Martinez, E. Costa, P. Herreros, X.
Sanchez and R. Baldrich, A Modular and Scalable
Architecture for PC-Based Real-Time Vision
Systems,” Journal of Real-Time Imaging, Vol. 9,
No. 2, 2003, pp. 99–112
[20] J. Fung, Computer Vision on the GPU, in
GPU Gems 2: Programming Techniques for High-
Performance Graphics and General-Purpose
Computation, Matt Pharr, Ed. Reading, Addison-
Wesley, 2005, pp. 649–666
[21] J. Owens, D. Luebke, N. Govindaraju, M.
Harris, J. Kruger, A. Lefohn, and T. Purcell, A
Survey of General-Purpose Computation on
Graphics Hardware, Eurographics State of the Art
Reports, 2005, pp. 21–51.
[22] R. Yang and M. Pollefeys, A Versatile
Stereo Implementation on Commodity Graphics
Hardware, Journal of Real-Time Imaging, Vol. 11,
No. 1, 2005, pp. 7–18
[23] J. Zhang and W. Liu, Real-Time Image
Sequence Segmentation Using Curve Evolution,
Proceedings of SPIE-IS&T Electronic Imaging
Conference on Real-Time Imaging, SPIE Vol.
4303, 2001, pp. 67–78
[24] M. Smith, A. Bail, and D. Hooper, Real-
Time Image Fusion: A Vision Aid for Helicopter
Pilotage, Proceedings of SPIE-IS&T Electronic
Imaging Conference on Real-Time Imaging, SPIE
Vol. 4666, 2002, pp. 83–94
[25] S. Basu, S. Adhikari, R. Kumar, Y. Yan,
R. Hochmuth and B. E. Blaho, mmGrid:
Distributed resource management infrastructure for
multimedia applications, Proc. of International
Parallel and Distributed Processing Symposium
(IPDPS’03), 2003.

WSEAS TRANSACTIONS on SIGNAL PROCESSING Radu Dobrescu, Matei Dobrescu, Dan Popescu

ISSN: 1790-5052 132 Issue 3, Volume 6, July 2010

	89-551
	89-557
	89-622
	89-754
	89-800

