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Abstract: - Fast parameter estimation of sinusoidal frequency modulation signal (SFM) in additive white 

Gaussian noise is considered. A technique based on Carson's rule is developed to estimate the frequency 

modulation index; the carrier frequency is calculated using the symmetrical property of side-frequency 

components; the instantaneous frequency is computed to get the modulation frequency. The Cramér-Rao lower 

bound (CRLB) of parameter estimation of SFM is also been derived. Monte Carlo simulations show that the 

parameter estimation accuracy is acceptable when the SNR is above 6dB.  

 

 

Key-Words: - Sinusoidal FM; Carson's Rule; Parameter estimation; Instantaneous frequency; CRLB. 

 

1 Introduction 
Frequency modulation (FM) is well known as the 

broadcast signal format for communication. In 

particular, the sinusoidal FM (SFM) signal is a kind 

of FM signal whose instantaneous frequency (IF) is 

modulated by sinusoidal signal. It is one of the most 

important signals with low probability of intercept 

in radar field, which has high range resolution, 

inhibits leakage and near field interference. Setlur 

modulated the micro-Doppler of radar signal for 

vibrations or rotations target or structures as SFM 

signal [1]. SFM signal has also been widely used in 

sonar, multipath communication channels, 

helicopter recognition and some other fields.  

There are lists of algorithms for the estimation of 

FM signal. The most are based on time-frequency 

representations (TFRs) because of the non-

stationarity of the SFM. Barbarossa combined the 

TFRs and pattern recognition methods for the 

analysis of nonlinear frequency modulation signals 

[2]; however, the computation complexity was 

heavy for electronic intelligence receiver. Barkat 

proposed a method to detect the presence of 

polynomial FM signal using the peak of polynomial 

Wigner-Ville distribution (WVD) [3], but it was 

noise sensitive and easily influenced by the cross 

terms. In these methods, the accuracy lies on the 

TFR image, and the computation is not acceptable 

for a real-time system. Besides, some other 

approaches have been discussed. Quatieri 

introduced an approach to the joint estimation of 

sine-wave amplitude modulation and FM based on 

the transduction of frequency modulation into 

amplitude modulation by linear filters using the 

amplitude envelope of the outputs of two 

transduction filters of piecewise-linear spectral 

shape [4]. This approach is creative, but it needs 

design two filters and is not suitable for the real-

time environment of radar intelligence. Lv treated 

SFM signal as a high order polynomial phase signal 

[5]. The algorithm derived the order and phase 

coefficients of SFM signal to estimate the carrier 

frequency, FM index, and modulating frequency. It 

is effective, but still need to be improved in order 

judgment.  

Carson’s rule is suitable for the estimation of 

bandwidth of the continuous FM (CFM) signal [7], 

and could definitely be brought to the special kind, 

namely, the SFM signal, which has a harmonic 

spectrum with harmonic amplitudes given by Bessel 

functions of the first kind. Carson’s rule is a 

computation effective approach which just needs 

one fast Fourier transform (FFT). We analyze the 

spectrum of SFM signal, and use the Carson’s rule 

to estimate the modulation index. Our aim is to find 

a fast and accuracy way to estimate the parameters 

of SFM signals.  

The remainder of this paper is organized as 

follows. Section 2 gives the signal model and 

spectrum of SFM signal, and details Carson’s rule. 

In Section 3, we analyze the characteristics of 

parameters of SFM signal, and give effective ways 
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to estimate them. In Section IV, we show the 

analysis for performance, and derive the cramér-rao 

lower bound (CRLB) of SFM signal under different 

signal to noise ratio (SNR). Moreover, the 

computation complexity is also discussed. Section 5 

provides conclusions. 

 

 

2 Signal Model and Carson’s Rule 
In this section, we will model the SFM signal firstly, 

and give its spectrum and Carson’s rule. 

 

 

2.1 Signal Model and Its Spectrum 
Observations [0]s , [1]s ,…, [ 1]s N − of a SFM in 

additive noise are obtained according to the model 

[ ] ( ) [ ]
[ ]

0 0
cos 2 sin

cos , 0,1,..., 1

f m

n

s n A f n m n w n

A w n n N

π ω ϕ

α

= + + +

= + = −
  (1) 

where 

 A   amplitude; 

 
0

f  carrier frequency; 

 fm  modulation index; 

 
m

ω  modulation angular frequency; 

 
0

ϕ   initial phase; 

02 sinn f mf n m nα π ω ϕ= + + ; 

[ ]0w , [ ]1w ,…, [ ]1w N − independent Gaussian 

random variables with zero mean and variance 2σ .  

The vector 0

T

f mf m ω   is to be estimated. 

Using Bessel function, [ ]s n  without noise could be 

rewrote as 

[ ]

{

}

0 0

0

1

0

( )cos(2 )

( ) cos[(2 ) ]

( 1) cos[(2 ) ]

f

k f m

k

k

m

s n J m f n

J m f k n

f k n

π

π ω

π ω

∞

=

=

+ +

+ − −

∑      (2) 

where ( )k fJ m  are Bessel functions of the first kind 

of order k. 

2

0

( 1) ( / 2)
( )

!( )!

m m k

f

k f

m

m
J m

m m k

+∞

=

−
=

+∑ , 

( ) ( 1) ( )k

k f k fJ m J m− = − . 

The Fourier transform of [ ]s n  is 

0( ) ( ) ( 2 )k f m

k

S A J m f kω δ ω π ω
∞

=−∞

= − −∑      (3) 

Equation (3) demonstrates that the spectrum of a 

SFM signal is a discrete set of components, equally 

spaced at an interval of 
m

ω , namely, the modulation  

frequency. The spectrum is centered at, and 

symmetrical about 
0

2 fπ . The amplitude of 
0

f  is 

02 ( )fAJ mπ , and 2 ( )k fAJ mπ  for 
0

2
m

fπ ω± . 

Fig.1. shows the relation between ( )k fJ m  and 

fm . It can be seen that 1.4347fm =  is a turning 

point. When 1.4347fm < , i.e., the signal is weakly 

modulated (WM), only the lowest order Bessel 

functions have significant amplitudes and the 

amplitude decreases as the increase of k . Signal 

energy is mostly concentrated in the vicinity of the 

carrier frequency. When 1.4347fm > , i.e., the signal 

is highly modulated (HM), the spectrum becomes 

wideband with significant power occurring at 

considerable displacements from the carrier 

frequency. For certain values of the modulation 

index, 0 ( )fJ m  would be zero, i.e., the carrier has no 

energy. 

 
Fig. 1. The amplitude of Jk(mf) VS mf. 

 

2.2 Carson’s Rule 
SFM signal spectrum contains an infinite number of 

frequency components, in theory, infinitely wide 

band width. However, the amplitude of power 

spectra decreases with an increasing displacement in 

frequency from the carrier frequency, and ( )k fJ m  

falls down when k  grows. Therefore, we can take 

the appropriate k  so the side-frequency components 

are small enough as to be ignored. In other words, 

SFM signal can be treated as finite bandwidth.  

Theoretically any frequency modulation signal 

will have an infinite number of sidebands and hence 

an infinite bandwidth but in practice all significant 

sideband energy (98% or more) is concentrated 

within the bandwidth defined by Carson's rule. The 

rule can be derived from an examination of the 

spectra properties of CFM signal. It was shown that 

the spectral components of CFM signals consist of 

Bessel functions. Here, after enough simulations, we 
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think that the signal bandwidth should include 

sidebands whose power spectra are more than 10% 

of the power spectra of carrier frequency without 

modulation. Thus, ( ) 0.1k fJ m ≥ . 

When 1fm ≥ , the power spectra of sidebands for 

1fk m> +  is less than 10% of the power spectra of 

carrier frequency without modulation, so we can set 

1fk m= + . There are 2 2( 1)fk m= +  sidebands, and 

the frequency interval between sidebands is mω , so 

the effective bandwidth of SFM signal is 

2( 1) 2( )f m mB m ω ω ω= + = ∆ +             (4) 

where f mmω ω∆ =  is the frequency deviation. 

Equation (4) is Carson’s rule, which is used to 

estimate the bandwidth of frequency modulation 

signal. 

When 1fm << , (4) can be rewrote as 

2 mB ω≈                                 (5) 

Therefore, when the modulation is too weak, the 

effective bandwidth is as twice as modulation 

frequency. 

When 1fm >> , (4) can be rewrote as 

2B ω≈ ∆                                (6) 

Thus, when the modulation is too high, the 

effective bandwidth is as twice as frequency 

deviation. 

 

 

3 Parameter Estimation 
This section we will estimate the carrier frequency, 

modulation frequency and modulation index 

respectively. 
 

 
Fig. 2. The ratio r VS fm  theoretically. 

 

 
 

(a) 
 

 

(b) 

 
(c) 

Fig. 3. The Spectrum of SFM with different 

modulation index when the SNR is 5dB.  

(a) 1fm = .(b) 5fm = .(c) 1.5fm = . 

 

3.1 Carrier frequency 
The power spectra of SFM signal is symmetrical 

about the carrier frequency, consequently, 
0

f  can be 
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estimated from the symmetric centre of scattered 

frequency components. The algorithm process is as 

follows: 

1) Compute the power spectrum of  [ ]s n ; 

2) Find the highest spectrum peak 
1

P  to determine 

its maximum value 
1

M  and the index 
1

ind . Set 

the power spectrum whose index values in range  

1 1
[ 2 2]ind ind− + , then find the highest 

spectrum  peak 
2

P  to determine its maximum 

value 
2

M  and the corresponding index 
2

ind ;  

3) Estimate the frequencies with respect to 
1

M  and 

2
M , and denote them as 

1
f̂  and 

2
f̂ , respectively; 

4) Calculate the ratio defined by 
2 1
/r M M= . If 

rr T≥ , the signal should be judged as WM 

signal, and the estimator for 
0

f  is 

0 1
ˆ ˆf f=                                 (7) 

On the other hand, if rr T< , the signal should be 

judged as HM signal, and the estimator is 

defined by 

1 2
0

ˆ ˆ
ˆ

2

f f
f

+
=                             (8) 

5) Estimate the frequency using the algorithm in 

[8]. 

r  is determined by 
2

1 0( ) / ( )f fJ m J m    when 

1 0( ) ( )f fJ m J m≥ , and its value keeps 1 when 

1 0( ) ( )f fJ m J m<  in theory. rT  is the threshold to 

choose the sub-estimator, which is important for the 

performance of the estimation. Here, we set 0.5rT =  

after enough simulations. If 0.5r ≤ , there is only 

one obvious peak, as shown in area of low part of 

WM signal (LP of WM) in Fig.2 and Fig. 3(a), and 

we will locate 
0

f  accurately. If 0.5r > , there are 

two higher peaks obvious at least, which are related 

to HM or the area in high part of  WM signal (HP of 

WM) in Fig.2 and Fig. 3(b). If there are three peaks 

whose energies are almost the same, as shown in Fig. 

3(c), we need some modification which would be 

detailed in 3.2. 

 

3.2 Modulation Frequency 
The IF of SFM is 

0[ ] 2 cosSFM f m mn f m nω π ω ω= +          (9) 

The Fourier transform (FT) of [ ]SFM nω  is 

( ) ( ) 0.5 ( )

0.5 ( )

f m m

f m m

S m

m

ω δ ω ω δ ω ω

ω δ ω ω

= + −

+ +
     (10) 

Filter out the DC component ( )δ ω  in (11), and 

we will get the estimator for 
m

f : 

{ }
0

ˆ arg max ( )m S
ω

ω ω
≠

=              (11) 

In order to improve the accuracy, we use [8] to 

estimate mω . 

The estimator needs compute the IF, and the 

steps of the sub-algorithm are 

1) Calculate the Hilbert transform of [ ]s n using 

FFT and inverse FFT (IFFT), and  denote the 

analytic signal as  

[ ] [ ] ( [ ])z n s n jH s n= +              (12) 

2) Estimate the instantaneous phase (IP) [ ]nϕ : 

( [ ]
[ ] arc tan

[ ]

H s n
n

s n
ϕ

 
=  

 
              (13) 

The phase [ ]nϕ  has periodic ambiguity, and the 

algorithm for unwrapping the ambiguity is detailed 

in [9]. The final phase is ˆ[ ]nϕ . 

3) Compute the linear fitting ˆ[ ]L n  of ˆ[ ]nϕ , and let 

ˆˆ[ ] [ ] [ ]l n n L nϕ ϕ= −                    (14) 

4) Filter [ ]l nϕ  by low pass filter (LPF) to eliminate 

the high frequency noise. 

5) Compute the backward difference of [ ]l nϕ  as 

[ ]lb nϕ . The  IF should be 

ˆˆ [ ] [ ] [ ]SFM lb sn n f L nω ϕ= +                  (15) 

Here, we use least square algorithm to fit ˆ[ ]nϕ  

lineally. Its slope and intercept, namely S and I  of 

ˆ( )L n  are  

1 1 2

2

1 2

1 1

b A b N
S

A A N

b SA
I

N

−
= −


− =

                 (16) 

where [ ] [ , 1, , 1]
2 2 2

N N N
t n = − − − −⋯ , 

1

1

0

[ ]
N

n

A t n
−

=

=∑ , 

1
2

2

0

| [ ] |
N

n

A t n
−

=

=∑ , 
1

1

0

ˆ[ ]
N

n

b nϕ
−

=

=∑  and 
1

0

ˆ2 [ ] [ ]
N

n

b t n nϕ
−

=

=∑ . 

Hamming or Hanning window is considered for 

the LPF, and the cutoff frequency is designed as the 

last decline point after the highest frequency. The 

order M of window should be range from 30 to 60. 

Further explanations are given as follows. Take a 

SFM signal with 1A = , 10fm = , 0.02mω π= ,  

0
/ 4ϕ π= and the sampling frequency 1sf Hz=  

when the SNR is 5dB as an example.  The noised 

signal is shown in Fig. 4(a) with SNR=5dB. The 

discrete-time IP is computed by (13) and be 

unwrapped to get ˆ[ ]nϕ  and its linear fitting ˆ[ ]L n , as 

shown in Fig. 4(b). The backward difference is 

applied to estimate the IF, as shown in Fig. 4(c). 
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The spectrum of IF computed by FFT is shown in 

Fig. 4(d). As we can see, there is a sharp peak 

followed by a rapid decline, separating the signal 

and the high frequency noise. We can set the cutoff 

frequency as the last decline point after the highest 

frequency. From Fig. 4(d), the cutoff frequency 

should be 0.02559Hz. The output of the filter is 

shown in Fig. 4(e). 

 

 
      (a) 

 
      (b) 

 

      (c) 

 
      (d) 

 
      (e) 

Fig. 4.  An example to compute instantaneous 

frequency. (a) Noised signal when SNR=5dB. (b) 

Instantaneous phase and its linear fitting. (c) 

Instantaneous frequency with high frequency noise. 

(d) Spectrum of instantaneous frequency. NA stands 

for normalized amplitude. (e) Filtered instantaneous 

frequency. 

As mentioned in 3.1, there would be some 

modification to fix the problem of location in the 

HP of WM and the LP of HM situation, i.e., when 

fm  lies in HP of WM, r  may be greater than 0.01, 

and will be treated as HM. Therefore, we need a 

patch to fix the problem. After giving the IF, we 

could estimate the carrier frequency again after 3.1. 

If the outputs are almost the same, we will confirm 

the result in 3.1. While, if the two outputs are 

different a lot, we will add the following steps to 3.1. 

1) If 0.5r ≤ , confirm the result in 3.1, otherwise 

go to Step 2; 

2) Compute the mean of the IF and denote it as 

0
f̂ ′  . If 

0 0
ˆ ˆ 0.002f f Hz′ − ≤  (sampling frequency 
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is 1Hz), confirm the result in 3.1, otherwise go 

to Step 3; 

3) Find the third highest spectrum  peak 
3

P  to 

determine its maximum value 
3

M  and the 

corresponding index 
3

ind ;  

4) Compute the centre frequencies 
1

ˆ
Mf , 

2
ˆ
Mf  and 

3
ˆ
Mf  between 

1
ind  and 

2
ind , 

1
ind  and 

3
ind ,

2
ind  

and 
3

ind , respectively.; 

5) The selected output should be  

 { }0 0 0
ˆ ˆ ˆ ˆ ˆ ˆ , 1,2,3Mq Mq Mif f f f f f i′ ′= − ≤ − ∈    (17) 

6) Estimate the frequency as [7]. 

 

 

3.3 Modulation Index 
We should estimate the effective bandwidth before 

finding modulation index according (4). The 

amplitudes of side-frequencies are modulated by 

Bessel functions, and we need to use adaptive 

threshold to estimate the effective bandwidth of 

both weakly highly modulated signals. The flow is 

given by 

1) Find the threshold 
1MIT cM= ; 

2) Estimate the effective bandwidth B̂ by 

comparing the power spectrum with MIT . 

3) The estimator of fm  is given by 

ˆ
ˆ 1

ˆ2
f

m

B
m

ω
= −                         (18) 

The threshold c  is different for highly and 

weakly modulated signals. When the signal is 

weakly modulated, the carrier frequency is the 

energy centre, and the energy of side-frequencies is 

comparatively low.  Therefore, c should be a small 

value, but if c  is too small to contain the noise level, 

there would be some mistakes. After enough 

simulations, it shows that 0.01c =  is an acceptable 

threshold. When SFM is highly modulated, the 

energy is distributed among side-frequencies, c  

values greatly. Similarly, if c  is too great, there 

would be some mistakes, missing some energy of 

signal, and the estimated B̂  would be greater than 

the true value. c  should be 0.09 after simulations. 

Another question is that how we determine the 

modulation index before its estimation. From 3.1 

and 3.2, we can know that the modification can 

distinguish whether the signal is highly modulated. 

In short, the flow of the algorithm is shown in 

Fig. 5. 

 

 
 

Fig. 5. Flow of the algorithm. 

 

4 Performance Analysis 
We will derive the CRLB of parameters of SFM 

signal at first, and show the simulation results under 

the conditions of weakly and highly modulation. 

Finally, the computation complexity will be 

discussed. 
 

 

4.1 The CRLB of SFM Signal 
Generalizing to vector signal parameter estimation 

in the presence of WGN, we have [9] 

( ) [ ] [ ]1

2
0

; ;1 N

ij
n i j

s n s n

σ

−

=

∂ ∂
=   ∂ ∂∑

θ θ
I θ

θ θ
         (19) 

as the elements of the Fisher information matrix. 

Here, [ ]; [ ]s n s n=θ  and 0 0

T

f mA f m ω ϕ =  θ . 
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The derivatives are easily found as 

[ ] [ ]
1

; ;
cos

n
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A
α
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= =
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θ θ

θ
                           (20) 
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2 0

; ;
2 sin
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θ θ
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ω α
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= = −
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θ θ
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cos sin
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m
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Am n nω α

ω
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= = −
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θ θ
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(23) 

[ ] [ ]
5
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sin

n
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A α

ϕ

∂ ∂
= = −

∂ ∂

θ θ

θ
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In evaluating the CRLB it is assumed that
m

ω , 

02 cosf m mf m nπ ω ω+ , 02 cos / 2f m m mf m nπ ω ω ω+ ±  

and 02 cosf m m mf m nπ ω ω ω+ ±  are not near 0, 

/ 2π or π , which allows us to make certain 

simplifications based on approximations: 
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n
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approximations, we have 
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The Fisher information matrix has the symmetry 

property, i.e., [ ] [ ]( ) ( )
ij ji
=I θ I θ , so we have got the 

whole matrix. We have upon inversion 
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(40) 

where 2 2/ (2 )Aη σ=   is the SNR. The CRLBs for 

ˆ
m

ω , 0f̂  and ˆ fm  decrease as the SNR increases and 

that the bound decrease as 31 / N , 31 / N  and 1 / N  

respectively, making them quite sensitive to data 

record length. The bound for ˆ
m

ω  is inversely 

proportional to fm . 

 

4.2 Weakly Modulated Signal 
In simulations,  

1A = ; 

 0 0.05f Hz= ; 

 1fm = ; 

 0.02
m

ω π= ; 

 / 4ϕ π= . 

The sampling frequency is 1Hz. The number of 

sampling points is 1024. SNR ranges from 0 to 20. 

500 times Monte-Carlo runs in each SNR. We 

compare the proposed algorithm with spectral 

correlation function (SCF) which is suitable for WM 

signal. Fig. 6 shows the estimation accuracy of the 

proposed method, the algorithm based on SCF and 

the CRLB. The NRMSE stands for normalized root 

mean square error.  

When 6SNR dB≥ , this accuracy of modulation 

frequency estimation of the proposed method is 

about 20dB higher than the SCF. When 11SNR dB≥ , 

the both methods almost have the same performance, 

and the proposed method has slightly higher 

accuracy. Both of them are far away more than 

50dB from the CRLB. For the estimation of carrier 

frequency, the accuracy of proposed method is more 

than 26dB  higher than the SCF, and is looser than 

the CRLB about 25dB . The accuracy of modulation 

index of SCF is about 4dB  less than the way of 

Carson’s rule. 

 

 
      (a) 

 
      (b) 
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      (c) 

Fig. 6. The estimation accuracy of each 

parameter for weakly modulated signal. (a)
m

ω . 

(b) 0f . (c) fm . 

 

 

4.3 Highly Modulated Signal 

 

 
      (a) 

 
      (b) 

 
      (c) 

Fig. 7. The estimation accuracy of each 

parameter for highly modulated signal. (a)
m

ω . 

(b) 0f . (c) fm . 

 

In simulations,  

1A = ; 

 0 0.15f Hz= ; 

 10fm = ; 

 0.02
m

ω π= ; 

 / 4ϕ π=  . 

We compare the proposed algorithm with 

Wigner-Ville distribution (WVD) which is suitable 

for HM signal. Fig. 7 shows the results. The 

accuracy of modulation frequency estimation of the 

proposed method is about 4dB  higher than the 

algorithm in [11] in the considered SNRs. Both of 

them are far away from the CRLB more than 50dB. 

For the estimation of carrier frequency, the accuracy 

of proposed method is more than 33dB  higher than 

the SCF when 13SNR dB≥ , and 4dB  higher when 

6SNR dB≥ . The proposed method is looser than the 

CRLB about 26dB  when 13SNR dB≥ , and 50dB  

when 6SNR dB≥ . The accuracy of modulation 

index of SCF is about 3dB  less than the way of 

Carson’s rule. 

When the signal is weakly modulated, the main 

component of spectrum is carrier frequency; 

therefore, it is easy to be located. The accuracy of 

carrier estimation is higher than the highly 

modulated one. In Fig. 6(c), the modulation index is 

small when the signal is weakly modulated, so the 

energy of side-frequency 
m

ω  in (9) is also small, 

making the anti-noise capability poor. When 

6SNR dB≥ , the algorithm converges. When the 

signal is highly modulated, the energy of carrier 

frequency is less than the one of side-frequency, and 

the energy differences among side-frequencies are 
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less the same. The carrier frequency algorithm 

accuracy decreased as shown in Fig. 7(b). The 

modulation index in Fig. 7(c) is relatively large, 

improving the anti-noise capability; as a result, the 

method will converges when 2SNR dB≥ . 

The proposed method is based on the symmetric 

property of SFM signal to estimate the carrier 

frequency, making it only suitable for single signal. 

Carson’s rule is particular for the continuous FM 

signal to estimate the effective bandwidth 

approximately, and its accuracy is not high. With 

the decrease of SNR, the carrier frequency 

estimation accuracy declines; the same time, the 

noise in IP will affects the IF estimation, leading to 

decreasing in modulation frequency and modulation 

index estimation accuracy. 

 

 

4.4 Computation Complexity 
 

Table 1. Computation complexity 

 

Par. Function Detail Computation 

- Hilbert 

FFT 

and 

IFFT 

2Nlog2N CMs 

0f  
PSD Square N CMs  and 3 TSs 

iterations DFT 3N CMs 

m
ω  

IP TE 63N CMs 

LF (16) 6N-2 CMs 

LPF M-order 2MN-N CMs 

FT of IF 1 FFT Nlog2N CMs 

iterations DFT 3N CMs 

fm  B 
1 

search 
1 TS 

all - - 

 About 

3Nlog2N+75N+2MN 

CMs+4TS 

 

The proposed method is based on the computation 

of FFTs, with some logical judge and search. The 

details of computation complexity are shown in 

Table 1. The complex multiplication (CM) and time 

of search (TS) are shown. TE stands for Taylor 

expansion; Par. is the abbreviation of parameter. 

As we can see, there are 3 FFTs (IFFT) in total, 

and the times of multiplication are about 100N when 

M is about 30. The computation complexity is 

acceptable for hardware implementation.  

 

 

5 Conclusion 
In order to reduce the computation complexity of 

the existing algorithms for the parameters estimation 

of sinusoidal frequency modulation signal, a fast 

method based on Carson’s rule is presented in this 

paper. The carrier frequency was estimated by the 

symmetric property of the side-frequency, and was 

modified by the instantaneous frequency. The 

modulation frequency was computed by 

instantaneous phase dealt by linear fitting and low 

pass filter. Modulation index was derived from 

Carson’s rule. When SNR is greater than 6dB, all 

the sub-algorithms work well and are robust for 

weakly and highly modulated signals. The whole 

computation complexity is controlled at an 

acceptable level for real-time system. The further 

work will focus on the fast method for multi-

component signals. 
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