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Abstract: - The shapes of motor unit action potentials (MUAPs) in an electromyographic 

(EMG) signal provide an important source of information for the diagnosis of 

neuromuscular disorders. In order to extract this information from the EMG signals recorded 

at low to moderate force levels, it is required to: i) identify the MUAPs composed by the 

EMG signal, ii) cluster the MUAPs with similar shapes, iii) extract the features of the 

MUAP clusters and iv) classify the MUAPs according to pathology.  In this work, three 

techniques for segmentation of EMG signal are presented: i) segmentation by identifying the 

peaks of the MUAPs, ii) by finding the beginning extraction point (BEP) and ending 

extraction point (EEP) of MUAPs  and iii) by using discrete wavelet transform (DWT). For 

the clustering of MUAPs, statistical pattern recognition technique based on euclidian 

distance is used. The autoregressive (AR) features of the clusters are computed and are given 

to a multi-class support vector machine (SVM) classifier for their classification. A total of 

12 EMG signals obtained from 3 normal (NOR), 5 myopathic (MYO) and 4 motor neuron 

diseased (MND) subjects were analyzed. The success rate for the segmentation technique 

used peaks to extract MUAPs was highest (95.90%) and for the statistical pattern 

recognition technique was 93.13%. The classification accuracy of multi-class SVM with AR 

features was 100%. 

 

Key-Words: - Electromyography, motor unit action potentials, segmentation, pattern 

recognition, classification, multi-class support vector machine. 

 

1   Introduction 
Electrical potentials measured from a 

skeletal muscle result from the summed 

resting membrane potentials and the action 

potentials which occur when its muscle 

fibers are stimulated. Skeletal muscle fiber 

action potentials are generated by the 

integrated neural motor output of the 

central nervous system. Each single motor 

nerve fiber stimulates several muscle fibers 

to produce muscle action potentials. The 

spatial and temporal summation of the 

potentials arising from the activity of a 

single motor nerve is referred to as a single 

motor unit action potential (MUAP). The 

superposition of all MUAPs within the 

vicinity of the electrode constitutes the 

electromyogram (EMG) signal. 

Observation of the EMG signal of a patient  

is a key initial step taken by a physician for 

the assessment of neuromuscular disorders. 

The shapes of MUAPs composing the 

EMG signal provide useful information in 

this context. The changes brought about by 

a particular neuromuscular disorder alter 

the properties of the muscle and nerve 

cells, causing characteristic changes in the 

MUAPs. Distinct MUAPs can be seen only 

during weak contractions when few motor 

units are active. When a patient maintains 

low level of muscle contraction, individual 

MUAPs can be easily recognized. As 

contraction intensity increases, more motor 

units are recruited. Different MUAPs will 

overlap, causing an interference pattern in 

which the neurophysiologist cannot detect 

individual MUAP shapes reliably. 

Traditionally, in clinical electromyography,  
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neurophysiologists assess MUAPs from 

their shape using an oscilloscope and 

listening to their audio characteristics. On 

this way, an experienced neurophysiologist 

can detect abnormalities with reasonable 

accuracy. Subjective MUAP assessment, 

although satisfactory for the detection of 

unequivocal abnormalities, may not be 

sufficient to delineate less obvious 

deviations or mixed patterns of 

abnormalities [1]. These ambiguous cases 

call for quantitative MUAP analysis. 

With the aid of computer technology, today 

it is possible to analyze EMG signal 

quantitatively that helps in saving time, 

standardizes the measurements and enables 

the extraction of additional features which 

cannot be easily calculated manually. 

Several methods have been implemented in 

the past for MUAP recognition and pattern 

recognition. Richard Gut et al used a 

sliding time window for extraction of 

MUAPs. If the mean slope within this 

window exceeds a certain threshold, the 

beginning of an active segment is 

postulated. The end of a segment is reached 

when the total variation of the EMG within 

the window falls below another threshold 

[2]. E Chauvet et al used an amplitude 

detection scheme where the threshold value 

is set at each iteration. For a given iteration, 

the threshold is determined by lowering its 

precedent value. This principle allows the 

detection of a reduced number of MUAPs, 

thus facilitating the identification of a 

MUAPT [3]. Later on, E Chauvet et al 

detected MUAP spikes when their 

amplitudes were higher than a detection 

threshold value. At the first iteration, the 

detection threshold was initialized at the 

maximum amplitude of the signal segment 

under study. After thresholding, the number 

of detected spikes was counted, if this 

number did not reach at least 5 spikes per 

second, the threshold level was lowered to 

90% of its previous value [4]. C.D. Katsis 

et al used a threshold T to identify peaks in 

the EMG signal and a window with a 

constant length[5], [6], [7]. Constantinos S 

Pattichis et al identified the BEP and EEP 

of the of the MUAPs by sliding a window 

of length 3 ms and width ±40 µV 

throughout the EMG signal [8]. Jianjun 

Fang et al set a horizontal cursor at a level 

to distinguish spike potentials from 

background noise. Upon detection of a 

spike, a segment of spike waveform with 

its peak aligned at the center is collected 

[9]. Guglielminotti and Merletti theorized 

that if the wavelet analysis is chosen so as 

to match the shape of the MUAP, the 

resulting WT yields the best possible 

energy localization in the time-scale plane 

[10]. Laterza and Olmo found out that WT 

is an alternative to other time frequency 

representations with the advantage of being 

linear, yielding a multiresolution 

representation and not being affected by 

crossterms; this is particularly relevant 

when dealing with multicomponent signals. 

Under certain conditions, the EMG signal 

can be considered as the sum of scaled 

delayed versions of a single prototype. 

Based on Guglielminotti’s theory, Laterza 

and Olmo have used wavelet analysis to 

match the shape of the MUAP [11]. For a 

unipolar recorded signal and under certain 

hypotheses presented by Gabor [12], the 

typical MUAP shape can be approximated 

as the second-order derivative of a 

Gaussian distribution. The result suggested 

using the well-known Mexican hat wavelet, 

which is indeed the second-order derivative 

of a Gaussian distribution. Based on the 

research, Laterza and Olmo concluded that 

the WT is particularly useful for MUAP 

detection in the presence of additive white 

noise. In this situation, the noise 

contributions are spread over the entire 

time scale plane, independently of the 

wavelet used The disadvantage of this 

proposal was that the Mexican hat wavelet 

is not perfectly matched to the MUAP 

shape [11]. Therefore, the obtained results 

are likely to be subject to further 

improvement if a perfect matching is 

performed.  Ismail and Asfour came with a 

theory saying that, the most common 

method used to determine the frequency 

spectrum of EMG are the fast and short 

term Fourier transforms. But they also 

concluded that the major drawback of these 

transformation methods is that they assume 

that the signal is stationary [13]. However, 

EMG signals are nonstationary. Pattichis 

and Pattichis discovered that the wavelet 

transform  can also be used to analyze 

signals at different resolution levels. The 

wavelet transform algorithm consists of the 

decomposition phase and reconstruction 
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phases. They briefly outlines how 

coefficients from each stage of the WT can 

be used to construct functional 

approximation to the original signal [14]. 

To further the development of quantitative 

EMG techniques, the need has emerged for 

adding automated decision making support 

to these techniques so that all data is 

processed in an integrated environment. 

Towards this goal, Towards this goal, 

Blinowska [15] proposed the use of 

discriminant analysis for the evaluation of 

MUAP findings, Coatrieux and associates 

[16]-[18] applied cluster analysis 

techniques for the automatic diagnosis of 

pathology based on MUAP records. 

Andreassen and co-workers [19]-[21] 

developed the MUNIN(Muscle and Nerve 

Inference Network) which employs a 

causal probabilistic network for the 

interpretation of EMG findings, Fuglsang-

Frederiksen and his group [22], [23] 

developed a rule-based EMG expert system 

named KANDID, and Jamieson [24], [25] 

developed an EMG processing system 

based on augmented transition networks. In 

most of these systems, the generation of the 

input pattern assumes a probabilistic 

model, with the matching score 

representing the likelihood that the input 

pattern was generated from the underlying 

class [26]. In addition, assumptions are 

typically made concerning the probability 

density function of the input data. Pattichis 

et al gave a series research yield of 

classifying MUAPs for differentiation of 

motor neuron diseases and myopathies 

from normal [27]. The classifier they used 

were mainly neural networks, e.g. back 

propagation, the radial basis function and 

the self organizing feature map network. 

However, the aforementioned techniques 

used to train the neural network classifiers 

are based on the idea of minimizing the 

train error, which is named empirical risk. 

As a result, limited amounts of training 

data and over high training accuracy often 

lead to over training instead of good 

classification performance. Support vector 

machines (SVMs) introduced by Vapnik 

[28] is founded in the framework of the 

statistical learning theory, which is 

appropriate for approaching classification 

and regression problems. 

SVMs represent a new approach to pattern 

classification that has attracted a great deal 

of interest in the machine learning 

community. They operate on the induction 

principle of structural risk minimization, 

which minimizes an upper bound on the 

generalization error. SVMs have shown to 

be successful in solving many pattern 

recognition problems and perform much 

better than non-linear classifiers such as 

artificial networks in many situations [29]. 

To contribute to the quantification of the 

routine needle EMG examination, we have 

evaluated three segmentation techniques 

for detection of MUAPs. In the first 

technique, the EMG signal is segmented 

using an algorithm that detects areas of low 

activity and candidate MUAPs. Second 

technique, identified the BEPs and EEPs of 

the possible MUAPs by sliding a window 

throughout the signal. And in the third 

technique, EMG signal is decomposed with 

the help of daubechies4 (db4) wavelet to 

detect MUAPs.  

 

 

2   Material and Methodology 
 

2.1   Data acquisition and pre -

processing  
Our data contain real time EMG signal 

obtained from the Department of Computer 

Science, University of Cyprus, Cyprus. All 

the EMG signals were acquired from the 

biceps brochii muscle at upto 30% of the 

maximum voluntary contraction (MVC) 

level under isometric conditions. The 

signals were acquired for 5 seconds, using 

the standard concentric needle electrode, 

from NOR, MYO and MND subjects. The 

typical EMG recordings are given in Fig.1, 

Fig.2 and Fig.3. The EMG signals were 

analogue band pass filtered at 3-10 KHz, 

sampled at 20 KHz with 12-bit resolution 

and then low pass filtered at 8 KHz. 
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      Fig.1  Raw EMG signal of a 

NOR subject. 
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Fig.2  Raw EMG signal of a MYO 

subject. 
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Fig.3  Raw EMG signal of a MND 

subject. 

 

2.2   Segmentation 

EMG signal is the superposition of the 

electrical activities of the several motor 

units. The segmentation of EMG signal is 

necessary to understand the mechanisms 

related to muscle and nerve control. Three 

techniques are discussed with regards to 

segmentation of EMG signal. 

 

2.2.1   Segmentation by identifying the 

peaks of the MUAPs 

This segmentation algorithm calculates a 

threshold depending on the maximum 

value { }ii xmax  and the mean absolute 

value ( )∑
=

L

i

ixL
1

1  of the whole EMG 

signal, where ix  are the discrete input 

values and L  is the number of samples in 

the EMG signal. The threshold (T)  is 

calculated as follows: 

If { }i
i

xmax > ∑
=

L

i

ix
L 1

30
, then ∑

=

=
L

i

ix
L

T
1

5
      

        else =T { } 5max i
i

x  

Peaks over the calculated threshold are 

considered as candidate MUAP’s. Then a 

window of 120 sampling points (i.e., 6 ms 

at 20 kHz) is centered at the identified 

peak. If a greater peak is found in the 

window, the window is centered at the 

greater peak; otherwise the 120 points are 

saved as MUAP waveform. This algorithm 

is described in detail in [30]. The 

segmented EMG signals of normal, 

myopathic and motor neuron diseased 

subjects in segments of 6ms and centered at 

the maximum peak, are shown in Fig.4, 

Fig.5 and Fig.6 respectively. 
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Fig.4  Segmented EMG signal of a 

NOR subject in segments of 6ms 

and centered at the maximum 

peak. 
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Fig.5  Segmented EMG signal of 

MYO subject in segments of 6ms 

and centered at the maximum 

peak. 
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Fig.6  Segmented EMG signal of  a  

MND subject in segments of 6ms 

and centered at the maximum 

peak. 

 

2.2.2   Segmentation by identifying the 

BEPs and EEPs of the MUAPs 

The EMG signal is high-pass filtered at 250 

Hz and the BEPs and EEPs are identified 

by sliding an extraction window of length 3 

ms and width ±40 µV. BEP is the first 

point that satisfies the criterion searching to 

the left of the EMG waveform, the signal to 

the left of BEP remains within ± 40 µV for 

3ms. EEP is the point to the right of which 

signal remains within the range of ±40 µV 

for 3ms. These extraction points are then 

mapped to the original signal [8]. 
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Fig.7, Fig.8 and Fig.9 shows a portion of 

the extracted MUAPs. In these figures 

triangular marks indicate the peaks and 

circle marks indicate the BEPs and EEPs. 
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Fig.7  A portion of the extracted 

MUAPs by finding BEPs and 

EEPs of the MUAPs in case of a 

NOR subject. 
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Fig.8  A portion of the extracted 

MUAPs by finding BEPs and 

EEPs of the MUAPs in case of a 

MYO subject. 
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Fig.9  A portion of the extracted 

MUAPs by finding BEPs and 

EEPs of the MUAPs in case of a 

MND subject. 

 

2.2.3   Segmentation by using DWT 

DWT is a transformation of the original 

temporal signal into a wavelet basis space. 

The time-frequency wavelet representation 

is performed by repeatedly filtering the 

EMG signal with a pair of filters that cut 

the frequency domain in the middle. 

Specifically, the DWT decomposes a signal 

into an approximation signal and a detail 

signal. The approximation signal is 

subsequently divided into new 

approximation and detail signals. This 

process is carried out iteratively producing 

a set of approximation signals at different 

detail levels (scales) and a final gross 

approximation of the signal [14]. In our 

work, we used db4 discrete wavelet to find 

the location of MUAP peaks on the time 

axis. We decomposed the signal up to 4
th
 

level and used a threshold of  50 µV to find 

the peaks of the MUAPs and then scaled 

the index of MUAP peaks to the original 

signal. A portion of the extracted MUAPs 

by using db4 wavelet in case of NOR, 

MYO and MND subjects, is shown in 

Fig.10, Fig.11 and Fig.12 respectively. In 

these figures circle marks indicate the 

peaks of the identified MUAPs and star 

marks indicate 40 points around each peak. 

 

0 200 400 600 800 1000 1200 1400 1600 1800 2000

-200

-100

0

100

200

300

 
Fig.10  A portion of the extracted 

MUAPs by using db4 wavelet in 

case of a  NOR  subject. 

 

0 500 1000 1500 2000

-300

-200

-100

0

100

200

300

400

 
Fig.11  A portion of the extracted 

MUAPs by using db4 wavelet in 

case of a MYO subject. 
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Fig.12  A portion of the extracted 

MUAPs by using db4 wavelet in 

case of MND subject. 

 

2.3 MUAP clustering 
In this step, the MUAP clusters are 

automatically detected and for each cluster 

the average or template shape is 

determined. We have used statistical 

pattern recognition technique for clustering 

of similar MUAPs. In this technique the 
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euclidian distance is used to identify and 

group similar MUAP waveforms. The 

group average is continuously calculated 

and is used for the classification of MUAPs 

using a constant threshold [31]. The 

implementation steps are: 

Step 1: Start with the first waveform x as 

input (the first member of the class). 

Step 2: Calculate the vector length of x and 

the distance between it and the other 

segmented waveforms y as: 

xl =∑
=

N

i

ix

1

2 where 120=N  

and 

xyd =
2

1

)( i

N

i

i yx −∑
=  

Step 3: Find the waveform y
 

with the 

minimum distance mind . The waveform y 

having minimum distance with the x has 

the greatest similarity with x and remove it 

from the input data. 

Step 4: if 3.0/min <xld  then group, 

calculate group average and go to step 1 

with group average as input. 

else if   number of group members > 2, then 

form a new class. 

else waveform is superimposed, go to step 

1 with y  as input. 

If the minimum distance divided by the 

vector length of x  is less than the 

threshold, set to 0.3, then the two 

waveforms form a class, the class average 

is calculated and the procedure is repeated 

(go to Step 2 with the class average as 

input). Now compare the class average with 

all the rest waveforms in order to find the 

next waveform with the minimum distance. 

If the above condition is satisfied, then a 

new waveform is added to the class and a 

new class average is calculated, and so on. 

If not, the process stops; if the class 

members are more than or equal to three, 

then a MUAP class is formed and its 

averaged waveform is saved. If they are 

less than three, they are considered as 

superimposed waveforms. This process 

continues where it stopped comparing the 

last encountered waveform with all the 

remaining until all waveforms are 

processed. The threshold values were 

chosen heuristically after extensive testing. 

It is noted that again there are no widely 

applicable threshold criteria for assigning a 

MUAP to a class. The threshold used in 

this work is critical because a smaller value 

may split a MUAP class with high 

waveform variability in two or more 

subclasses, whereas a greater threshold 

value may merge resembling MUAP 

classes. The averaged class waveforms are 

again the unique MUAP waveforms 

composing the EMG signal. Fig.13, Fig.14 

and Fig.15 illustrates the clustered EMG 

signals of NOR, MYO and MND subjects 

respectively. 
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Fig.13  Clustered EMG signal of a 

NOR subject.  
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Fig.14  Clustered EMG signal of a 

MYO subject.  
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Fig.15  Clustered EMG signal of a 

MND subject.  
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2.4 Feature extraction 
The next step is to decide for the correct 

features to be extracted from the EMG 

signal. A number of experiments have 

shown that AR features contain enough 

information and are simple enough for fast 

training and running of the classifier [32]. 

In this work, we have extracted the AR 

features of the MUAP clusters. In AR 

model the current signal x(n) is described 

as linear combination of previous samples 

x(n-k) weighted by a coefficients [33]. The 

coefficients of AR model of order 3 were 

computed by the Burg’s algorithm. It 

provides an iterative and fast method to 

figure out the parameters of AR model 

adaptively. These coefficients are the 

features for multi-class SVM classifier. 

 

2.5 MUAP classification 
In order to classify the clustered MUAPs 

into NOR, MYO and MND classes, a SVM 

classifier is employed [34], [35]. A 

classification task based on SVM usually 

involves training and testing data, which 

consist of a number of data instances. Each 

instance in the training set contains one 

‘‘target value’’ (class labels) and several 

‘‘attributes’’.  Although initially developed 

for binary classification problems, SVMs 

can be adapted to deal with multi-class 

problems. There are two schemes for this 

purpose: i) the one-against-all strategy to 

classify between each class and the 

remaining; ii) the one-against-one strategy 

to classify between each pair. In this work, 

we have used one-against-all strategy. It 

constructs k  SVM models where k  is the 

number of classes. The 
thi  SVM is trained 

with all of the examples in the 
thi class 

with positive labels and all other examples 

with negative labels. Thus given l  training 

data 1(x , )1y ,..., lx( , )ly , where ix ε nR , 

1=i ,…, l  and iy  ε { }k,....,1  is the class 

of ix , the 
thi SVM solves the following 

problem: 

iii bw ε,,
min ( ) ( )

Tl

j

ii

j

iTi wCww ∑
=

+
12

1
ξ  

( ) ( ) ,1 i

j

i

j

Ti bxw ξφ −≥+   if iy j =  

( ) ( ) ,1 i

j

i

j

Ti bxw ξφ +−≤+  if iy j ≠  

,0≥ijξ   lj ,....,1=         (1) 

where the training data ix  are mapped to a 

higher dimensional space by function φ  

and C  is the penalty parameter. 

Minimizing ( )21  ( ) iTi ww  means that we 

would like to maximize ,2 iw the margin 

between two groups of data. When data are 

not linear separable, there is a penalty term 

∑ =

l

j

i

jC
1
ξ  which can reduce the number of 

training errors. The basic concept behind 

SVM is to search for a balance between the 

regularization term ( )21  ( ) iTi ww  and the 

training errors. 

After solving (1), there are k  decision 

functions: 

( ) ( ) 11 bxw
T

+φ  

⋅

⋅

⋅  

( ) ( ) kTk bxw +φ  

We say x  is in the class which has the 

largest value of the decision function: 

class of x ≡ arg ( ) ( )( )iTi

ki
bxw +

=
φ

,...1
max     (2) 

Practically, we solve the dual problem of 

(1) whose number of variables is the same 

as the number of data in (1). Hencek , l - 

variable quadratic programming problems 

are solved [36]. 

 

 

3   Results 
EMG data collected from 12 subjects were 

analyzed using the methodology described 

in Section 2. Data were recorded from 3 

NOR, 5 MYO and 4 MND subjects. Only 

subjects with no history or signs of 

neuromuscular disorders were considered 

as normal. MATLAB was used for 

implementing the algorithms. 

Following the pre-processing, EMG signals 

are segmented by using three segmentation 

techniques. Table1 tabulates the 

comparison of the results of three 

segmentation techniques. The technique 

used for the extraction of MUAPs by 

identifying their peaks, yielded best results 

when compared with the manually 

observed true MUAPs, so we have taken 

the MUAPs identified by using this 
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technique for further analysis. Moreover, 

the segmented MUAPs are of same length 

and hence can be classified easily. Table2 

tabulates the success rates of three 

segmentation techniques. The success rate 

is the percentage ratio of the correctly 

identified MUAPs by the segmentation 

algorithm and the number of true MUAPs 

identified by manual observation. The 

success rate for the technique using peaks 

to extract MUAPs is 95.90%, for the 

technique using BEPS and EEPs, is 75.39% 

and for the technique using DWT, is 

66.64%. Examining the success rate for 

each class, the highest success rate 

(96.07%) was obtained for the NOR group. 

The success rate for other classes is 

attributed to the more complex and variable 

waveform shapes. 

 
Table 1- Comparison of the Results of Segmentation 

Techniques. 

 

 

 

Subjects 

 

 

 

Total No. of MUAPs identified 

 

 

 

By 

identifying 

the peaks 

of MUAPs 

By 

identifying 

the BEPs 

and EEPs 

of the 

MUAPs 

By 

using 

DWT 

 

By manual 

observation 

 

 

NOR (3) 

 

196 

 

196 

 

107 

 

204 

 

MYO(5) 

 

278 

 

124 

 

243 

 

290 

 

MND(4) 

 

182 

 

166 

 

121 

 

190 

 

Total(12) 

 

656 

 

486 

 

471 

 

684 

 
 

Table 2- Success Rate of the 

Segmentation techniques. 

 

Segmentation 

Technique 

 

Success Rate (%) 

Total 

Success 

Rate (%) 

   

NOR MYO MND 

 

By identifying 

the peaks of  

MUAPs 

 

 

96.07 

 

 

95.86 

 

 

95.78 

 

 

95.90 

 

By identifying 

the BEPs and 

EEPs of the 

MUAPs 

 

 

 

96.07 

 

 

 

42.75 

 

 

 

87.36 

 

 

 

75.39 

 

By using 

DWT 

 

52.45 

 

83.79 

 

63.68 

 

66.64 

 

The similar MUAPs are clustered by using 

statistical pattern recognition technique. 

Sometimes due to waveform variability, 

MUAP classes coming from the same 

motor unit, although they looked simiIar, 

were not grouped together. Merging of 

these classes can be achieved with a greater 

constant threshold and the averaged class 

waveforms as input. This is the major 

advantage of statistical pattern recognition 

technique. The total success rate obtained 

by using this technique is 93.13%. Table 3 

presents the results of clustering for each of 

the three MUAP classes. 

 
Table 3- MUAP Clustering 

Success Rate. 

 

MUAP classes 

 

 

Success rate (%) 

 

NOR 

 

93.13 (192/204) 

 

MYO 

 

93.10 (270/290) 

 

MND 

 

92.10 (175/190) 

 

Total 

 

93.13 (637/684) 

 

After clustering of MUAPs, AR features of 

the template MUAPs are extracted. It is 

observed, that the standard deviation (SD) 

of all the AR parameters of a signal will be 

zero, if the total numbers of classes are less 

than two. The two important advantages of 

extracting AR features over time domain 

features are: 1) variations in the positioning 

of the electrodes on the surface of the 

muscle do not severely affect the AR 

coefficients. 2) the amount of information 

to be presented to the classifier is greatly 

reduced. Therefore, the total processing 

time is also reduced. 

Finally the extracted AR features are given 

to a multi-class, one-against-all, SVM 

classifier for classification of MUAPs. The 

classification accuracy of SVM was 100%.  

 

 

4   Conclusion 
In conclusion, the methodology described 

in this work make possible the 

development of a fully automatic EMG 

signal analysis system which is accurate, 

simple, fast and reliable enough to be used 

in routine clinical environment. This work 

can provide a good understanding of EMG 

analysis procedures to the researchers to 
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identify neuromuscular diseases. Future 

work will evaluate the algorithms 

developed in this study on EMG data 

recorded from more muscles and more 

subjects. In addition, this system may be 

integrated into a diagnostic system for 

neuromuscular diseases based on neural 

network where EMG, muscle biopsy, 

biochemical and molecular genetic findings 

and clinical data may be combined to 

provide a diagnosis. 
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