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Abstract: - In this paper, various speech processing
techniques in time, time-frequency and time-scale do-
mains for the purposes of recognition and compression
are displayed. The examination of the human cochlea is
included revealing practice of Wavelet Transform repre-
sentation. The interchange between theory and appli-
cation is displayed in a variety of work that have been
accomplished in that direction. In particular, we em-
phasize the role of Wavelet Transforms in recognizing
and compressing speech signals.

Keywords: - Multimedia, Speech Processing, Cochlea
Response, Time-Frequency, Wavelet Transform.

1 Introduction

Speech signals are processed for various applications
such as recognition, compression, pitch detection and
speaker identification to name a few [1] [26] [27] [28].
Each processing task is presented with different sets of
challenges and limitations due to the very complex na-
ture of speech. In the recognition problem, the com-
plexity of a system is proportional to the size of the
speech set and the speaker dependency required such
as single speaker, multi speaker or speaker independent
[34] [36].
For compression purposes, one would like to represent
a given speech signal with the least possible number of
data bits while maintaining acceptable audible recon-
structed signal. In this direction, wavelet analysis plays
a superior role since it concentrates speech information
such as energy and perception into a few neighboring
coefficients. This translates into retaining a small num-
ber of coefficients to represent a given segment of speech
and ignoring the other majority of the coefficients [4]

[8]. Threshold takes place at every chosen decomposi-
tion level of wavelet analysis [38]. After the segmenta-
tion and analysis of the signal, a threshold is applied
to the coefficients of each of the levels. This is a lossy
algorithm since one retains only those coefficients that
contribute the highest energy [23].
Regardless of the task at hand, an initial segmentation
procedure of the signal takes place and analysis is con-
ducted on the resulting spectrally stable segments of
speech known as subwords. This is particularly useful
in the cases of speech recognition and speech compres-
sion paradigms, relying on Time-Frequency or Time-
Scale analysis.

2 Speech Representations

In order to digitally process a signal x(t), it has to be
sampled at a certain rate. 20000 Hz is a standard sam-
pling frequency for the Digits and the English alpha-
bets in [29] and [30]. To make the distinction in the
representation with the digitized signals, the latter is
referred to as x(m). Most speech processing schemes
assume slow changes in the properties of speech with
time, usually every 10-30 milliseconds. This assump-
tion influenced the creation of short time processing,
which suggests the processing of speech in short but
periodic segments called analysis frames or just frames
[36]. Each frame is then represented by one or a set of
numbers, and the speech signal has then a new time-
dependent representation. In many speech recognition
systems like the ones introduced in [2] and [32], frames
of size 200 samples and a sampling rate of 8000 Hz (i.e.,
200∗1000/8000 = 25 milliseconds) are considered. This
segmentation is not error free since it creates blocking
effects that makes a rough transition in the representa-
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tion (or measurements) of two consecutive frames. To
remedy this rough transition, a window is usually ap-
plied to data of twice the size of the frame and overlap-
ping 50% the consecutive analysis window. This mul-
tiplication of the frame data by a window favors the
samples near the center of the window over those at
the ends resulting into a smooth representation. If the
window length is not too long, the signal properties in-
side it remains constant. Taking the Fourier Transform
of the data samples in the window after adjusting their
length to a power of 2, so one can apply the Fast Fourier
Transform [5], results in time-dependent Fourier trans-
form which reveals the frequency domain properties of
the signal [31]. The spectrogram is the plot estimate of
the short-term frequency content of the signals in which
a three-dimensional representation of the speech inten-
sity, in different frequency bands, over time is portrayed
[34]. The vertical dimension corresponds to frequency
and the horizontal dimension to time. The darkness of
the pattern is proportional to the energy of the signal.
The resonance frequencies of the vocal tract appear as
dark bands in the spectrogram [31]. Mathematically,
the spectrogram of a speech signal is the magnitude
square of the Short Time Fourier Transform of that sig-
nal [3]. In the literature one can find many different
windows that can be applied to the frames of speech sig-
nals for a short-term frequency analysis.Three of those
are plotted in Figure 1.
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Figure 1: Plots of window functions in the time
domain.

2.1 Time-Frequency Representations

Broadly speaking, there are two classes of time-
frequency representations, linear and non-linear. The
Wigner Distribution is an example of the non-linear
class. It was first introduced by Wigner in quantum

physics [37]. Gabor introduced the Short Time Fourier
Transform (STFT) in 1946 to analyze finite duration
signals [13]. The STFT of a signal x(m) as defined in
[34] is:

Xn(ejω) =

∞
∑

m=−∞
x(m)w(n −m)e−jωm. (1)

where w(n−m) is a real window sequence which deter-
mines the portion of the input signal that receives em-
phasis at the particular discrete time index m. The fre-
quency ω is a normalized frequency with value 2πm/Fs

with Fs representing the sampling frequency of the sig-
nal. The properties of the STFT include: homogeneity,
linearity, time shift variant and has an inverse. Proofs of
these properties can be found in [31] and [36] along with
many applications of the STFT in estimating and ex-
tracting speech parameters such as pitch and formants.
This time-frequency representation allows the determi-
nation of the frequency content of a signal over a short
period of time by taking the FT of the windowed sig-
nal. It also has the ability to capture the slowly varying
spectral properties of an analyzed signal. The signal is
assumed to be quasi-stationary within the analysis win-
dow [36]. Thus the width of the analyzing window has
to be carefully chosen. In this time-frequency analysis
there are two conflicting requirements. Since the fre-
quency resolution is directly proportional to the width
of the analyzing window, good frequency resolution re-
quires a long window and good time resolution, needs a
short time length window. This is an immediate disad-
vantage of the STFT analysis since the window length
is kept constant. Hence, there is a time-frequency res-
olution trade off. This is captured in the uncertainty
principal [3] which states that for the pair of functions
x(t) and its Fourier Transform X(w) one has:
∆t∆w ≥ 1/2, Where ∆2

t and ∆2
w are measures of varia-

tions of spread of x(t) and X(w). If one start analyzing
with a window of size 20 ms and needed to shorten its
size to 10 ms for rapid variation detection, then there
will be a loss of frequency resolution. This also increases
the computational complexity of the STFT. Another in-
terpretation, is that it can be viewed as the convolution
of the modulated signal x(m)e−jωm with the analysis
filter w(m). Based on this interpretation, the STFT
can be implemented by the filter bank approach where
the signal is passed through a bank of filters of con-
stant bandwidth since the length of the window is fixed.
Thus, the temporal and spectral resolutions are fixed.
Filter banks are popular analysis methods of speech sig-
nals [33] [34]. In this spectral analysis approach, a digi-
tized speech signal x(m) is passed through a bank of P
bandpass filters (or channels) that covers a frequency
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range of interest (e.g., P = 20 channels covering 78
Hz to 5000 Hz [17]). In a filter bank, each filter pro-
cesses the signal independently to produce a short-time
spectral representation Xm(ejω) at time m through a
filter i that has ωi as its center of frequency. The cen-
ter frequency and bandwidth of each filter are normally
determined based on a scale model that mimics the way
the human auditory system perceives sounds.

2.2 Time-Scale Representations

Another two dimensional signal processing tool that
remedies problems arising from time frequency domain
methods such as trade off in time frequency resolutions
and limitations in analyzing non-stationary signals is
the time-scale representation. The Wavelet Transform
(WT) accomplishes such representation. It partitions
the time-frequency plane in a non-uniform fashion and
shows finer frequency resolution than time resolution at
low frequencies and finer time resolution than frequency
resolution at higher frequencies. This type of transform
decomposes the signal into different frequency compo-
nents, and then analyzes each component with a res-
olution that matches its scale [16]. The Continuous
Wavelet Transform (CWT) [6] of a signal x(t), is given
by :

CWT(a,b)(x(t)) =
1√
a

∫ ∞

−∞
x(t)ψ

(

t− b

a

)

dt (2)

Where a and b are the real numbers that represent the
scale and the translation parameter of the transform
respectively. The function ψ(t) is called the mother
wavelet and has to have the following two properties:

(1)
∫ ∞
−∞ |ψ(t)|2dt < ∞. This is equivalent to having

ψ(t) ∈ L2(<) the space of finite energy functions.

(2)
∫ ∞
−∞ ψ(t)dt = 0. This is equivalent to having the

Fourier Transform of ψ(t) null at zero (i.e., ψ(t)
has no dc components).

3 Connection to Hearing

When a sound wave hits the human eardrum, the oscil-
lations are transmitted to the basilar membrane in the

cochlea as standing waves that cause the basilar mem-
brane to vibrate at the same frequencies as the input
acoustic signal and at a place along the basilar mem-
brane that is associated with these frequencies [34]. Un-
rolling and stretching the cochlea from its original spiral
shape along with its basilar membrane. Each point of
the basilar membrane can then be labeled by its posi-
tion on a curve g(x) that represents this envelope of the
cochlea [18].

Experiments and numerical simulations in [6] and [7]
show that the response at the level of the basilar mem-
brane of a real tone or an excitation of the form eiωt is a
temporal oscillation that has the same frequency as the
pure tone input. The response can be mathematically
represented by:

R(x, t) = eiwtFw(g(x)) (3)

where Fw represents the dependency on ω of the re-
sponse. Also in [6] and [7], Fw is described by a loga-
rithmic shift for frequencies above 500Hz.
We can express the response as:

R(x, t) = F (g(x) − logω)eiwt ω ≥ 500Hz. (4)

The Fourier Transform representation [34] of a real-time
signal s(t) is given by the equation:

S(ω) =

∫ ∞

−∞
s(t)e−iωtdt. (5)

The signal s(t) can be synthesized from its Fourier com-
ponents by the formula:

s(t) =
1

2π

∫ ∞

−∞
S(ω)eiωtdw. (6)

If one assumes linearity of the above cochlear model,
then the response of the basilar membrane to s(t) can
be written as:

R(x, t) =
1

2π

∫ ∞

−∞
S(ω)eiωtF (g(x) − logω)dw. (7)

Define the function P such that F (z) = P̂ (e−z), where
P̂ is the Fourier Transform of P . Also, let R

′

(x, t) =
R(−log(|g(x)|), t). The response can now be written as:

R
′

(x, t) =
1

2π

∫ ∞

−∞
S(w)P̂ (ωg(x))eiωtdw. (8)

This is the inverse Fourier Transform of a product of
two functions which is the convolution of the inverse
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transform of the functions. The response can now be
represented as:

R
′

(x, t) =
1

g(x)

∫ ∞

t1=−∞
s(t1)P (

t− t1
g(x)

)dt1. (9)

Now let ψ(t) = P (−t) then,

R
′

(x, t) =
1

g(x)

∫ ∞

t1=−∞
s(t1)ψ(

t1 − t

g(x)
)dt1. (10)

Up to a normalizing factor, the last equation can be
interpreted now as the CWT of the input signal. It
is identical to the Wavelet Transform equation. In
this sense, the cochlea can be interpreted as a natu-
ral wavelet transformer of sound. This occurrence of
the CWT in our biological processing of acoustics insin-
uated the construction of the Discrete Wavelet Trans-
form Scale (DWTS) for modeling the speech waveforms.
This discussion leads to the following statement:

Assume that the proposed cochlear model is linear for
the envelope g(x), then its response to an acoustic sig-
nal, is up to a normalization factor, the CWT at scale
g(x) of that signal.

x

y

z

Figure 2: Localization of the response

The response of the cochlea to a pure tone input is the
Fourier Transform of a wavelet, and hence should be
localized in frequency. This is justified by the following:

The change of variable r = t−a
g(x) for a pure tone input

s(t) = eiwt allows us to reduce the response to:

R(x, t) =

∫ ∞

r=−∞
eiw(rg(x)+a)ψ(r)dr (11)

This implies that the amplitude of the response is
ψ̂(−wg(x)) which is the Fourier Transform of the
wavelet ψ(ωg(x)). Thus the response is localized in fre-
quency. Note that, the shape of the response in Figure

2 is justified to be the Fourier Transform of a wavelet,
and hence should be localized in frequency. In the next

section we derive the Discrete Wavelet Transform Scale
(DWTS) used to construct feature vectors that model
the speech signals.

4 The Discrete Wavelet Transform

Scale

To follow the assumption of the logarithmic shift for
frequencies above 500Hz, the level five decomposition of
the Discrete Wavelet Transform was chosen as it is illus-
trated in Figure 3. The DWTS is constructed according
to desired nodes in the decomposition tree. The fre-
quency bands of the DWTS are the frequency contents
of the four details coefficients [CD2, CD3, CD4, CD5].
These notations are very clear in [?] and [23] where a
detailed treatment of the Discrete Wavelet Transform
can be found. This scale leads to a more compact repre-
sentation of a speech signal. It results in a 5:1 reduction
of the size of the feature vectors when compared with
those of the Mel scale that uses 20 frequency selected
bands.
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(625-1250 Hz)

(0-312.5 Hz)

(0-5000 Hz)
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C
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Figure 3: Selection of the DWTS frequency

bands
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One can interpret the Wavelet Transform integral op-
eration in two ways [3]:

(1) It evaluates the inner product or the cross correla-
tion of x(t) with the ψ(t/a)/

√
a at shift b/a. Thus

it evaluates the components of x(t) that are com-
mon to those of ψ(t/a)/

√
a. Thus it measures the

similarities between x(t) and ψ(t/a)/
√
a.

(2) It is the output of a bandpass filter of impulse
response ψ(−t/a)/√a at b/a of the input signal
x(t). This is a convolution of the signal x(t), with
an analysis window 1√

a
ψ(t/a) that is shifted in time

by b and dilated by a scale parameter a.

The second interpretation can be realized with a set
of filters whose bandwidth is changing with frequency.
The bandwidth of the filters is inversely proportional to
the scale a which is inversely proportional to frequency.
Thus, for low frequency we obtain high spectral reso-
lution and low (poor) temporal resolution. Conversely,
(This is where this type of representation is most useful)
for high frequencies we obtain high temporal resolution
that permits the wavelet transform to zoom in on sin-
gularities and detect abrupt changes in the signal [16].
This leads to a poor high frequency spectral resolution.
The Discrete Wavelet Transform and the Fourier Trans-
form are modified versions of the Continuous Wavelet
Transform. They can be derived from the CWT for
specified values of a and b. For example, if the mother
wavelet ψ(t) is the exponential function e−it and a = 1

w

and b=0 then, the CWT is reduced to the traditional
Fourier Transform with the scale representing the in-
verse of the frequency [40]. The advantages that this
new representation has over the STFT can be noticed
in its efficiency in representing physical signals since
it isolates transient information in a fewer number of
coefficients and also in overcoming the time frequency
trade off induced by STFT [16]. The properties of the
CWT for real signals include: linearity, scale invariant,
translation invariant, real and has an inverse. For a de-
tailed discussion about the properties of the CWT and
their proofs, refer to [6]. Some of the applications of
the CWT in speech processing include: Analysis, syn-
thesis and processing of speech and music sound in [22],
Analysis of sound patterns in [24], Formant tracking in
[15], Speech compression in [38] and Speech recognition
in [9] [10][11][17] and [25] almost all of which base their
work on one of the following databases [29] and [30].

5 Analysis and Synthesis of Hyperme-

dia Elements

A two-channel perfect reconstruction filter bank [37]
[39] contains four filters and two phases. The filters
are:

1. The lowpass filter H0(n) and the highpass filter
F0(n) in the decomposition phase.

2. The lowpass filter H1(n) and the highpass filter
F1(n) in the reconstruction phase.

The Analysis (decomposition) and Synthesis (recon-
struction) phases are depicted in Figure 4 and in Figure
5 respectively. The four filters H0, F0, H1, F1 that guar-
anty perfect reconstruction must satisfy the following 2
conditions expressed in the Z-domain [37] [39]:

H1(z)H0(z) + F1(z)F0(z) = 2z−l (12)

x(n)
y
0
(n)

2 H0

2 0

2

2

Analysis Decimators

1
y (n)

v (n)0

v (n)1

Input Signall

G

Figure 4: Analysis phase of the filter bank.

This condition removes distortion.

H1(z)H0(−z) + F1(z)F0(−z) = 0 (13)

This condition cancels aliasing.

In Equation 12, l represents the over all delay. For alias
cancellation we assume the following extra conditions
also imposed in [37]:

H1(−z) = F0(z) (14)

−H0(−z) = F1(z) (15)
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2
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1

~x(n)

Delayed Output Signal
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Figure 5: Synthesis phase of the filter bank.

6 Wavelets Compression

The goal of using wavelets to compress speech sig-
nal is to represent a signal using the smallest number of
data bits commensurate with acceptable reconstruction
and smaller delay. Wavelets concentrate speech infor-
mation (energy and perception) into a few neighboring
coefficients, this means a small number of coefficients
(at a suitably chosen level) will remain and the other
coefficients will be truncated. These coefficients will be
used to reconstruct the original signal by putting zeros
instead of the truncated ones.

6.1 Thresholding Techniques

Thresholding is a procedure which takes place after
decomposing a signal at a certain decomposition level.
After decomposing this signal a threshold is applied to
coefficients for each level from 1 to N (last decompo-
sition level). This algorithm is a lossy algorithm since
the original signal cannot be reconstructed exactly [23].
By applying a hard threshold the coefficients below this
threshold level are zeroed, and the output after a hard
threshold is applied and defined by the following equa-
tion :-

yhard(t) =

{

x(t), |x(t)| > δ
0, |x(t)| ≤ δ

(16)

where x(t) is the input speech signal and δ is the thresh-
old. An alternative is soft thresholding at level δ which
is chosen for compression performance and defined by
this equation :-

ysoft(t) =

{

sign(x(t))(|x(t)| − δ), |x(t)| > δ
0, |x(t)| ≤ δ

(17)

where equation 16 represents the hard thresholding and
equation 17 represents the soft thresholding.

7 Thresholding Methods Used in

Wavelets Compression

In this section two thresholding algorithms will be
introduced and later used in compressing speech signals.
These two methods are, Global thresholding and Level
dependent thresholding.

7.1 Global Thresholding

Global thresholding works by retaining the wavelet
transform coefficients which have the largest absolute
value. This algorithm starts by dividing the speech sig-
nal into frames of equal size F . The wavelet transform
of a frame has a length T (larger than F ). These coeffi-
cients are sorted in a ascending order and the largest L
coefficients are retained. In any application these coef-
ficients along with their positions in the wavelet trans-
form vector must be stored or transmitted. That is,
2.5L coefficients are used instead of the original F sam-
ples, 8 bits for the amplitude and 12 bits for the posi-
tion which gives 2.5 bytes. The compression ratio C is
therefore:

C =
F

2.5L
or L =

F

2.5C
(18)

Each frame is reconstructed by replacing the missing
coefficients by zeros.

7.2 Level Dependent Thresholding

This compression technique is derived from the
Birge-Massart strategy [19]. This strategy is working
by the following wavelet coefficients selection rule :
Let J0 be the decomposition level, m the length of the
coarsest approximation coefficients over 2, and α be a
real greater than 1 so :

1. At level J0+1 (and coarser levels), everything is
kept.

2. For level J from 1 to J0, the KJ larger coefficients
in absolute value are kept using this formula:

KJ =
m

(J0 + 1 − J)α
(19)

The suggested value for α is 1 and was used in [19]
[20] [21].

7.3 Algorithms Interpretation

These algorithms are used to compress speech sig-
nals and compare the quality of the reconstructed signal
with the original. In this section, outlines the steps fol-
lowed in implementing these algorithms.
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7.4 Compression using the Global Thresh-
olding

The following procedure is usually followed to imple-
ment the global thresholding to compress speech sig-
nals.

1. Divide the speech signal into frames of equal size.
Different frame sizes are tested to see how the
frame size will affect the performance of the recon-
structed signal. Three different frame sizes are ex-
amined since wavelet analysis is not affected by the
stationarity problem. Expanding the frame length
will speed up the processing time which reduces
the processing delay.

2. Apply the discrete wavelet transform to each one of
these frames separately at the five decomposition
levels. This level is chosen since the best perfor-
mance of the reconstructed signal is obtained at
this level.

3. Sort the wavelet coefficients in a ascending order.

4. Apply the global thresholding to these coefficients
by choosing the compression ratio and using equa-
tion 18 to obtain the non zero coefficients.

5. Keep the retained coefficients and their positions
to reconstruct the signal from them.

6. Reconstruct the compressed frames by using the
non zero coefficients and their positions and replac-
ing the missing ones by zeros.

7. Repeat steps 2 to 6 to compress all the frames.

8. Insert these reconstructed frames into their original
positions to get the reconstructed signal.

7.5 Compression Using Level-dependent
Thresholding

After the speech signal is divided into equal frame
sizes, the following steps are to be followed to implement
the level dependent thresholding.

1. Apply the wavelet decomposition to each frame
separately.

2. Keep all the coefficients of the last approximation,
and use equation 19 to retain coefficients from each
detail level.

3. Decompose all the frames and apply step 2 to each
one of the frames, then keep the non zero coeffi-
cients and their positions using 2.5 bytes as in the
global thresholding.

4. Reconstruct each decomposed frame using the non
zero coefficients and replace the missing ones by
zeros.

5. Insert these reconstructed frames into their original
positions to get the reconstructed signal.

7.6 The Compression Parameters

In this paper, four compression parameters are used.
They are defined next along with their mathematical
expressions.

1. Signal to Noise Ratio: SNR = 10 ∗ log σx2

σe2

Where σx2 is the mean square of the speech signal
and σe2 is the mean square difference between the
original and reconstructed signals.

2. Peak Signal to Noise Ratio: PSNR = 10 ∗
log NX2

||x−r||2

Where N is the length of the reconstructed signal,
X is the maximum absolute square value of the
signal x and ||x−r||2 is the energy of the difference
between original and reconstructed signals.

3. Normalized Root Mean Square Error: NRMSE =
√

(x(n)−r(n))2

(x(n)−?x(n))2

Where X(n) is the speech signal, r(n) is the re-
constructed signal, and ?x(n) in the mean of the
speech signal.

4. Retained Signal Energy: RSE = 100 ||x(n)||2
||r(n)||2

Where ||x(n)|| is the norm of the original signal
and ||r(n)|| is the norm of the reconstructed one.
For db orthogonal wavelets the retained energy is
equal to the L2 − norm recovery performance.

The speech signals compressed are the Arabic digits
Zero and eight. Different Compression Ratios (CR) were
obtained. Different parameters were examined when
simulating the code. The 8Khz sampled signals are
divided into frames (0.2ms, 0.25s, and 0.5s) and de-
composed up to level 5. Each frame is decomposed
separately. At this stage the threshold is applied on
the coefficients to truncate whatever unnecessary. The
obtained coefficients are then used to reconstruct the
output compressed signal. Different results were ob-
tained allowing efficient evaluations and comparisons of
the used methods and parameters.
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8 Comperative Results

In [18], it was shown that in the case of speech signals
of the digits 0, 1, 2, ..., 9 and the utterance ”oh”, Time-
Scale wavelet representations had an order of magnitude
advantage in time processing and recognition rate over
the Time-Frequency Fourier based representation. Also
in [17] it was shown that in processing speech for recog-
nition purposes, subword speech units were sufficient for
accurate recognition rates by using Time-Scale wavelet
analysis instead of frame and windowed speech units in
the Time-Frequency Fourier based representation. This
was also the case for subset of the alphabets contain-
ing the letters a, j, k. On the other hand, in [9][10][11],
Favero have proved by accurate statistical analysis of his
experiments results that Time-scale wavelet based rep-
resentation of the letters b, c, d, e, g, p, t, v, z produced
better recognition rates than using its rivalry represen-
tation. It is worthwhile mentioning here that in [18],
Radial Basis Artificial Neural Networks were used as
the recognition engines whereas in the work of Favero,
Hiddien Markov Model engines were employed.

9 Conclusion

In this paper, the different representations of speech
signals are presented thoroughly. Time domain, time
frequency domain and time scale domain methods are
described. Their advantages and drawbacks are dis-
cussed along with their different applications in speech
processing in general and speech recognition and com-
pression in particular. A discussion about segmenta-
tion and subwording of speech signals was included
along with their role in wavelet-based speech recogni-
tion and compression. Finally, comparative results were
extracted from the literature to show the advantages of
using Wavelet-Based representations of speech signals
over the traditional Time-Frequency based representa-
tion. For compression, the performance of the Discrete
Wavelet Transform in compressing speech signals was
tested and the following points were observed. High
compression ratios were achieved with acceptable SNR.
No further enhancements were achieved beyond level 5
decomposition. The effect of frame size and the Level
Dependent Threshold on the NRMSE is evident while
this measurement remains almost constant for all ex-
periments with negligible changes. Increasing the frame
size, positively affects the overall performance in both
threshold techniques used. Overall, global threshold
lead to better results than the level dependent thresh-
old technique in the case of SNR and CR. This was the
case with and without framing and for both tested dig-

its. It is worthwhile noting that we could not pinpoint
the best compression wavelet.
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