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Abstract: - The proposed method of adaptive thresholding uses probability distribution of additive noise signal, by 
which the input signal is corrupted. The additive noise with non-uniformly distributed power spectral density can be 
reduced via normalization process. The method is focused on musical signal corrupted by the noise with relative high 
input signal-to-noise ratio ranging between 20 and 30 dB. The method uses the thresholding of coefficients of Discrete 
Fourier transform (DFT). Minimal signal distortion should be introduced by this method. In conclusion the method is 
tested for noise reduction efficiency and size of degradation of processed signal.  
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1   Introduction 
 There are many methods for the reduction of 
background noise in noisy signals using an 
appropriate spectrum modification [1][2][3]. 
Thresholding is one of the most widely used types 
of spectrum modification [4][5][6]. The 
fundamentals of threshoding of musical signals 
together with the half-soft parabolic thresholding 
rule were described in [7] and [8]. In this article, 
the thresholding method for noise reduction in 
signal with a relative high SNRIN value between 20 
dB and 30 dB with additional requirements is 
described.  
 Three requirements for the proposed method were 
introduced. The first requirement was the non-
uniformly distributed power spectral density of 
background noise in noisy signal that should be 
processed. The most of known methods are based 
on reduction of background noise with uniformly 
distributed power spectral density (white noise). 
The second requirement was the maximum 
reduction of additive noise in noisy signal. And the 
third requirement was minimal degradation of the 
musical signal caused by the proposed method. 
Improving the qualities of the proposed method in 
the sense of the second requirement is very often 
in contradiction with improving the qualities in the 
sense of the third requirement. Hence a 
compromise is sought between maximal noise 
reduction and minimal signal degradation [8]. 
 In this article, a thresholding rule will be proposed 
on the basis of the probability distribution of noise 

DFT coefficients. This distribution was taken as 
the basis in order that the thresholding maximally 
corresponds with the statistic property of additive 
noise and that the thresholding causes minimal 
degradation of input musical signal.  
 If the additive background noise in noisy signal is 
the white noise, then the estimation of the power of 
this noise is sufficient for setting the thresholds 
and the waveform of thresholding rule [7]. These 
thresholds as well as the waveform of the 
thresholding rule are the same for all coefficients 
of the tresholded signal. 
 If the additive background noise has not uniformly 
distributed power spectral density, it is necessary 
to threshold all coefficients of thresholded signal 
separately, with the same thresholding rule but 
with differently set thresholds and with a 
differently set waveform of the thresholding rule. 
A better solution is to normalize the thresholding 
coefficients [10]. Due to this normalization, the 
probability distribution of tresholded coefficients 
is changed and the same thresholds and waveform 
of thresholding rule can be used, the same as in the 
case of white noise. Due to this normalization, 
only the coefficients of noisy signal which 
“contain” additive noise are tresholded and the 
measure of this thresholding is in dependence on 
the magnitude of the corresponding coefficients of 
additive noise. 
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2  Method description 
 
2.1 Method flowchart 
The sequence y(n) represents the noisy signal 
defined by: 
  

( ) ( ) ( )y n x n m n= + , (1) 

 
 where x(n) is the input signal and m(n) is the 
additive noise. Figure 1 shows the flowchart of 
proposed method. The other blocks and signals 
will be described in the following sections. 
 

 
Fig. 1.  Flowchart of noise reduction system with polynomial 
thresholding based on probability distribution of noise signal. 
 
2.2 Segmentation 
Segmentation is necessary for processing the long-
term sound signal and subsequent application of 
the thresholding method. Segmentation divides a 
long-term signal into short segments. The current 
segment yi(n) of the signal y(n) is defined as 
 

( ) ( ) ( )(1 ) for 0,1,..., 1

0 for 0,1,..., 1,

0,1,..., 1,

i
w n y n iN v n N

y n
n N

i I

+ − = −
=

≠ −
= −

 (2) 

 
 where N is the length of segment yi(n), i is the 
index of the segment, I is the total number of 
segments, w(n) is the weighting window, and v is 
the overlap amount ( ( )0,1v∈ ), for 0.5v =  the 

overlap is equal to 50 %. The FFT algorithm is 
used solely for calculating the DFT. Thus it is 
appropriate to choose the length of the segment as 
a power of 2. The overlap amount has to comply 
with the condition vN +∈ℕ . In the text below, all 
the variables that belong to the current segment 
will be indexed with i. The spectrum of the current 
segment of signal yi(n) will be marked Yi(k). 

 The reconstruction of signal y(n) from its segments 
yi(n) is defined as  
  

( ) ( )( )
1

y
0

1
1 for 0,1,..., 1,

0,1,..., 1,

I

i
i

y n y n iN v n N
K

i I

−

=

= − − = −

= −

∑  (3) 

 
where Ny is the total length of signal y(n), N is the 
length of segment yi(n); and K is a variable 
dependent on the type of window and on the 
overlap amount used. The following equation must 
hold for the weighting windows: 
 

( )(1 )
j

w n jN v K for n
∞

=−∞

− − = ∀ ∈∑ ℤ  (4) 

 
 For example, the Hanning window (26) with 
overlap v = 0.75 has K = 2. 
 
2.3 Discrete Fourier transform 
The number of DFT coefficients is equal to the 
length of processed segment N. This statement 
results from equations (5) and (6) for forward and 
backward DFT [11]. 
 

( ) ( ){ } ( )
21

0

DFT
N j kn

N
i i i

n

Y k y n y n e
π− −

=

= =∑  (5) 

 

( ) ( ){ } ( )
21

-1

0

1
DFT

N j kn
N

i i i
k

y n Y k Y k e
N

π−

=

= = ∑   (6) 

 
2.4 Normalization 
After transformation (5) and segmentation (2), 
equation (1) could be rewritten as 
 

( ) ( ) ( )i i iY k X k M k= + . (7) 

 
 The coefficients Mi(k) could be interpreted as 
stochastic signal Mi(k) ~ No (µMi(k),σMi(k)2), where 
No denotes normal probability distribution with 
mean value µMi(k) and variance σMi(k)2. In the 
following text, the premise will be introduced that 
the additive noise is a stationary. Then it holds 
Mi(k) ~ No(µM(k), σM(k)2). After the normalization 
of coefficients Mi(k) by 
  

( ) ( )
( )

( )
n i M

i
M

M k k
M k

k

µ
σ

−
= , (8) 
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 Mni(k) will have the probability distribution 
Mni(k) ~ No(0, 1). The mean value and standard 
deviation will be independent of k. 
 
2.5 Estimations of mean value and 
standard deviation 
The estimation � ( )M kµ  could be obtained from the 

equation 
 

� ( ) ( )
e 1

0e

1 I

M i
i

k M k
I

µ
−

=

= ∑ , (9) 

 
 where Ie is number of segments from which the 

estimation � ( )M kµ  is calculated, and Mi(k) is i-th 

segment of length N. 

 Similarly � ( )M kσ  could be obtained from the 

equation 
 

� ( ) ( ) �
e 1

2 2

0e

1
( )

I

M Mi
i

k M k k
I

σ µ
−

=

 
= − 

 
∑ . (10) 

 
 Mi(k) in equations (9) and (10) could be replaced 
by the coefficients Yi(k), but in the “quiet parts” 
only, i.e. in parts where only noise signal remains, 
i.e. where no input signal is present. It is, for 
example, a short section before the input signal 
starts. 

 After normalization according to (8) with � ( )M kµ  

replaced by ( )M kµ  and � ( )M kσ  by ( )M kσ , 

equation (8) becomes 
  

( )
� ( )

� ( )
( )

n Mi
i

M

M k k
M k

k

µ
σ

−
= . (11) 

 
 In a similar way, normalized coefficients Yni(k) 
will be introduced: 
  

( )
� ( )

� ( )
( )

n Mi
i

M

Y k k
Y k

k

µ
σ

−
= . (12) 

 
 After normalization it is possible to use definition 
for probability density function of stochastic signal 
(see [7]) 
 

( )( ) ( )( )2

2

1
n n

2
i ip M k M kχ= , (13) 

 
 where p(|Mni(k)|) is the probability density 
function of the absolute value of additive noise 

coefficients Mni(k), and χ2(|Mni(k)|)2 is the Chi-
square distribution [10] with 2 degrees of freedom 
shown in figure 2. The probability density function 
is independent of k and i after normalization. 
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Fig. 2.  Probability density function of stochastic 

signal |Mni(k)|. 
 
 

3 Thresholding 
Thresholding in this case could be defined as an 
appropriate form of DFT spectrum modification of 
noisy signal y(n). The main goal is to find a 
function δ which performs the estimation of the 
coefficients ( )ˆ

iX k  

 

( ) ( )( ) ( )ˆ
i i iX k Y k X kδ= ≈ . (14) 

 

 First, the function ( )( )mirorred nip Y k  is defined on 

the basis of probability distribution ( )( )nip Y k  of 

coefficients Mni(k) 
 

( )( ) ( )( )
mirorred

max

n
n 1

i

i

p Y k
p Y k

p

 
 = +
 
 

. (15) 

 
 By means of this function, the ideal thresholding 
rule is introduced: 
 

( )( )

( ) ( )( )
( )

( )
( )
( )

ideal

1

mirorred 1 2

2

0 n

n n

n

i

i

i i i

ii

Y k

Y k Tfor

Y k p Y k for T Y k T

for Y k TY k

δ =

 ≤
= < ≤
 >

. (16) 

 
 This function is ideal in the sense that the 
thresholding between thresholds T1 and T2 exactly 
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copies the function ( )( )mirorred nip Y k . In figure 3, the 

ideal thresholding rule ( )( )ideal iY kδ is shown 

together with the function ( )( )mirorred nip Y k . 
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Fig. 3.  Ideal thresholding rule. 

 

 The function ( )( )mirorred nip Y k  was approximated 

by the 4th-order polynomial 
 

( )( ) ( )( ) ( )( )
( )( ) ( )( )

4 3

2 1

n 0.2076 n 1.5995 n

4.0711 n 3.3781 n 0.8672

poly i i i

i i

p Y k Y k Y k

Y k Y k

= − +

+ − +
. (17) 

 
 This polynomial was proposed for thresholds T1 = 
0.7, T2 = 3, and with the help of this polynomial 
the polynomial thresholding rule was defined. 
 

( )( )

( ) ( )( )
( )

( )
( )
( )

poly

1

poly 1 2

2

0 n

n n

n

i

i

i i i

ii

Y k

Y k Tfor

Y k p Y k for T Y k T

for Y k TY k

δ =

 ≤
= < ≤
 >

. (18) 

 
 In figure 4, the proposed polynomial thresholding 

rule ( ){ }( )poly Re iY kδ  for the case of ( ){ }Re iY k  and 

for the thresholds T1 = 0.7 and T2 = 3 is shown. It 
should be added, that the coefficients Yi(k) are 
complex numbers and not a real numbers.  
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Fig. 4.  Polynomial thresholding rule. 

 
In figure 5, the distributions of coefficients Yn1 

and � ( )1nX k  are shown in the complex plane for 

the case of thresholding the 1st segment. This 
segment contains additive white noise only. In this 
figure, the distribution is shown of: 5a) 
normalized coefficients Yn1(k) before 

thresholding. 5b) normalized coefficients � ( )1nX k  

after thresholding.  
The additive noise is a real signal 
 

( )im n for n∈ℜ ∀ , (19) 

 
so that its transform in the DFT is symmetrical  
 

( ) ( )n ni iM k M N k∗= − . (20) 

 
For this reason and for better notation too, only 
the first half of sequences of coefficients Yn1(k) 

and � ( )1nX k  is shown only. 

Threshold T1 is shown by the solid-line circle and 
threshold T2 is shown by the dashed-line circle. 
The thresholding of these coefficients is 
performed according to equation (18). The 
coefficients with magnitude higher than the 
threshold T1 are set to zero. In figure 5a), these 
coefficients lie inside the solid-line circle. The 
coefficients with magnitude lower than the 
threshold T2 are partially reduced. It is apparent 
that the coefficients Yn1(k) are moved to the centre 
of complex plane in the coordinates [0,0]. 
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a) 

 
b) 

Fig. 5. Example of thresholding a segment which contains 
additive white noise only: a) normalized coefficients ( )1nY k  

before thresholding. b) normalized coefficients � ( )1nX k after 

thresholding. 
 
 In figure 6, an example of the spectrogram of 
additive noise measured in real conditions is 
shown. It is a record of sound of a fan in a quiet 
street. This noise will be thresholded. Estimation 
sequence of mean values � ( )M kµ  and standard 

deviations  � ( )M kσ  are shown in figure 7. From 

both pictures, it can be read that the frequency 
components are concentrated into the frequency 
13 kHz, and most of the energy is in the range 
from 0 to 4 kHz. 
 

n →

f 
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z)
  

→

 Hanning window,2048 samples.
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Fig.6. The spectrum of tested additive noise measured in real 

conditions, sound recording of a fan in the quiet street.  
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Fig.7. Estimated mean � ( )M kµ  and standard deviation 

� ( )M kσ  sequences of tested additive noise measured in real 

conditions, sound recording of a fan in a quiet street. 
 
 For this kind of noise, the progress of thresholding 
and normalization is shown in figures 8a) – d) in 
the complex plane. In figures 8a) the chosen 
segment i = 110 with length N = 512 samples 
before thresholding Y110(k) is shown. All of these 
coefficients represent additive noise, therefore 
these coefficients have to be reduced as much as 
possible.  Figures 8b), these coefficients are shown 
after normalization Yn110(k). The inner solid-lines 
circle again represents the threshold T1 and the 
outer dashed-line circle represents the threshold T2. 
In figures 8c), the normalized coefficients 
� ( )110nX k  after thresholding are shown, and in 

figures 8d), the non-normalized coefficients 
� ( )110X k  after thresholding are shown. 
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a) 

 
b) 

 
c) 

 
d) 

Fig. 8. Example of segment thresholding: a) Y110(k), coefficients before normalization, b) Yn110(k), coefficients 

after normalization, c) � ( )110nX k , normalized coefficients after thresholding, d) � ( )110X k , non-normalized 

coefficients after thresholding. 
 
In these figures, the progress of thresholding and 
normalization of a chosen segment containing only 
the additive noise is shown. As well as in figures 
5a) - b), the coefficients are moved to the centre of 
Z-plane in the coordinates [0,0]. Due to 
normalization (8), the same waveform of the 
thresholding rule with the same thresholds could 
be used even for the case of additive noise with 
non-uniformly distributed power spectral density. 
 
 

4 Test results 
The proposed polynomial thresholding rule was 
tested for additive noise m(n) reduction efficiency 
and the measure of the degradation of input signal 
x(n) was monitored at the same time. The estimate 

of mean value � ( )M kµ  and standard deviation 

� ( )M kσ  sequence of additive noise was calculated 

(9)(10) from Ie = 610 segments, with length N = 
2048 samples. These segments are not displayed in 
the following spectrograms. These segments were 
not included in equations for the calculation of 
SNR and SNRE according to (22) (23) and (24) 
either.  
Signal ( )x̂ n is an estimate of the signal x(n) 

according to 
  

( ) ( )( ) ( )( )( ) ( )1 1ˆˆi i i ix n DFT X k DFT Y k x nδ− −= = ≈ . (21) 

 
 The SNRE (24) value, which was calculated from 
SNRIN (22) and SNROUT (23), was used to define 
the amount of noise reduction in the signal y(n). 
The difference between the SNR values before and 
after thresholding was calculated.  
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−

∑

∑
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OUT INSNRE SNR SNR= −  (24) 

 
The tests were performed on a musical signal 
containing viola play. The additive noise m(n) is 
the recording of a fan sound in a quiet street. The 
musical signal represents the signal x(n) and 
additive noise m(n) in (1). The frequency sampling 
of this signal is fs = 44.1 kHz, the length of the 
whole signal is Ny = 241 664 samples. Both 
polynomial thresholding (18) and hard 
thresholding (25) were tested. The hard 
thresholding is shown in figure 9. 
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Fig. 9.  Hard thresholding rule. 

 
The threshold Th of the hard thresholding rule was 

defined as 1 2
h 2

T T
T

−
= . The Hanning window (26) 

was used for the segmentation (2).  
 

0.5 1 cos 2 for 0,1,..., 1
( )

0 for 0,1,..., 1

n
n N

w n N

n N

π
   − = −   =    
 ≠ −

.(26) 

 
The other settings used are specified in Table 1. In 
the Table in the case of thresholding rule called 
“Polynomial 2“, the music noise filter SW(i) with 
length equal to 2 samples [8] was used in addition 
to the higher value of segment length N and higher 
overlap v.  
 

 
TABLE I 

NOISE REDUCTION TEST RESULTS 
Threshold 

rule 
Settings 

 
Thresholds 

 
SNROUT 

[dB] 
SNRE 
[dB] 

Hard 
N = 2048 

v = 0.5 
Th = 1.85 22.3 2.3 

Polynomial 
1 

N = 2048 
v = 0.5 

T1 = 0.7 
T2 =    3 

23,6 3.6 

Polynomial 
2 

N = 4096 
v = 0.75 

T1 = 0.7 
T2 =    3 25,3 5.3 

 
All of these changes increased the computational 
complexity but they also increased the value of 
SNRE from 3.6 dB to the best value 5.3 dB from 
Table 1. 
In following figures 10 and 11 the spectrograms of 

test signals x(n), y(n) and ɵ ( )x n are shown. 
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Fig. 10. Spectrogram of tested input signal x(n). 

 

WSEAS TRANSACTIONS on SIGNAL PROCESSING Ondrej Raso, Miroslav Balik

ISSN: 1790-5052 396 Issue 12, Volume 5, December 2009



n →

f 
(H

z)
  

→
 Hanning window,2048 samples.
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→

 Hanning window,2048 samples.

SG (dB) ↑
 

 

0.5 1 1.5 2 2.5

x 10
5

0

0.5

1

1.5

2

x 10
4

−60

−50

−40

−30

−20

−10

0
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c) 

 
Fig. 11. Spectrograms of tested signal: a) noisy signal y(n) to 

be processed, b) the signal ɵ ( )x n  after “polynomial 1” 

thresholding, c) the signal ɵ ( )x n  after “polynomial 2” 

thresholding. 

In the design of polynomial thresholding, the 
requirement was to have the smallest possible 
input signal degradation by the thresholding 
method. A higher value of SNRE does not always 
mean a better listening quality. The higher 
harmonic components of musical instruments can 
be suppressed by thresholding or these higher 
harmonic components in the spectrum can even be 
totally removed. For listeners this spectrum 
modification is a much more disturbing effect than 
background noise.  
 To test the degradation caused by the thresholding 
rule, the input signal x(n) without the presence of 
noise signal is thresholded in order to show the 
degradation measure in the spectrograms. The 
spectrograms of the signal ( )x̂ n  after thresholding 

are shown in figures 12 and 13. The thresholds 
were set to the same value as in the case of white 
noise with SNRIN = 25 dB [7].  
 In comparison with figure 10, the input signal x(n) 
was in both case degraded as a result of 
thresholding a clear signal by the thresholding rule. 
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Fig. 12. Comparison of signal degradation caused by the 
thresholding rule (settings for the white noise) after the 

polynomial thresholding 
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Fig. 13. Comparison of signal degradation caused by the 
thresholding rule (settings for the white noise) after hard 

thresholding 
 
From a comparison of the two spectrograms 
(figures 12 and 13)), it can be seen that the 
spectrum after polynomial thresholding is more 
detailed. In polynomial thresholding, there are no 
such sharp changes and the higher part of the 
spectrum is much more detailed. 
In figure 14, the spectrogram of input signal x(n) 
after processing by “polynomial 1” thresholding is 
shown.  
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Fig. 14. Degradation of the input signal caused by the 

polynomial thresholding rule (setting for the noise from a fan 
in a quiet street). 

 
The sound of a fan in the quiet street is used as 
noise signal to set the thresholds in this case. The 
thresholds were set for SNRIN = 20 dB. Due to 
normalization (12), only the coefficients Yi(k) that 
contain noisy component are tresholded. 
Comparing figures 10 and 14, it is possible to see 
that frequency components from 13 kHz upwards 
are left almost without change. 
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6 Conclusion 
In the article the method for additive background 
noise reduction in noisy musical signal was 
described. The method chosen is the polynomial 
thresholding of DFT coefficients. The method is 
always used for the current segment of the signal 
being processed. The process of segmentation, the 
weighting of segments and the process of 
backward reconstruction were described. Further 
the probability distribution of additive noise was 
mathematically described and the polynomial 
thresholding rule was proposed on the basis of this 
probability distribution. Because normalization 
process was used, the proposed polynomial 
thresholding rule could be applied to the additive 
noise with non-uniformly distributed power 
spectral density. 
The rest of the article deals with the testing the 
proposed polynomial thresholding rule on musical 
signals to which the real noise type was added. 
This real noise type was the sound of a fan on a 
quiet street and it had non-uniformly distributed 
power spectral density. 
 During a testing, the noise reduction efficiency 
was tested and then the measure of signal 
degradation caused by the thresholding rule was 
monitored at the same time. The SNRE value, 
which was calculated from SNRIN and SNROUT, was 
used to define the size of noise reduction in the 
signal y(n). Hard thresholding together with 
polynomial thresholding was tested too. After the 
tests are done, it is possible to see that polynomial 
thresholding marked as “Polynomial 2“reached the 
highest SNRE value. 
In the second part of testing, the degradation 
caused by the threshold rule was tested. The input 
signal x(n) without the presence of noise signal 
was tresholded in order to show the measure of 
degradation in the spectrograms. Because the 
polynomial thresholding rule was proposed on the 
basis of probability distribution of additive noise, 
the spectrogram after thresholding by this 
thresholding rule is more detailed in comparison to 
hard thresholding. 

WSEAS TRANSACTIONS on SIGNAL PROCESSING Ondrej Raso, Miroslav Balik

ISSN: 1790-5052 398 Issue 12, Volume 5, December 2009



References: 
 
[1] VASEGHI, S. V,. Advanced Digital Signal 

Processing and Noise Reduction. 2nd edition. New 
York : Wiley, 2000. 473 p. ISBN 0-471-62692-9. 

[2] CHAVAN M. S., AGARWALA RA., UPLANE 
M.D., Design and implementation of Digital FIR 
Equiripple Notch Filter on ECG Signal for removal 
of Power line Interference. WSEAS 
TRANSACTIONS on SIGNAL PROCESSING 2008. 
Vol.4, ISSN: 1790-5052, pp 221-230. 

[3] ARIGELA S., ASARI V. K., A Locally Tuned 
Nonlinear Technique for Color Image 
Enhancement. WSEAS TRANSACTIONS on 
SIGNAL PROCESSING 2008. Vol.4, ISSN: 1790-
5052, pp 514-519. 

[4] JANSEN, M., Noise reduction by wavelet 
thresholding. New York : Springer, 2001. 191 p. 
ISBN 0-387-95244-6. 

[5] KOZUMPLÍK, J., Vlnkové transformace a jejich 
využití pro filtraci signálů EKG (in Czech). 
Inaugural dissertation, Brno University of 
technology, 2004. 81 p. 

[6] RAJMIC, P., Exploitation of the wavelet transform 
and mathematics statistic for separation signals and 
noise (in Czech: Využití waveletové transformace a 
matematické statistiky pro separaci signálu a 
šumu). PhD Thesis, Supervizor: Prof. Ing. Zdeněk 
Smékal, CSc., Brno University of technology, 2004. 
106 p.  

[7] RÁŠO O., BALÍK M., Half-soft parabolic 
thresholding of DFT coefficients. Proc. 32nd 
International Conference Telecommunication and 
Signal Processing 2009, Dunakiliti, Hungary, 2009, 
pp. 1-6. ISBN:978-963-06-7716-5.  

[8] BALÍK M., RÁŠO O., Sound artifacts caused by 
the thesholding method.  The IASTED International 
Conference on Modelling, Simulation, and 
Identification (MSI 2009), Beijing, China, 2009, pp. 
1-8. ISBN: 978-0-88986-810-6. 

 

 

 

 

 

 

 

[9] SCHIMMEL J., MISUREC J., Analytic Solution of 
Spectrum Changes in Simple Nonlinear Systems 
without Memory, Used in Digital Audio Signal 
Processing. Proc. 7th WSEAS International 
Conference on CIRCUITS, SYSTEMS, 
ELECTRONICS, CONTROL and SIGNAL 
PROCESSING (CSECS’08), Puerto De La Cruz, 
Spain, 2008, pp. 191-196. ISBN:978-960-474-035-
2. 

[10] BAŠTINEC, J., ZAPLETAL J., Statistic, 
operations research, stochastic processes (in 
Czech: Statistika, operační výzkum, stochastické 
procesy). Lecture notes, Brno University of 
technology, 2007. 161 p. 

[11] SMÉKAL, Z., Digital signal processing (in Czech: 
Číslicové zpracování signálu). Lecture notes, Brno 
University of technology, 2009. 201 p.   

[12] MALLAT, S., A Wavelet Tour of Signal 
Processing. 2nd edition. New York: Academic 
Press, 1998. 637 p. ISBN 0-12-466606-x. 

[13] HÄNSLER, E. S., Gerhard. Topics in Acoustic 
Echo and Noise Control: Selected Methods for the 
Cancellation of Acoustic Echoes, the Reduction of 
Background Noise, and Speech Processing. Berlin-
Heidelberg-New York: Springer, 2006. 642 p. ISBN 
10 3-540-33212-x. 

[14] LINHARD K., HAULICK T., Spectral noise 
subtraction with recursive gain curves. Proc. ICSLP 
’98, 1998, pp. 1479-1482. 

[15] SHAH V.,Inharmonic Dispersion Tunable Comb 
Filter Design Using Modified Iir Band Pass 
Transfer Function. WSEAS TRANSACTIONS on 
SIGNAL PROCESSING 2008. Vol.4, ISSN: 1790-
5052, pp 381-387. 

 

WSEAS TRANSACTIONS on SIGNAL PROCESSING Ondrej Raso, Miroslav Balik

ISSN: 1790-5052 399 Issue 12, Volume 5, December 2009


	89-157
	89-297



