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Abstract: - This paper presents a radar target recognition method using kernel locally linear embedding (KLLE) 
and a kernel-based nonlinear representative and discriminative (KNRD) classifier. Locally linear embedding 
(LLE) is one of the representative manifold learning algorithms for dimensionality reduction. In this paper, 
LLE is extended by using kernel technique, which gives rises to the KLLE algorithm. A KNRD classifier is a 
combined version of a kernel-based nonlinear representor (KNR) and a kernel-based nonlinear discriminaor 
(KND), two classifiers recently proposed for optimal representation and discrimination, respectively. KLLE is 
firstly utilized to reduce data dimension and extract features from a high resolution range profile (HRRP). Then, 
a KNRD classifier is employed for classification. Experimental results on measured profiles from three aircrafts 
indicate the relatively good recognition performance of the presented method. 
 
 
Key-Words: - Radar target recognition, high resolution range profile, kernel locally linear embedding, kernel-
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1 Introduction  
The emergence of high resolution radar with the 
imaging technology enables modern radars to 
acquire rather detailed information about shape and 
structure of a target, thus providing us with a more 
reliable tool for target recognition. In comparison 
with 2-dimensional images, it is technically easy 
and inexpensive to obtain 1-dimensional high 
resolution range profiles (HRRPs) of a target, so 
HRRP-based target recognition has drawn much 
attention and been a mainstream in radar community. 
On the one hand, HRRPs reflect the distribution of 
scattering intensity and relative location of scatterers 
along the line of sight of radar and thus provide a lot 
of useful features for target recognition. On the 
other hand, HRRPs are sensitive to aspect variations 
of a target, which bring great difficulty to 
recognition. Therefore, one of the key problems of 
radar target recognition using HRRP is how to 
extract robust and effective features [1, 2]. 

The objective of feature extraction is to reduce 
data dimension and extract representative or 
discriminative features. Many classical methods 

have been developed and applied to radar target 
recognition successfully. Among the popular 
methods, the principal component analysis (PCA) [3] 
and the linear discriminant analysis (LDA) [4] are 
two powerful tools. But, radar target recognition is a 
complex nonlinear problem; sometime we cannot 
attain satisfactory results due to the linear nature of 
PCA and LDA. To overcome this weakness, 
corresponding nonlinear algorithms, such as kernel 
principal component analysis (KPCA) [5] and 
kernel Fisher discriminant analysis (KFDA) [6], 
were proposed by using kernel technique [7]. It has 
been demonstrated that these kernel methods are 
much superior to their corresponding linear 
counterparts in terms of recognition performance. 
However, they are incapable to discover the inherent 
geometry structure and topology relationship of data. 

In the past few years, a new kind of nonlinear 
dimensionality reduction method, named manifold 
learning, has drawn much attention in the computer 
vision and pattern recognition community, such as 
Isomap [8], locally linear embedding (LLE) [9, 10], 
laplacian Eigenmap [11], local tangent space 
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alignment (LTSA) [12] and etc, which assume that 
data lied in a complex high-dimensional data space 
may reside more specifically on or nearly on a low-
dimensional manifold embedded within the high-
dimensional space. Thereinto, the central idea of 
LLE is to solve globally nonlinear problems using 
locally linear fitting. LLE is computationally very 
simple, involving closed-form linear algebraic 
operations and suffering no local minima problems. 

In this paper, LLE is further extended by using 
kernel technique and thus the kernel locally linear 
embedding (KLLE) algorithm is formulated, which 
is adopted to reduce data dimension and extract 
features from a HRRP. Since the locality 
preservation is done in an implicit high dimensional 
feature space, in which the input data is as linearly 
separable as possible, the KLLE is expected to be 
superior to LLE in terms of recognition ability.   

Classifiers also play a paramount role in radar 
target recognition. Generally, range profiles of 
different targets are overlapped in the measured 
space or feature space, so they are not linearly 
separable, and thus it is necessary to design a 
suitable nonlinear classifier to obtain satisfactory 
recognition results. Among the popular methods are 
the radial basis function (RBF) neural network [13] 
and the nonlinear support vector machine (SVM) 
[14]. In order to train the corresponding parameters, 
repeated iterative learning is needed for RBF, in 
which the local convergence problem is sometimes 
unavoidable. While SVM is based on structural risk 
criteria with the optimal generalization ability, in 
which the solution is represented as a nonlinear 
function in the form

1
( ) ( , )M

j jj
f a k b

=
= +∑x x x , 

where k is the associated kernel function, 
( 1,2, )j j M=x  a set of training feature vectors, 

and b a constant being set to zero in some 
applications. The set of coefficients 

( 1,2, )ja j M=  is decided by the nature of the 
related problem. For example, when the error cost 
function for approximation is quadratic, it can be 
obtained by solving a linear system. When Vapnik’s 
ε -insensitive cost function is adopted, it is obtained 
by the SVM approximation scheme, wherein a 
quadratic programming problem needs to be solved, 
so it limits the training speed [15]. In addition, the 
conventional SVM is formulated for two-class 
problems, it is extended to multiple-class problems 
usually by adopting one-against-one or one-against 
all scheme. In the former scheme, ( 1) / 2C C −  SVM 
classifiers are designed for a C-class problem, and 
classification is done by voting. 

Recently, two novel nonlinear classifiers named 
kernel-based nonlinear representor (KNR) [16] and 
kernel-based nonlinear discriminaor (KND) [17] 
were proposed for optimal representation and 
discrimination, respectively. Their solutions have 
the same form as that of SVM, wherein the constant 
b is set to zero for simplicity and the set of 
coefficients is determined by the desired outputs of 
the classifiers in a closed form. It is demonstrated 
that KNR and KND can achieve good classification 
ability comparative to that of SVM. Moreover, they 
are much less time-consuming for training than 
SVM since any iterative or quadratic programming 
procedure is avoided [18]. 

In this paper, a KNR and a KND are combined 
into a new version called a kernel-based nonlinear 
representative and discriminative (KNRD) classifier, 
which is applied to classification for radar target 
recognition using range profiles.  

The remainder of this paper is organized as 
follows: in section 2, the KLLE algorithm is 
concretely described at first, and then the procedure 
of data dimension reduction and feature extraction 
based on the KLLE is stated. Section 3 reviews the 
KNR and KND at first, and then presents the 
criterion along with the associated derivation of a 
KNRD classifier. In section 4, experiments are 
performed on radar target recognition using HRRPs 
to verify the effectiveness of the presented method. 
Finally, conclusions are drawn in section 5.  
 
 
2 KLLE 
 
2.1 Review of LLE 
LLE maps a data set 1 2[ , , , ]N=X x x x  in D-
dimensional space DR  globally to a data set 

1 2[ , , , ]N=Y y y y  in d-dimensional space 
( )d d DR . Basically, the LLE algorithm consists 

of three steps:  
1) Find K nearest neighbors of each data point 
( 1,2, , )i i N=x  in DR  by using the Euclidean 

distance to measure similarity.  
2) Compute the weights ijw  that best linearly 

reconstruct each data ix  from its K nearest 
neighbors ( 1,2, , )j j K=x  by minimizing the 
following cost function: 

2
( ) i ij jj

i
wε = −∑ ∑W x x                  (1) 
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subject to constraints 1ijj
w =∑  and 0ijw = , if 

jx does not belong to the set of K nearest neighbors 
of ix . Then the optimal weights ijw  with the two 
constraints are found by solving least-squares 
problems.  

3) Construct the low-dimensional embedding Y 
in dR , in which the local linear geometry of the 
high-dimensional data is preserved, via a 
neighborhood-preserving mapping. In particular, the 
same weights ijw  that reconstruct the data point ix  

in DR  should also reconstruct its embedded 
coordinate iy  in dR . This is done by minimizing the 
following embedding cost function for the fixed 
weights ijw : 

2
( ) i ij jj

i
wφ = −∑ ∑Y y y                 (2) 

under the constraints T1
i iN i

=∑ y y I and 0ii
=∑ y , 

where T  denotes the complex transpose of a matrix,. 
The constrained minimization problem is then 
converted to solving the eigen-decomposition of the 
matrix T( )( )= − −M I W I W , whose eigenvectors 
associated with the bottom d nonzero eigenvalues 
form the final embedding Y. 
 
 
2.2 KLLE 
In this section, we show how to formulate a kernel 
extension of LLE. To begin with, the data set 

1 2[ , , , ]N=X x x x  in DR  is mapped into an 
implicit feature space F using a nonlinear function: 

: ( )DΦ Φ∈ → ∈x R x F                  (3) 

The objective of the KLLE is mapping the data set 
1 2( ) [ ( ), ( ), , ( )]NΦ Φ Φ Φ=X x x x   in the feature 

space F to a new data set 1 2[ , , , ]N=Z z z z  
in ( )d d DR , while the intrinsic geometry 
structure of the data set is preserved.  

Then, in the feature space F, we would like to 
minimize: 

     
2

( ) ( ) ( )i ij jj
i

wε Φ Φ= −∑ ∑W x x           (4) 

This is the same cost function as in Eq.(1), 
evaluated on the data set ( )Φ X . For each data point 

( )( 1,2, , )i i NΦ =x  in F, its K nearest neighbors 
can be found according to the following distance 
measurement: 

( ) ( )

( , ) ( , ) 2 ( , )

i j

i i j j i j

d

k k k

Φ Φ= −

= + −

F x x

x x x x x x
       (5) 

where ( , )k ⋅ ⋅  is a reproducing kernel function in the 
Hilbert space, which satisfies: 

  T( , ) ( ), ( ) ( ) ( )i j i j i jk Φ Φ Φ Φ=< >=x x x x x x      (6) 

where ,< ⋅ ⋅ >  denotes the inner product. 
With the constraints mentioned in the steps of 

LLE, the weight matrix W can be computed in 
closed form. As for a particular data point 

( )Φ x with its K nearest neighbor points )jΦ (η  and 
the corresponding weights jw  that sum to one, the 
reconstruction error can be written as: 

 

2

2

( ) ( )

( ( ) ( ))

j jj

j jj

j jk kjk

w

w

w C w

ξ Φ Φ

Φ Φ

= −

= −

=

∑

∑
∑

x

x

η

η                  (7) 

where  

    T( ( ) ( )) ( ( ) ( ))jk j kC Φ Φ Φ Φ= − −x xη η       (8) 

By introducing a reproducing kernel function ( , )k ⋅ ⋅ , 
Eq.(8) can be rewritten as: 

( , ) ( , ) ( , ) ( , )jk j k j kC k k k k= − − +x x x xη η η η    (9) 

Afterward, by solving the constrained least-squares 
problem, the optimal weights are given by: 

 
1

1
jkk

j
lmlm

C
w

C

−

−= ∑
∑

                             (10) 

In practice, a more efficient and numerically 
stable way to minimize the error is simply to solve 
the linear equations 1jk kk

C w =∑ , and then to 
rescale the weights by:  

k k kk
w w w← ∑                         (11) 

so that they sum to one.  It should be noted that 
sometimes the matrix C may be or near to singular, 
when some regularized technique is needed [10].  

Now, we turn to the problem of computing a 
low-dimensional embedding Z which is optimally 
reconstructed by the weight matrix W in dR . In 
order to do this, we need to minimize the following 
cost function: 

2
( ) i ij jj

i
wφ = −∑ ∑Z z z               (12) 
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with  

T1
i i

iN
=∑ z z I                            (13) 

The cost function in Eq.(12) can be simplified as: 

( )
( )

2

2

T T

T

( )

( )

( )( )

i ij jj
i

w

trace

trace

φ = −

= −

= − −

=

∑ ∑Z z z

Z I W

Z I W I W Z

ZMZ

         (14) 

where T( )( )= − −M I W I W .  
Finally, similar to LLE, the constrained 

minimization problem above is converted to the 
eigenvalue problem of the matrix M. That is, the 
embedding Z is composed of the eigenvctors 
corresponding to the bottom d nonzero eigenvalues 
of the matrix M. 
 
 
2.3 Feature extraction based on the KLLE 
KLLE as well as LLE provides an embedding for 
the fixed set of training data, while there not 
existing an explicit mapping between the high-
dimensional original (or feature) space and low-
dimensional embedded space, thus the issue how to 
generalize the results of KLLE to the test data set in 
the input space remains difficult. For example, 
suppose computing the low dimensional embedding 
z for a new test vector x.  

For the purpose of generalization, there are two 
possible solutions: non-parametric model and 
parametric model [10].  In particular, the non-
parametric method is very simple to realize, 
involving little computation and introducing no 
additional parameters. For target recognition, the 
low dimensional embedding of test data can be well 
constructed with the training data and their low 
dimensional embedding by using the non-parametric 
model, and thus the process of feature extraction of  
test data is completed.  

Given a new test vector x, we can compute its 
low dimensional embedding z by KLLE (with non-
parametric model) according to the following steps: 

1) Identify the K nearest neighbors of ( )Φ x  
among the training data set ( )Φ X  in the feature 
space F by using the distance measurement defined 
in Eq.(5). 

2) Compute the linear weights jw  that best 
reconstruct ( )Φ x from its K nearest neighbors, 

subject to the sum-to-one constraint 1jj
w =∑ , 

according to the method described in section 2.2. 
3) Construct the low dimensional embedding z 

as follows:  

j jj
w∑z = z                            (15) 

where ( 1,2, , )j j K=z  are the low dimensional 
embeddings corresponding to the K nearest 
neighbors of ( )Φ x .  
 
 
3 A KNRD Classifier  
We restrict our discussion to designing an 
appropriate nonlinear classification function, so that 
it has a certain desirable capability. Assume that a 
desirable function 0 ( )f x  is defined on a complex N-
dimensional vector space NC , and that it is an 
element of a reproducing kernel Hilbert space 
(RKHS) H. The reproducing kernel ( , )k ′x x  of H is 
a bivariate function defined on N N×C C  which 
satisfies two conditions: for any fix ′x  in NC , 

( , )k ′x x  is a function in H; for any function 

0 ( )f x in H and any ′x  in NC , it holds that  

0 0( ), ( , ) ( )f k f′ ′< >=x x x x            (16) 

where ,< ⋅ ⋅ >  denotes the inner product on H. That 
is, if a function ( )jψ x  is defined as: 

( ) ( , )j jkψ =x x x                        (17) 

then 

0 0( ) ( ), ( )j jf f ψ=< >x x x               (18) 

Generally, the desirable function 0f  is unknown, 
but its M sample values 1{ }M

j jy =  are known 
beforehand and they constitute the following 
training vector: 

T
1 2

T
0 1 0 2 0

[ , ]

[ ( ), ( ) ( )]
M

M

= y y , , y

f f , , f=

y

x x x
            (19) 

The vector y is called the teacher signal and we 
assume that y is a point of an M-dimensional vector 
space MC . Let 1{ }M

j j=e  denotes the standard basis of 
MC  and define a sampling operator as: 

1

M

j j
j

ψ
=

= ⊗∑A e                             (20) 
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where ψ is the complex conjugate of ψ and ( )⋅ ⊗ ⋅  
is the Neuman-Schatten production defined by: 

0 0( ) ,j j j jf fψ ψ⊗ =< >e e               (21) 

Since the set of sampled values as well as the 
teacher signal y is uniquely determined by 0f  once 
the set of inputs is fixed, the following relation can 
be established:  

0f=y A                                 (22) 

Our objective is to find an approximation to the 
desirable function 0f  from the teacher signal y.  

In the viewpoint of inverse problem, the 
approximating can be realized by supervised 
learning, where a kind of inverse operator X  of A  
is to be found under a certain criterion, so that  

f = Xy                                  (23) 

becomes the optimal approximation to 0f  [19-21]. 
Hereinto, X is called a learning operator, and the 
process of obtaining f by X from y is called 
supervised learning.  
 
 
3.1 Review of KNR and KND 
 
3.1.1 Optimal representation and KNR 
As for the optimal approximation problem discussed 
above, a natural criterion is to minimize the distance 
between f and 0f  in the metric of the space H. But it 
is impossible to solve the problem because both 0f  
in Eq.(22) and X in Eq.(23) are unknown. Ideally, 
for any unknown function 0f , if the estimated 
function f by Eq.(23) equals exactly to the original 
one 0f  , then there is no estimation error. In this 
special case, Eqs.(22) and (23) yield: 

=XA I                              (24) 

where I is the identity operator of the Hilbert space 
H. This result equals to:  

2 0− =I XA                    (25) 

where ⋅  denotes the norm associating with the 
Hilbert space H.  

It should be pointed out that the condition led to 
Eq.(25) is too severe to be practically satisfied. That 
is, we should allow a certain deviation of XA from I. 
In particular, as for the problem of pattern 
recognition, we require that for a given 
class ( 1, 2, , )c c C= , the learning operator shall 
satisfy: 

  { }( )

2( ) ( ) ( )
R arg min

c

c c c= −
X

X I X A            (26) 

so that the distance between f and 0f  is minimized, 
where ( )cA  is the sampling operator corresponding 
to the target class c. In fact, Eq.(26) is equivalent to: 

( )( ){ }( )

*( ) ( ) ( ) ( ) ( )
R argmin

c

c c c c ctr ⎡ ⎤= − −⎢ ⎥⎣ ⎦X
X I X A I X A (27) 

where *( )⋅ and ( )tr ⋅  denote the adjoint operator and 
the trace of an operator, respectively. 
     It may be easily shown that a general solution to 
Eq.(24) is represented by: 

+ + += + −X A Y A AYAA                (28) 

where +A  is the Moore-Penrose pseudoinverse of A, 
and Y is any operator from MC  to H which satisfies: 

( )+ +− −I A A YA = I A A                (29) 

According to the projection theorem in functional 
analysis, if certain error is allowed to the estimated 
result and let: 

+=X A                                (30) 

then the distance between f  and 0f  is minimized. 
That is, the optimal solution of Eq.(27) is given by 
Eq.(30). Accordingly, Eqs.(22), (23) and (30) yield: 

0 0( )
f f P f∗

+
ℜ

= =
A

A A                     (31) 

where ( )ℜ ⋅ denotes the range of an operator, and 
*( )

P
ℜ A

 is the orthogonal projection operator onto the 

range of *A . It has been proved that *( )ℜ A  is the 
largest subspace of H, within which the best 
approximation to any desired function can be 
obtained [22].  

Furthermore, Eqs.(17), (20), (21), (31) and 
Theorem (3.8) of Ref.[23] lead us to the following 
proposition [16]. 

Proposition 1 The kernel-based nonlinear 
representor (KNR) of class ( 1,2 , )c c C=  is 
represented by: 

( ) ( ) ( )
,

1

( ) ( , )
M

c c c
R R j j

j

f a k
=

= ∑x x x                (32) 

with the coefficients constitute the following vector: 
( ) ( ) ( ) ( ) T ( )

,1 ,2 ,[ ]c c c c c
R R R R Ma a a += =a K y       (33) 

where K is the kernel matrix determined by the 
reproducing kernel function k of the Hilbert space H 
and the M training samples of class c, with 
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( ) ( )( ) ( , ) , 1,2, ,c c
ij j ik i j M= =K x x           (34) 

 
 
3.1.2 Optimal discrimination and KND 
In the newly proposed optimal discrimination 
measure, the learning operator corresponding to the 
target pattern class is obtained by minimize the 
mean energy of the general outputs of all other 
classes. That is, for the target class ( 1, 2 , )c c C=  of 
a C-class problem, the optimal learning operator 
should satisfy: 

{ }( )

2( ) ( ) ( )
D ,

arg min mean
c

c c i

i i c≠
=

X
X X y            (35) 

where ( )iy  is the teacher of class ( , 1,2, , )i i c i C≠ = . 
Eq.(35) establishes a discriminant criterion that for 
the target class c, its learning operator has the 
potentiality of suppressing the effects of all other 
classes by minimizing the mean energy of their 
outputs.  

Defines an mean energy operator Q as: 

( )

1,

1
1

C
i

i i cC = ≠

=
− ∑Q Q                         (36) 

with  
( ) ( ) ( )i i i= ⊗Q y y                            (37) 

an energy operator for the teacher signal of class 
( , 1,2, , )i i c i C≠ = , then Eq. (35) is equivalent to 

( )( ){ }( )

*( ) ( ) ( )
D argmin

c

c c ctr=
X

X X Q X          (38) 

According to Theorem 2.3.1 of Ref.[24], the 
optimal solution to Eq. (38) is given by: 

( )
D ( )c

M
+= −X Y I QQ                       (39) 

where MI  is the identity operator of space MC , Y is 
an arbitrary operator from MC  to H, and +Q  is the 
Moore-Penrose pseudoinverse of Q. In our study, 
the arbitrary operator Y in Eq.(39) is chosen as 

( )*( )cA . In this case, the learning operator of class c 

is given by: 

( )*( ) ( )
D ( )c c

M
+= −X A I QQ                 (40) 

Furthermore, Eqs.(17), (20), (21), (23) and (40) 
result in the following proposition [17]. 

Proposition 2 The kernel-based nonlinear 
discriminator (KND) of class ( 1,2 , )c c C=  is 
represented by: 

( ) ( ) ( )
,

1
( ) ( , )

M
c c c

D D j j
j

f a k
=

= ∑x x x               (41) 

with the coefficient vector 
( ) ( ) ( ) ( ) T ( )

,1 ,2 ,[ ] ( )c c c c c
D D D D M Ma a a += = −a I QQ y   (42) 

Propositions 1 and 2 show that both KNR and 
KND have closed form solutions, and their 
coefficients are precisely determined by the desired 
outputs of the classifiers and the related operators, 
thus any repeated iterative learning in traditional 
neural networks such as RBF or quadratic 
programming procedure necessary for a nonlinear 
SVM to obtain a solution, is avoided.  
 
 
3.2 Derivation of KNRD 
In the discussion of section 3.1, on the one hand, a 
KNR is designed for optimal representation, and the 
criterion in Eq.(27) focuses on the outputs of the 
target class but ignores the effects of other classes, 
thus optimal representation is ensured only for the 
target class. On the other hand, a KND is designed 
for optimal discrimination, and the criterion in 
Eq.(38) ensures that for the target class, the effects 
of all other classes is optimally suppressed in the 
meaning of mean output energy, but no constraints 
is made on the outputs of the target class. Therefore, 
it is a natural issue to combine the above two criteria 
and it lead to a new criterion for both representation 
and discrimination of pattern features. In this section, 
we focus on the new criterion and the associated 
derivation.  

Using a parameter (0 1)ρ ρ< <  to control the 
balance between representation and discrimination, 
we can combine the above two criteria and obtain a 
new criterion, namely R&D criterion, as follows: 

( )( ){
( ) }

( )

*( ) ( ) ( ) ( ) ( )
R&D

*( ) ( )

argmin (1 )
c

c c c c c

c c

tr

tr

ρ

ρ

⎡ ⎤= − ⋅ − −⎢ ⎥⎣ ⎦

⎡ ⎤+ ⋅ ⎢ ⎥⎣ ⎦

X
X I X A I X A

X Q X
 

(43) 
For a given ρ , Eq.(43) equals to: 

( )( ){
( ) }

( )

*( ) ( ) ( ) ( ) ( )
R&D

*( ) ( )

argmin
c

c c c c c

c c

tr

λ

⎡= − −⎢⎣

⎤+ ⎥⎦

X
X I X A I X A

X Q X
 (44) 

where /(1 )λ ρ ρ= − is an equivalent control parameter. 
According to Ref.[25], an operator ( )

R&D
cX  is the 

optimal solution to Eq.(44) if and only if 
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( ) ( )* *( ) ( ) ( ) ( )
R&D

c c c cλ⎡ ⎤+ =⎢ ⎥⎣ ⎦
X A A Q A            (45) 

By applying the related theorems and lemmas in 
Ref.[21] to this necessary and sufficient condition in 
Eq.(45), a general expression of the solution to the 
R&D criterion in Eq.(44) is given by: 

( ) ( ) ( )*( ) ( ) ( ) ( ) ( )
R&D

c c c c c
MW

+ +⎡ ⎤= + −⎢ ⎥⎣ ⎦
X A U I U U   (46) 

where W  is any operator from MC  to H, and  
( )c λ= +U K Q                               (47) 

Therefore, similar to the derivation of a KND, a 
kernel-based nonlinear representative and 
discriminative (KNRD) classifier may be derived 
from Eqs.(17), (20), (21), (23) and (46), and it is 
presented in the following theorem. 

Theorem 1 The kernel-based nonlinear 
representative and discriminative (KNRD) classifier 
of class ( 1,2 , )c c C=  is represented by: 

( ) ( ) ( )
& & ,

1
( ) ( , )

M
c c c

R D R D j j
j

f a k
=

= ∑x x x               (48) 

with the coefficient vector 

( )
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The architecture of a KNRD classifier, as well 
as those of a KNR and a KND, can be depicted in 
Fig.1 as below. Similar to KNR and KND, any 
repeated iterative learning or quadratic 
programming procedure is avoided in a KNRD 
classifier since the solution is in closed form.  
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Fig.1 Architecture of a KNRD classifier of class c 
 

4 Application to Radar Target 
Recognition using HRRPs 
 
4.1 Data description 
In this section, experiments are performed on radar 
target recognition with measured HRRPs from three 
flying airplanes, including An-26, Yark-42, and 
Cessna Citation S/II. Each profile has 256 range 
bins. For each target, 260 range profiles over a wide 
range of aspects are adopted for experiment and are 
shown in Fig.2. For each target, one third of all 
profiles are used for training and the remained ones 
for test.  

 

(a) An-26 
 

 

(b) Yark-42 

WSEAS TRANSACTIONS on SIGNAL PROCESSING Zhou Yun, Yu Xuelian, Liu Benyong, Wang Xuegang

ISSN: 1790-5052 53 Issue 2, Volume 6, April 2010



 

(c) Cessna Citation S/II 
 

Fig.2 Range profiles of three airplanes 

4.2 A radar target recognition scheme 
Based on the KLLE algorithm and KNRD classifiers, 
a radar target recognition scheme is presented and 
depicted in Fig.3. It includes three key modules: 
preprocessing, feature extraction based on the KLLE, 
and classification based on KNRD classifiers. In 
preprocessing, a HRRP is energy-normalized to 
reduce magnitude sensitivity and range-aligned to 
remove shift sensitivity. In the process of feature 
extraction, the KLLE is conducted on the training set 
to obtain the low-dimensional features of these range 
profiles. For a test range profile, its low-dimensional 
embedded feature is computed by the KLLE (with 
the non-parametric model) according to the steps 
detailed in section 2.3. In the process of classification, 
for each class, the training profile features are used to 
train a KNRD classifier, and an unknown test profile 
is recognized by the trained KNRD classifiers using 
its embedded feature.  

 

 
 

Fig.3 A radar target recognition scheme based on the KLLE and KNRD classifiers 
 
 
4.3 Experimental results 
Two sets of experiments are conducted. In the first 
one, six algorithms including PCA, KPCA, LDA, 
KFDA, LLE and KLLE are utilized to extract the 
low-dimensional feature from a HRRP for 
performance comparison and then KNRD classifiers 
are employed for classification with the control 
parameter λ  fixed as 1. For both LLE and KLLE, 
the number of nearest neighbors is set as K=8. For 
the four kernel-based methods including KPCA, 
KFDA, KLLE and KNRD, the Gaussian kernel 

2
1 2 1 2( , ) exp( / )k σ= − −x x x x is adopted, and the 

parameter σ  is empirically set as 1. 
The recognition results obtained by each method 

at different reduced dimensionality are shown in 
Fig.4. Note that, the upper bound of dimensionality 
of LDA and KFDA is 2 for this 3-class problem.  

 

Fig.4 Recognition results of six feature extraction 
methods with KNRD classifiers 
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As can be seen from Fig.4, the recognition rates 
obtained by PCA and KPCA vary greatly as the 
increasing of reduced dimensionality. In comparison, 
LLE and KLLE achieve higher recognition rate with 
the increasing of reduced dimensionality, and get 
satisfactory recognition results when the 
dimensionality is greater than 15.  

The top recognition rates achieved by each 
method along with the reduced dimensionality are 
listed in Table 1. It shows the proposed recognition 
scheme (that is, “KLLE+KNRD”) achieves the 
highest recognition rate of 97.31% at the 
dimensionality of 18.  

 
Table 1 Top recognition results of six methods 

 

Method Recognition rate 
(%) 

Reduced 
dimensionality 

PCA 94.63 11 

LDA 93.86 2 

LLE 96.93 23 

KPCA 94.06 15 

KFDA 96.55 2 

KLLE 97.31 18 
 

In the second experiment, only the KLLE is 
adopted for feature extraction with K set as 5, 8, 12 
and 20, respectively, and the KNRD classifier as 
well as the one-against-one SVM is employed for 
classification. For the SVM, the Gaussian kernel is 
adopted and the parameter σ  is also set as 1. Table 
2 lists the top recognition rate achieved by the two 
classifiers along with the reduced dimensionality for 
each value of K. It can be seen that both the KNRD 
and SVM achieve the top recognition rate for K=8, 
and that the former performs better than the latter on 
the whole.  
 

Table 2 Top recognition results of two classifiers 
 

K 5 8 12 20 

KNRD 
95.21 

(16) 

97.31 

(18) 

96.36 

(22) 

95.78 

(19) 

SVM 
95.21 

(14) 

95.59 

(17) 

95.40 

(9) 

93.67 

(6) 

Moreover, for K=8, the training time and test 
time (per test profile on average) taken by the SVM 
and the KNRD classifier to achieve the highest 
recognition rate, are listed in Table 3. It shows that 
the KNRD classifier is much less time-consuming 
than SVM for training. As for test, the KNRD 
classifier also takes less time in our experiment. 
Note that, the time listed in Table 3 is measured on 
same platforms.  
 

Table 3 Training and test time of two classifiers 
 

Classifier Training time (ms) Test time (ms)

KNRD 78 0.028 

SVM 4860 0.059 
 

Fig.5 shows the plot of recognition rates of the 
proposed scheme “KLLE+KNRD” versus the 
parameter λ , with the dimensionality fixed as 18 
and the value of K fixed as 8. As can be seen, the 
proposed scheme performs well and stably within a 
wide range of λ , that is, it rather insensitive to the 
value of λ , which is highly desirable in practical 
applications since it is usually not easy to determine 
a very suitable parameter. 
 

 
Fig.5 Recognition rates of “KLLE+KNRD” versus 

the parameter λ  
 
5 Conclusions 
In this paper, based on the kernel locally linear 
embedding (KLLE) and the kernel-based nonlinear 
representative and discriminative (KNRD) classifier, 
a radar target recognition scheme is presented. 
Firstly, the KLLE is utilized to extract low-
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dimensional features from range profiles, which is 
derived by generalizing LLE into a reproducing 
kernel Hilbert space (RKHS) using kernel technique. 
Then, the KNRD classifier is employed for 
classification, which is obtained by combining a 
KNR and a KND. The closed-form solution of a 
KNRD classifier avoids any quadratic programming 
procedure and thus ensures faster training speed 
than SVM. The effectiveness of the presented 
method is demonstrated by experimental results on 
measured profiles from three aircrafts. In addition, 
our further experiments indicate that the proposed 
method also performs excellently in some other 
applications such as face recognition and 
handwritten number recognition. 
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