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Abstract: - Ant colony optimization (ACO) is a population-based metaheuristic that mimics the foraging 

behavior of ants to find approximate solutions to difficult optimization problems. It can be used to find good 

solutions to combinatorial optimization problems that can be transformed into the problem of finding good 

paths through a weighted construction graph. In this paper, an edge detection technique that is based on ACO is 

presented. The proposed method establishes a pheromone matrix that represents the edge information at each 

pixel based on the routes formed by the ants dispatched on the image. The movement of the ants is guided by 

the local variation in the image’s intensity values. The proposed ACO-based edge detection method takes 

advantage of the improvements introduced in ant colony system, one of the main extensions to the original ant 

system. Experimental results show the success of the technique in extracting edges from a digital image. 
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1 Introduction 
Ant colony optimization (ACO) is a nature-inspired 

optimization algorithm [1], [2] that is motivated by 

the natural foraging behavior of ant species. Ants 

deposit pheromone on the ground to mark paths 

between a food source and their colony, which 

should be followed by other members of the colony. 

Over time, pheromone trails evaporate. The longer it 

takes for an ant to travel down the path and back 

again, the more time the pheromones have to 

evaporate. Shorter – and thus, favorable – paths get 

marched over faster and receive greater 

compensation for pheromone evaporation. 

Pheromone densities remain high on shorter paths 

because pheromone is laid down faster. This 

positive feedback mechanism eventually leads the 

ants to follow the shorter paths. It is this natural 

phenomenon that inspired the development of the 

ACO metaheuristic. Dorigo et al. [3] proposed the 

first ACO algorithm, ant system (AS) [1], [2], [3]. 

Since then, extensions to AS have been developed. 

One of the successful ones is ant colony system 

(ACS) [1], [2], [4]. ACO has been used to solve a 

wide variety of optimization problems. In this paper, 

an ACO-based method for image edge detection is 

proposed. 

 

 

2 Image Edge Detection 
Image edge detection refers to the extraction of the 

edges in a digital image. It is a process whose aim is 

to identify points in an image where discontinuities 

or sharp changes in intensity occur. This process is 

crucial to understanding the content of an image and 

has its applications in image analysis and machine 

vision. It is usually applied in initial stages of 

computer vision applications. 

     Edge detection aims to localize the boundaries of 

objects in an image and is a basis for many image 

analysis and machine vision applications. 

Conventional approaches to edge detection are 

computationally expensive because each set of 

operations is conducted for each pixel. In 

conventional approaches, the computation time 

quickly increases with the size of the image. An 

ACO-based approach has the potential of 

overcoming the limitations of conventional 

methods. Furthermore, it can readily be parallelized, 

which makes the algorithm easily adaptable for 

distributed systems. 

     Several ACO-based approaches to the edge 

detection problem have been proposed [5]-[9]. 

Previously reported ACO-based approaches to 

image edge detection, to the best of the authors’ 

knowledge, all use a decision rule that is based on 

AS. This paper presents a technique that is derived 

from improvements introduced in ACS, one of the 

main extensions to AS. One of the significant 

aspects of ACS is the form of decision rule used, the 

pseudorandom proportional rule. The approach 

presented in this paper uses such rule in the tour 

construction process. 
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3 Proposed Edge Detection Method 
This section provides a theoretical discussion on the 

ant colony optimization metaheuristic and ACS, the 

first major improvement to AS. The theoretical 

discussion is followed by a discussion on the 

proposed ACO-based image edge detection 

technique.  

 

 

3.1 Ant Colony Optimization and ACS 
ACO is a probabilistic technique for finding optimal 

paths in fully connected graphs through a guided 

search, by making use of the pheromone 

information. This technique can be used to solve 

any computational problem that can be reduced to 

finding good paths on a weighted graph. In an ACO 

algorithm, ants move through a search space, the 

graph, which consists of nodes and edges. The 

movement of the ants is probabilistically dictated by 

the transition probabilities. The transition 

probability reflects the likelihood that an ant will 

move from a given node to another. This value is 

influenced by the heuristic information and the 

pheromone information. The heuristic information is 

solely dependent on the instance of the problem. 

Pheromone values are used and updated during the 

search. Fig. 1 shows a pseudocode of the general 

procedure in an ACO metaheuristic. 

 

 
 

Fig. 1. ACO metaheuristic 

 

     The initialization step is performed at the 

beginning. In this step, the necessary initialization 

procedures, such as setting the parameters and 

assigning the initial pheromone values, are 

performed. 

     The SCHEDULE_ACTIVITIES construct 

regulates the activation of three algorithmic 

components: (1) the construction of the solutions, 

(2) the optional daemon actions that improve these 

solutions, and (3) the update of the pheromone 

values. This construct is repeated until the 

termination criterion is met. An execution of the 

construct is considered an iteration. 

     ConstructAntSolutions. In a construction 

process, a set of artificial ants construct solutions 

from a finite set of solution components from a fully 

connected graph that represents the problem to be 

solved. A construction process contains a certain 

number of construction steps. Ants traverse the 

graph until each has made the target number of 

construction steps. The solution construction 

process starts with an empty partial solution, which 

is extended at each construction step by adding a 

solution component. The solution component is 

chosen from a set of nodes neighboring the current 

position in the graph. The choice of solution 

components is done probabilistically. The exact 

decision rule for choosing the solution components 

varies across different ACO variants. The most 

common decision rule is the one used in the original 

AS. On the  construction process, the  ant 

moves from node  to node  according to the 

transition probability , the probability that an ant 

will move from node  to node  (i.e., an ant in node  

will move to node ). The AS decision rule is based 

on the transition probability given by 

 

       (1) 

 

where  is the quantity of pheromone on the 

edge from node  to node ;  is the heuristic 

information of the edge from node  to node ;  is 

the neighborhood nodes for the ant given that it is at 

node ;  and  are constants that control the 

influence of the pheromone and heuristic 

information, respectively, to the transition 

probability.  is a 

normalization factor, which limits the values of  

within . 

     DoDaemonActions. Once solutions have been 

constructed, there might be a need to perform 

additional actions before updating the pheromone 

values. Such actions, usually called daemon actions, 

are those that cannot be performed by a single ant. 

Normally, these are problem specific or centralized 

actions to improve the solution or search process. 

     UpdatePheromones. After each construction 

process and after the daemon actions have been 

performed, the pheromone values are updated. The 

goal of the pheromone update is to increase the 

pheromone values associated with good solutions 

and decrease those associated with bad ones. This is 

normally done by decreasing all the pheromone 

values (evaporation) and increasing the pheromone 

values associated with the good solutions (deposit). 

Pheromone evaporation implements a form of 

forgetting, which prevents premature convergence 

Initialize 
SCHEDULE_ACTIVITIES 
   ConstructAntSolutions 
   DoDaemonActions (optional) 
   UpdatePheromones 
END_SCHEDULE_ACTIVITIES 
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to sub-optimal solutions and favors the exploration 

of new areas in the graph. The exact way by which 

the pheromone values are updated varies across 

different ACO variants. The AS pheromone update 

follows the equation 

 

       (2) 

 

where  is the pheromone evaporation rate; 

 is the number of ants;  is the quantity of 

pheromone laid on edge  by the  ant: 

 

       (3) 

 

where  is the tour length of the  ant. The tour 

length is determined according to some user-defined 

rule. The rule depends on the nature of the problem 

to be solved, but it must always be such that 

desirable routes have smaller tour lengths. In 

general, the tour length is a function of the heuristic 

information associated with the edges belonging to 

the tour. 

     ACS has three significant differences from AS. 

First, it uses a more aggressive decision rule, the so-

called pseudorandom proportional rule, which 

strengthens the exploitation of the search experience 

accumulated by the ants. Second, pheromone 

evaporation and deposit are done only on edges 

belonging to the best-so-far tour, as opposed to AS 

where pheromone evaporation is done on all edges 

and pheromone deposit is done on edges belonging 

to any solution constructed in the current iteration. 

Third, each time an ant uses an edge to move from 

one node to another, it removes some pheromone 

from that edge to increase the exploration of other 

areas. The process of removing pheromones from 

edges as they are crossed is called local pheromone 

update. The local update counterbalances the effect 

of the greedy decision rule, which favors the 

exploitation of the pheromone information.  

 

3.1.1 ACS Tour Construction 

In the pseudorandom proportional rule, the 

transition probability depends on a random variable 

q that is uniformly distributed over  and a 

parameter . If  , then the transition that 

maximizes  is chosen; otherwise, the AS 

probabilistic decision rule (Eq. 1), with , is 

used. The value of  determines the degree of 

exploration of the ants: with probability , the ant 

chooses the transition with the highest , while 

with probability , it performs a biased 

exploration of the edges. The balance between 

biased exploration and pheromone exploitation can 

be tweaked by adjusting the value of . 

 

3.1.2 ACS Global Pheromone Update 

The global pheromone update is performed only on 

the best-so-far solution according to the equation 

 

       (4) 

 

where  is the amount of pheromone 

deposited by the ant that produced the best-so-far-

solution, which is normally 

 

      (5) 

 

where  is the tour length associated with the best-

so-far solution. 

     Another thing that makes the global update in 

ACS different from that in AS is that in ACS, the 

pheromone deposited is decreased with a factor of , 

the evaporation rate, which results to a new 

pheromone value that is a weighted average 

between the old value and the amount deposited in 

the current iteration. 

 

3.1.3 ACS Local Pheromone Update 

Local pheromone update is interleaved with the tour 

construction process and applies each time and 

immediately after an ant traverses an edge during 

the construction process. After each construction 

step, an ant updates the pheromone value associated 

with the last edge that it has traversed based on the 

equation 

 

       (6) 

 

where  is the pheromone decay coefficient; 

 is the initial pheromone value. 

     Local pheromone update diversifies the search 

by decreasing the desirability of edges that have 

already been traversed.  

 

 

3.1 ACO-based Image Edge Detection 
Image edge detection can be thought of as a 

problem of identifying the pixels in an image that 

correspond to edges. A w × h two-dimensional 

digital image can be represented as a two-

dimensional matrix with the image pixels as its 

elements (Fig. 2). 
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Fig. 2. Matrix representation of an image 

 

     The graph is defined as follows. The components 

of the graph are the pixels of the image. The 

connections of the graph connect adjacent 

components or pixels together. The construction 

graph representation of an image is shown in Fig. 3. 

An 8-connectivity pixel configuration (Fig. 4) is 

used: a pixel is connected to every pixel that touches 

one of its edges or corners. Ants traverse the graph 

by moving from one pixel to another, through their 

connections. An ant cannot move to a pixel if it is 

not connected to the pixel where the ant is currently 

located. This means that an ant can move only to an 

adjacent pixel. 

 

 
 

Fig. 3.  Graph representation of an image 

 

 

 

 
 

Fig. 4. 8-connectivity configuration for pixel (  

 

     Artificial ants are distributed over the image and 

move from one pixel to another. The movement of 

the ants is steered by the local variation of the pixel 

intensity values. The goal of the ants’ movement is 

to construct a final pheromone matrix that reflects 

the edge information. Each element in the 

pheromone matrix corresponds to a pixel in the 

image and indicates whether a pixel is an edge or 

not. 

     The algorithm consists of three main steps. The 

first is the initialization process. The second is the 

iterative construction-and-update process, where the 

goal is to construct the final pheromone matrix. The 

construction-and-update process is performed 

several times, once per iteration. The final step is 

the decision process, where the edges are identified 

based on the final pheromone values. 

 

3.2.1 Initialization Process 

In the initialization process, each of the  ants is 

assigned a random position in the  image. 

The initial value of each element in the pheromone 

matrix is set to a constant , which is small but 

non-zero. Also, the heuristic information matrix is 

constructed based on the local variation of the 

intensity values. The heuristic information is 

determined during initialization since it is dependent 

only on the pixel values of the image, thus, constant. 

 

 
 

Fig. 5. A local configuration for computing the 

intensity variation at (  
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     The heuristic information at pixel  is 

determined by the local statistics at that position: 

 

         (7) 

 

where  is the intensity value of the pixel at .      

 is a function that operates on the local group 

of pixels (Fig. 5) around the pixel . It depends 

on the variation of the intensity values on the local 

group, and is given by 

 

 (8) 

 

 is the maximum intensity variation in the 

whole image and serves as a normalization factor. 

 

3.2.2 Iterative Construction and Update Process 

On every iteration, each ant moves across the image, 

from one pixel to the next, until it has made  

construction steps (a construction step consists of a 

single movement from one pixel to another). An ant 

moves from the pixel  to an adjacent pixel 

according to the pseudorandom proportional 

rule. The transition probability for the biased 

exploration is given by 

 

       (9) 

 

where  is the pheromone value for pixel ; 

 is the neighborhood pixels of pixel ; 

 is the heuristic information at pixel . The 

constants  and  control the influence of the 

pheromone and the heuristic information, 

respectively. 

     Each time an ant visits a pixel, it immediately 

performs a local update on the associated 

pheromone. The amount of pheromone on the pixel 

 on the  iteration, , is updated based on 

the equation for ACS local pheromone update:  

 

                 (10) 

 

where  is the pheromone decay coefficient; 

 is the initial pheromone value. Local 

pheromone updates are interleaved with the solution 

construction process; the pheromone values change 

within the iteration. 

     The permissible range of movement of the ants is 

obtained from the 8-connectivity neighborhood (Fig. 

4). An ant can move to any adjacent pixel. But, this 

is restricted by the condition that an ant moves only 

to a node that it has not recently visited. This is to 

prevent the ants from visiting the same set of nodes 

repeatedly. In order to keep track of the recently 

visited nodes, each ant has a memory. 

     After all the ants finish the construction process, 

global pheromone update is performed on pixels 

that have been visited by at least one ant: 

 

            (11) 

 

where  is the amount of pheromone deposited 

by the  ant on pixel . The deposited amount 

of pheromone  is equal to the average of the 

heuristic information associated with the pixels that 

belong to the tour of the  ant if pixel (  was 

visited by the  ant in its current tour; 0 otherwise. 

Its reciprocal can be interpreted as the tour length. 

This definition of the tour length satisfies the 

requirement that desirable routes have smaller tour 

lengths. Desirable routes are those that pass along 

pixels with higher local variation in intensity. 

Pheromones for unvisited pixels remain unchanged. 

     Global pheromone update for the proposed 

method does not exactly follow the ACS approach. 

This is because some details of the ACS approach 

do not suit the nature of the proposed edge-detection 

technique. One of the first problems ACO was made 

to solve is the traveling salesman problem (TSP). 

The nature of the ACO-based approach to TSP is 

different from the nature of the ACO-based edge 

detection technique described in this paper. 

     The difference lies in the selection of the tours to 

be used in the update. There is no selection of a 

best-so-far tour; all visited pixels are updated. In 

ACS, only the solution components belonging to the 

best-so-far solution is updated. Having a best-so-far 

solution makes sense for the ACO-based approach 

to TSP because each ant creates a tour that is a 

complete possible solution to the problem. In the 

ACO-based edge detection approach, however, an 

individual ant does not aim to produce a complete 

possible solution to the problem (i.e., a complete 

trace of the image edges). Instead, the goal of each 

ant is to produce only a partial edge trace in the 

image. The collective interaction of the ants 

produces a pheromone matrix, which can be used to 

extract a complete edge trace. With this, it is not 

appropriate to select a best-so-far solution during 

the construction process. Therefore, all edges that 

have been visited by at least one ant undergo a 

global pheromone update. 
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3.2.3 Decision Process 

The final pheromone matrix is used to classify each 

pixel either as an edge or a non-edge. The decision 

is made by applying a threshold on the final 

pheromone matrix . The threshold value is 

computed based on the method described in [10], 

also known as the Otsu thresholding technique. 

 

 
 

Fig. 6. ACO-based image edge detection 

 

Fig. 6 shows a pseudocode of the proposed method. 

 

 

4 Experimental Results 
Experiments were conducted using canonical test 

images to observe the effect of the parameter  on 

the result and to compare the edges produced using 

AS with those produced using ACS. 

     Fig. 7 shows four test images: Lena, Mandril, 

Peppers, and Pirate. All the canonical test images 

presented in this chapter have a size of 256 × 256 

pixels.  

 

     The parameters of the algorithm are: 

 

 : initial pheromone value 

 : number of iterations 

 : number of construction steps 

 : number of ants 

 : parameter for controlling the degree of 

exploration of the ants 

 : parameter for controlling influence of 

pheromone trail (fixed to 1 for ACS) 

 : parameter for controlling influence of 

heuristic information 

 : pheromone decay coefficient  

 : pheromone evaporation coefficient  

 

     In the experiments, the fixed parameters were 

assigned values that have been found to produce 

good results. 

 

     The values used in the experiments are: 

 

  

  

  

  (256 × 256 image) 

  (varies) 

  (ACS) 

  

   

   
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 7. Test images (a) Lena, (b) Mandril, (c) 

Peppers, (d) Pirate 

 

 

4.1 Effect of Parameter  
Fig. 8-11 show the extracted edges of the test 

images Lena, Mandril, Peppers, and Pirate, 

respectively, at different values of . Increasing the 

value of  results to smoother edges. However, it is 

not good to set  to a very high value because it 

causes some significant features to be missed, as 

clearly shown when  is 1. Evidently, it is also not 

good to set  to 0. To take advantage of the ACS 

decision rule,  must have a value between, but not 

equal to, 0 and 1. At 0, the edges are barely 

distinguishable. At 1, the random exploration of the 

ants is completely removed and important features 

of the image are missed. The range of good values 

for  depends on the nature of the image. In 

general, higher values of  are suitable for images 

that contain less details while lower values are 

suitable for those that contain more details. 

 

Do initialization procedures 
for each iteration n = 1:N do 
   for each construction_step l = 1:L do 
      for each ant k = 1:K do 
         Select and go to next pixel 
         Update pixel’s pheromone (local) 

end 
   end 
   Update visited pixels’ pheromones (global) 
end 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

  
(g) 

 
(h) 

  
(i) 

 
(j) 

Fig. 8. Edges for Lena at different values of : 

(a) 0.0, (b) 0.1, (c) 0.2, (d) 0.3, (e) 0.4, 

(f) 0.6, (g) 0.7, (h) 0.8, (i) 0.9, (j) 1.0 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

  
(g) 

 
(h) 

  
(i) 

 
(j) 

Fig. 9. Edges for Mandril at different values of : 

(a) 0.0, (b) 0.1, (c) 0.2, (d) 0.3, (e) 0.4, 

(f) 0.6, (g) 0.7, (h) 0.8, (i) 0.9, (j) 1.0 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

  
(g) 

 
(h) 

  
(i) 

 
(j) 

Fig. 10. Edges for Peppers at different values of :  

(a) 0.0, (b) 0.1, (c) 0.2, (d) 0.3, (e) 0.4, 

(f) 0.6, (g) 0.7, (h) 0.8, (i) 0.9, (j) 1.0 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

 
(i) 

 
(j) 

Fig. 11. Edges for Pirate at different values of :  

(a) 0.0, (b) 0.1, (c) 0.2, (d) 0.3, (e) 0.4, 

(f) 0.6, (g) 0.7, (h) 0.8, (i) 0.9, (f) 1.0 
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4.2 AS Edges vs. ACS Edges 
A version of the algorithm that uses ant system was 

implemented and tested using the same test images. 

The results produced with AS and ACS were 

compared, at different values of the ACS parameter 

.  

 

 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 12. Comparison between AS and ACS edges at 

different values of  for Lena: 

(a) AS, (b) ACS 0.2, (c) ACS 0.4, (d) ACS 0.6 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 13. Comparison between AS and ACS edges at 

different values of  for Mandril: 

(a) AS, (b) ACS 0.2, (c) ACS 0.4, (d) ACS 0.6 

     Fig. 12-15 show that ACS can produce better 

results. For Lena, Mandril, and Peppers, a 

significant improvement is already visible at 

. For Pirate, although the quality of the 

ACS edges is not as good, the edges extracted with 

ACS are more defined than those with AS. Even at 

relatively lower values of , say , the edges 

produced by ACS are, in general, more defined. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 14. Comparison between AS and ACS edges at 

different values of  for Peppers: 

(a) AS, (b) ACS 0.2, (c) ACS 0.4, (d) ACS 0.6 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 15. Comparison between AS and ACS edges at 

different values of  for Pirate: 

(a) AS, (b) ACS 0.2, (c) ACS 0.4, (d) ACS 0.6 
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5 Conclusion 
An ACO-based image edge detection algorithm that 

takes advantage of the improvements introduced in 

ACS has been successfully developed and tested. 

Experimental results show the feasibility of the 

approach in identifying edges in an image. With 

suitable parameter values, the algorithm was able to 

successfully identify edges in the canonical test 

images. It must be noted that the appropriate 

parameter values depend on the nature of the image, 

and thus, may vary per application. 

     As a continuation of this research, it is 

recommended to further examine how the quality of 

the extracted edges is affected by the parameter 

values and the functions for obtaining the heuristic 

information, for quantifying the quality of a 

solution, and for computing how much pheromone 

to deposit. In a study on a simplified ACO algorithm 

[11], it was shown that the basic properties of ACO 

are critical to the success of the algorithm, 

especially when solving more complex problems.  

     In recent studies, techniques that could enhance 

the performance of ACS have been explored. In 

[12], ants are assigned different pheromone 

sensitivity levels, which makes some ants more 

sensitive to pheromone than the others. In [13], 

multiple ant colonies with new communication 

strategies were employed. The proposed ACS 

method for edge detection could be extended and 

possibly be improved by making use of such 

techniques. 
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