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Abstract—This paper presents a new approach to speed up the operation of time delay neural networks for fast detecting a 
word in a speech. The entire data are collected together in a long vector and then tested as a one input pattern. The proposed 
fast time delay neural networks (FTDNNs) use cross correlation in the frequency domain between the tested data and the 
input weights of neural networks. It is proved mathematically and practically that the number of computation steps required 
for the presented time delay neural networks is less than that needed by conventional time delay neural networks 
(CTDNNs). Simulation results using MATLAB confirm the theoretical computations. 
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1.   INTRODUCTION 
Recently, time delay neural networks have shown very good 
results in different areas such as automatic control, speech 
recognition, blind equalization of time-varying channel and 
other communication applications. The main objective of 
this research is to reduce the response time of time delay 
neural networks. The purpose is to perform the testing 
process in the frequency domain instead of the time domain. 
Our approach was successfully applied for sub-image 
detection using fast neural networks (FNNs) as proposed in 
[1-3]. Furthermore, it was used for fast face detection 
[7,9,18], and fast iris detection [8]. Another idea to further 
increase the speed of FNNs through image decomposition 
was suggested in [7]. In addition, it was applied for fast 
attack detection in computer networks [15]. By using this 
theory, fast painting with different colors was presented in 
[19]. Moreover, high speed decision tree classifier for 
identifying protein coding regions was presented in [20]. An 
interesting Internet application for fast search on web pages 
was presented in [11]. 

 
FNNs for detecting a certain code in one dimensional serial 
stream of sequential data were described in [4,5]. Compared 
with conventional neural networks, FNNs based on cross 
correlation between the tested data and the input weights of 
neural networks in the frequency domain showed a 
significant reduction in the number of computation steps 
required for certain data detection [1,2,3,4,5,7,8,9,11,12].  
Here, we make use of our theory on FNNs implemented in 
the frequency domain to increase the speed of time delay 
neural networks.  
 

The idea of moving the testing process from the time 
domain to the frequency domain is applied to time delay 
neural networks. Theoretical and practical results show that 
the proposed FTDNNs are faster than CTDNNs. In section 
2, our theory on FNNs for detecting certain data in one 
dimensional matrix is described. Experimental results for 
FTDNNs are presented in section 3.  

2. THEORY OF FNNS BASED ON CROSS 
CORRELATION IN THE FREQUENCY DOMAIN 

Finding a certain word in a speech is a searching problem. 
Each position in the input matrix is tested for the presence 
or absence of the required word. At each position in the 
input matrix, each sub-matrix is multiplied by a window of 
weights, which has the same size as the sub-matrix. The 
outputs of neurons in the hidden layer are multiplied by the 
weights of the output layer. When the final output is high, 
this means that the sub-matrix under test contains the 
required word and vice versa. Thus, we may conclude that 
this searching problem is a cross correlation between the 
matrix under test and the weights of the hidden neurons.   

The convolution theorem in mathematical analysis says that 
a convolution of f with h is identical to the result of the 
following steps: let F and H be the results of the Fourier 
Transformation of f and h in the frequency domain. 
Multiply F and H* (conjugate of H) in the frequency 
domain point by point and then transform this product into 
the spatial domain via the inverse Fourier Transform. As a 
result, these cross correlations can be represented by a 
product in the frequency domain. Thus, by using cross 
correlation in the frequency domain, speed up in an order of 
magnitude can be achieved during the detection process 
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[1,2,3,4,5,7,8,9],[14-20]. In the detection phase, a sub 
matrix I of size 1xn (sliding window) is extracted from the 
tested matrix, which has a size 1xN, and fed to the neural 
network. Let Wi be the matrix of weights between the input 
sub-matrix and the hidden layer. This vector has a size of 
1xn and can be represented as 1xn matrix. The output of 
hidden neurons h(i) can be calculated as follows:  
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where g is the activation function and b(i) is the bias of each 
hidden neuron (i). Equation 1 represents the output of each 
hidden neuron for a particular sub-matrix I. It can be 
obtained to the whole input matrix Z as follows: 
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Eq.2 represents a cross correlation operation. Given any two 
functions f and d, their cross correlation can be obtained by: 
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Therefore, Eq. 2 may be written as follows [1]: 

( )ibZiWgih +⊗=                       (4) 

where hi is the output of the hidden neuron (i) and hi (u) is 
the activity of the hidden unit (i) when the sliding window 
is located at position (u) and (u) ∈ [N-n+1].  

Now, the above cross correlation can be expressed in terms 
of one dimensional Fast Fourier Transform as follows [1]: 

( ) ( )( iW*FZF1FZiW •−=⊗ )             (5) 

Hence, by evaluating this cross correlation, a speed up ratio 
can be obtained comparable to conventional neural 
networks. Also, the final output of the neural network can 
be evaluated as follows:  
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where q is the number of neurons in the hidden layer. O(u) 
is the output of the neural network when the sliding window 
located at the position (u) in the input matrix Z. Wo is the 
weight matrix between hidden and output layer. 
The complexity of cross correlation in the frequency 
domain can be analyzed as follows: 

1-  For a tested matrix of 1xN elements, the 1D-FFT 
requires a number equal to Nlog2N of complex computation 
steps [13]. Also, the same number of complex computation 

steps is required for computing the 1D-FFT of the weight 
matrix at each neuron in the hidden layer.  

2-  At each neuron in the hidden layer, the inverse 1D-FFT 
is computed. Therefore, q backward and (1+q) forward 
transforms have to be computed. Therefore, for a given 
matrix under test, the total number of operations required to 
compute the 1D-FFT is (2q+1)Nlog2N. 

3- The number of computation steps required by FNNs is 
complex and must be converted into a real version. It is 
known that, the one dimensional Fast Fourier Transform 
requires (N/2)log2N complex multiplications and Nlog2N 
complex additions [13]. Every complex multiplication is 
realized by six real floating point operations and every 
complex addition is implemented by two real floating point 
operations. Therefore, the total number of computation 
steps required to obtain the 1D-FFT of a 1xN matrix is: 

ρ=6((N/2)log2N) + 2(Nlog2N)                  (7) 

which may be simplified to: 

ρ=5Nlog2N                              (8) 

4- Both the input and the weight matrices should be dot 
multiplied in the frequency domain. Thus, a number of 
complex computation steps equal to qN should be 
considered. This means 6qN real operations will be added to 
the number of computation steps required by FNNs.  

5- In order to perform cross correlation in the frequency 
domain, the weight matrix must be extended to have the 
same size as the input matrix. So, a number of zeros = (N-n) 
must be added to the weight matrix. This requires a total 
real number of computation steps = q(N-n) for all neurons. 
Moreover, after computing the FFT for the weight matrix, 
the conjugate of this matrix must be obtained. As a result, a 
real number of computation steps = qN should be added in 
order to obtain the conjugate of the weight matrix for all 
neurons.  Also, a number of real computation steps equal to 
N is required to create butterflies complex numbers           
(e-jk(2Πn/N)), where 0<K<L. These (N/2) complex numbers 
are multiplied by the elements of the input matrix or by 
previous complex numbers during the computation of FFT. 
To create a complex number requires two real floating point 
operations. Thus, the total number of computation steps 
required for FNNs becomes: 

σ=(2q+1)(5Nlog2N) +6qN+q(N-n)+qN+N        (9) 
which can be reformulated as: 

           σ=(2q+1)(5Nlog2N)+q(8N-n)+N          (10) 

6- Using sliding window of size 1xn for the same matrix of 
1xN pixels, q(2n-1)(N-n+1) computation steps are required 
when using CTDNNs for certain code detection or 
processing (n) input data. The theoretical speed up factor η 
can be evaluated as follows: 
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CTDNNs and FTDNNs are shown in Figures 1 and 2 
respectively. 

3. EXPERIMENTAL RESULTS FOR TIME DELAY 
NEURAL NETWORKS   

Time delay neural networks accept serial input data with 
fixed size (n). Therefore, the number of input neurons 
equals to (n). Instead of treating (n) inputs, our new 
approach is to collect all the input data together in a long 
vector (for example 100xn). Then the input data is tested by 
time delay neural networks as a single pattern with length L 
(L=100xn). Such a test is performed in the frequency 
domain as described in section II. Complex-valued neural 
networks have many applications in fields dealing with 
complex numbers such as telecommunications, speech 
recognition and image processing with the Fourier 
Transform [6,10]. Complex-valued neural networks mean 
that the inputs, weights, thresholds and the activation 
function have complex values. In this section, formulas for 
the speed up ratio with different types of inputs will be 
presented. The special case of only real input values (i.e. 
imaginary part=0) will be considered. Also, the speed up 
ratio in the case of a one and two dimensional input matrix 
will be concluded. The operation of FNNs depends on 
computing the Fast Fourier Transform for both the input 
and weight matrices and obtaining the resulting two 
matrices. After performing dot multiplication for the 
resulting two matrices in the frequency domain, the Inverse 
Fast Fourier Transform is calculated for the final matrix. 
Here, there is an excellent advantage with FNNs that should 
be mentioned. The Fast Fourier Transform is already 
dealing with complex numbers, so there is no change in the 
number of computation steps required for FNNs. Therefore, 
the speed up ratio in the case of complex-valued time delay 
neural networks can be evaluated as follows: 

1) In case of real inputs  

A) For a one dimensional input matrix 
Multiplication of (n) complex-valued weights by (n) real 
inputs requires (2n) real operations. This produces (n) real 
numbers and (n) imaginary numbers. The addition of these 
numbers requires (2n-2) real operations. Therefore, the 
number of computation steps required by conventional 
neural networks can be calculated as: 

θ=2q(2n-1)(N-n+1)                    (12) 

The speed up ratio in this case can be computed as follows: 
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The theoretical speed up ratio for searching short successive 
(n) code in a long input vector (L) using complex-valued 

time delay neural networks is shown in Tables 1, 2, and 3. 
Also, the practical speed up ratio for manipulating matrices 
of different sizes (L) and different sized weight matrices (n) 
using a 2.7 GHz processor and MATLAB is shown in Table 
4.  

 
B) For a two dimensional input matrix 
Multiplication of (n2) complex-valued weights by (n2) real 
inputs requires (2n2) real operations. This produces (n2) real 
numbers and (n2) imaginary numbers. The addition of these 
numbers requires (2n2-2) real operations. Therefore, the 
number of computation steps required by conventional 
neural networks can be calculated as: 

θ=2q(2n2-1)(N-n+1) 2                 (14)  

The speed up ratio in this case can be computed as follows: 
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The theoretical speed up ratio for detecting (nxn) real 
valued submatrix in a large real valued matrix (NxN) using 
complex-valued time delay neural networks is shown in 
Tables 5, 6, 7. Also, the practical speed up ratio for 
manipulating matrices of different sizes (NxN) and different 
sized code matrices (n) using a 2.7 GHz processor and 
MATLAB is shown in Table 8.  

2) In case of complex inputs  

A) For a one dimensional input matrix 
Multiplication of (n) complex-valued weights by (n) 
complex inputs requires (6n) real operations. This produces 
(n) real numbers and (n) imaginary numbers. The addition 
of these numbers requires (2n-2) real operations. Therefore, 
the number of computation steps required by conventional 
neural networks can be calculated as: 

θ=2q(4n-1)(N-n+1)                    (16)  

The speed up ratio in this case can be computed as follows: 
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The theoretical speed up ratio for searching short complex 
successive (n) code in a long complex-valued input vector 
(L) using complex-valued time delay neural networks is 
shown in Tables 9, 10, and 11. Also, the practical speed up 
ratio for manipulating matrices of different sizes (L) and 
different sized weight matrices (n) using a 2.7 GHz 
processor and MATLAB is shown in Table 12.  

B) For a two dimensional input matrix 
Multiplication of (n2) complex-valued weights by (n2) real 
inputs requires (6n2) real operations. This produces (n2) real 
numbers and (n2) imaginary numbers. The addition of these 

WSEAS TRANSACTIONS on SIGNAL PROCESSING Hazem M. El-Bakry, Nikos Mastorakis

ISSN: 1790-5052 263 Issue 7, Volume 5, July 2009



numbers requires (2n2-2) real operations. Therefore, the 
number of computation steps required by conventional 
neural networks can be calculated as: 

θ=2q(4n2-1)(N-n+1)2                     (18)  

The speed up ratio in this case can be computed as follows: 
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The theoretical speed up ratio for detecting (nxn) complex-
valued submatrix in a large complex-valued matrix (NxN) 
using complex-valued neural networks is shown in Tables 
13, 14, and 15. Also, the practical speed up ratio for 
manipulating matrices of different sizes (NxN) and different 
sized code matrices (n) using a 2.7 GHz processor and 
MATLAB is shown in Table 16.  

For a one dimensional matrix, from Tables 1,2,3,4,9,10,11, 
and 12, we can conclude that the response time for vectors 
with short lengths are faster than those which have longer 
lengths. For example, the speed up ratio for the vector of 
length 10000 is faster that of length 1000000. The number 
of computation steps required for a vector of length 10000 
is much less than that required for a vector of length 40000. 
So, if the vector of length 40000 is divided into 4 shorter 
vectors of length 10000, the number of computation steps 
will be less than that required for the vector of length 
40000. Therefore, for each application, it is useful at the 
first to calculate the optimum length of the input vector. The 
same conclusion can be drawn in case of processing the two 
dimensional input matrix as shown in Tables 
5,6,7,8,13,14,15, and 16. From these tables, it is clear that 
the maximum speed up ratio is achieved at image size 
(N=200) when n=20, then at image size (N=300) when 
n=25, and at image size (N=400) when n=30. This confirms 
our previous results presented in [7] on fast subimage 
detection based on neural networks and image 
decomposition. Using this technique, it was proved that the 
speed up ratio of neural networks becomes faster when the 
input image is divided into many subimages and each 
subimage is processed in the frequency domain separately 
using a single fast neural processor. Another point of 
interest should be noted. In CTDNNs, if the whole input 
data (N) is available, then there is a waiting time for each 
group of (n) input data so that conventional neural networks 
can release their output for the previous group of (n) data. In 
contrast, FTDNNs can process the total N data directly with 
zero waiting time. For example, if the total (N) input data is 
appeared at the input neurons, then: 
1- CTDNNs can process only data of size (n) as the number 
of input neurons = (n). 
2- The first group of (n) data is processed by CTDNNs.   
3- The second group of (n) data must wait for a waiting time 
= τ, where τ is the response time consumed by CTDNNs for 
treating each group of (n) input data. 

4- The third group of (n) data must wait for a waiting time   
= 2τ corresponding to the total waiting time required by 
CTDNNs for treating the previous two groups. 
5- The fourth (n) data must wait for a waiting time = 3τ. 
6- The last group of (n) data must wait for a waiting time     
= (N-n)τ. 
As a result, the wasted waiting time in the case of CTDNNs 
is (N-n)τ. In the case of FTDNNs, there is no waiting time 
as the whole input data (Z) of length (N) will be processed 
directly and the time consumed is the only time required by 
FNNs themselves to produce their output. 

4. Conclusion 
A new approach to increase the speed of time delay neural 
networks for detecting a word in a speech has been 
presented. This has been done by designing a novel model 
of time delay neural networks called FTDNNs. Theoretical 
computations have shown that FTDNNs require fewer 
computation steps than conventional ones. This has been 
achieved by applying cross correlation in the frequency 
domain between the input data and the input weights of time 
delay neural networks. Simulation results have confirmed 
this proof by using MATLAB. This model can be 
successfully applied to any application that uses time delay 
neural networks. 
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Fig.1. Classical time delay neural networks. 
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Fig.2. Fast time delay neural networks. 

 

Table 1: The theoretical speed up ratio for time delay neural networks (1D-real values input matrix, n=400). 
Length of 

input 
matrix 

Number of computation steps required for 
classical complex-valued neural networks

Number of computation steps required 
for fast complex-valued neural networks 

Speed up 
ratio  

10000 4.6027e+008 4.2926e+007 10.7226
40000 1.8985e+009 1.9614e+008 9.6793 
90000 4.2955e+009 4.7344e+008 9.0729 

160000 7.6513e+009 8.8219e+008 8.6731 
250000 1.1966e+010 1.4275e+009 8.3823 
360000 1.7239e+010 2.1134e+009 8.1571 
490000 2.3471e+010 2.9430e+009 7.9752 
640000 3.0662e+010 3.9192e+009 7.8237 

Table 2: The theoretical speed up ratio for time delay neural networks (1D-real values input matrix, n=625). 
Length of 

input 
matrix 

Number of computation steps required for 
classical complex-valued neural networks

Number of computation steps required 
for fast complex-valued neural networks 

Speed up 
ratio  

10000 7.0263e+008 4.2919e+007 16.3713
40000 2.9508e+009 1.9613e+008 15.0452
90000 6.6978e+009 4.7343e+008 14.1474

160000 1.1944e+010 8.8218e+008 13.5388
250000 1.8688e+010 1.4275e+009 13.0915
360000 2.6932e+010 2.1134e+009 12.7433
490000 3.6674e+010 2.9430e+009 12.4612
640000 4.7915e+010 3.9192e+009 12.2257

IN 

Cross correlation in the frequency 
domain between the total (N) input data 
and the weights of the hidden layer. 
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Table 3: The theoretical speed up ratio for time delay neural networks (1D-real values input matrix, n=900). 
Length of 

input 
matrix 

Number of computation steps required for 
classical complex-valued neural networks

Number of computation steps required 
for fast complex-valued neural networks 

Speed up 
ratio  

10000 9.823 e+008 4.2911e+007 22.8933
40000 4.2206e+009 1.9612e+008 21.5200
90000 9.6176e+009 4.7343e+008 20.3149

160000 1.7173e+010 8.8217e+008 19.4671
250000 2.6888e+010 1.4275e+009 18.8356
360000 3.8761e+010 2.1134e+009 18.3409
490000 5.2794e+010 2.9430e+009 17.9385
640000 6.8985e+010 3.9192e+009 17.6018

 

Table 4: Practical speed up ratio for time delay neural networks (1D-real values input matrix). 
Length of input matrix Speed up ratio (n=400) Speed up ratio (n=625) Speed up ratio (n=900) 

10000 17.88 25.94 35.21 
40000 17.19 25.11 34.43 
90000 16.65 24.56 33.59 

160000 16.14 24.14 33.05 
250000 15.89 23.76 32.60 
360000 15.58 23.23 32.27 
490000 15.28 22.87 31.99 
640000 14.08 22.54 31.78 

 

Table 5: The theoretical speed up ratio for time delay neural networks (2D-real values input matrix, n=20). 
Size of 
input 

matrix 

Number of computation steps required for 
classical complex-valued neural networks

Number of computation steps required 
for fast complex-valued neural networks 

Speed up 
ratio  

100x100 3.1453e+008 4.2916e+007 7.3291 
200x200 1.5706e+009 1.9610e+008 8.0091 
300x300 3.7854e+009 4.7335e+008 7.9970 
400x400 6.9590e+009 8.8203e+008 7.8898 
500x500 1.1091e+010 1.4273e+009 7.7711 
600x600 1.6183e+010 2.1130e+009 7.6585 
700x700 2.2233e+010 2.9426e+009 7.5556 
800x800 2.9242e+010 3.9186e+009 7.4623 

 

Table 6: The theoretical speed up ratio for time delay neural networks (2D-real values input matrix, n=25). 
Size of 
input 

matrix 

Number of computation steps required for 
classical complex-valued neural networks

Number of computation steps required 
for fast complex-valued neural networks 

Speed up 
ratio  

100x100 4.3285e+008 4.2909e+007 10.0877
200x200 2.3213e+009 1.9609e+008 11.8380
300x300 5.7086e+009 4.7334e+008 12.0602
400x400 1.0595e+010 8.8202e+008 12.0119
500x500 1.6980e+010 1.4273e+009 11.8966
600x600 2.4863e+010 2.1130e+009 11.7667
700x700 3.4246e+010 2.9425e+009 11.6381
800x800 4.5127e+010 3.9185e+009 11.5163
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Table 7: The theoretical speed up ratio for time delay neural networks (2D-real values input matrix, n=30). 

Size of 
input 

matrix 

Number of computation steps required for 
classical complex-valued neural networks

Number of computation steps required 
for fast complex-valued neural networks 

Speed up 
ratio  

100x100 5.4413e+008 4.2901e+007 12.6834
200x200 3.1563e+009 1.9608e+008 16.0966
300x300 7.9272e+009 4.7334e+008 16.7476
400x400 1.4857e+010 8.8201e+008 16.8444
500x500 2.3946e+010 1.4273e+009 16.7773
600x600 3.5193e+010 2.1130e+009 16.6552
700x700 4.8599e+010 2.9425e+009 16.5160
800x800 6.4164e+010 3.9185e+009 16.3745

 
 

Table 8: Practical speed up ratio for time delay neural networks (2D-real values input matrix). 
Size of input matrix Speed up ratio (n=20) Speed up ratio (n=25) Speed up ratio (n=30) 

100x100 17.19 22.32 31.74 
200x200 17.61 22.89 32.55 
300x300 16.54 23.66 33.71 
400x400 15.98 22.95 34.53 
500x500 15.62 22.49 33.32 
600x600 15.16 22.07 32.58 
700x700 14.87 21.83 32.16 
800x800 14.64 21.61 31.77 

 
 

Table 9: The theoretical speed up ratio for time delay neural networks (1D-complex values input matrix, n=400). 
Length of 

input 
matrix 

Number of computation steps required for 
classical complex-valued neural networks

Number of computation steps required 
for fast complex-valued neural networks 

Speed up 
ratio  

100x100 9.2111e+008 4.2926e+007 21.4586
200x200 3.7993e+009 1.9614e+008 19.3706
300x300 8.5963e+009 4.7344e+008 18.1571
400x400 1.5312e+010 8.8219e+008 17.3570
500x500 2.3947e+010 1.4275e+009 16.7750
600x600 3.4500e+010 2.1134e+009 16.3245
700x700 4.6972e+010 2.9430e+009 15.9604
800x800 3.9192e+009 6.1363e+010 15.6571

 
 

Table 10: The theoretical speed up ratio for time delay neural networks (1D-complex values input matrix, n=625). 
Length of 

input 
matrix 

Number of computation steps required for 
classical complex-valued neural networks

Number of computation steps required 
for fast complex-valued neural networks 

Speed up 
ratio  

100x100 1.4058e+009 4.2919e+007 32.7558
200x200 5.9040e+009 1.9613e+008 30.1025
300x300 1.3401e+010 4.7343e+008 28.3061
400x400 2.3897e+010 8.8218e+008 27.0883
500x500 3.7391e+010 1.4275e+009 26.1934
600x600 5.3885e+010 2.1134e+009 25.4969
700x700 7.3377e+010 2.9430e+009 24.9324
800x800 9.5868e+010 3.9192e+009 24.4612

WSEAS TRANSACTIONS on SIGNAL PROCESSING Hazem M. El-Bakry, Nikos Mastorakis

ISSN: 1790-5052 268 Issue 7, Volume 5, July 2009



 

Table 11: The theoretical speed up ratio for time delay neural networks (1D-complex values input matrix, n=900). 
Length of 

input 
matrix 

Number of computation steps required for 
classical complex-valued neural networks

Number of computation steps required 
for fast complex-valued neural networks 

Speed up 
ratio  

100x100 1.9653e+009 4.2911e+007 45.7993
200x200 8.4435e+009 1.9612e+008 43.0519
300x300 1.9240e+010 4.7343e+008 40.6410
400x400 3.4356e+010 8.8217e+008 38.9450
500x500 5.3791e+010 1.4275e+009 37.6817
600x600 7.7544e+010 2.1134e+009 36.6920
700x700 1.0562e+011 2.9430e+009 35.8870
800x800 1.3801e+011 3.9192e+009 35.2134

 
 

Table 12: Practical speed up ratio for time delay neural networks (1D-complex values input matrix). 
Length of input matrix Speed up ratio (n=400) Speed up ratio (n=625) Speed up ratio (n=900) 

10000 37.90 53.58 70.71 
40000 36.82 52.89 69.43 
90000 36.34 52.47 68.69 
160000 35.94 51.88 68.05 
250000 35.69 51.36 67.56 
360000 35.28 51.02 67.15 
490000 34.97 50.78 66.86 
640000 34.67 50.56 66.58 

 
 

Table 13:  The theoretical speed up ratio for time delay neural networks (2D-complex values input matrix, n=20). 
Size of 
input 

matrix 

Number of computation steps required for 
classical complex-valued neural networks

Number of computation steps required 
for fast complex-valued neural networks 

Speed up 
ratio  

100x100 6.2946e+008 4.2916e+007 14.6674
200x200 3.1431e+009 1.9610e+008 16.0281
300x300 7.5755e+009 4.7335e+008 16.0040
400x400 1.3927e+010 8.8203e+008 15.7894
500x500 2.2197e+010 1.4273e+009 15.5519
600x600 3.2386e+010 2.1130e+009 15.3266
700x700 4.4493e+010 2.9426e+009 15.1206
800x800 5.8520e+010 3.9186e+009 14.9340

 
 

Table 14: The theoretical speed up ratio for time delay neural networks (2D-complex values input matrix, n=25). 
Size of 
input 

matrix 

Number of computation steps required for 
classical complex-valued neural networks

Number of computation steps required 
for fast complex-valued neural networks 

Speed up 
ratio  

100x100 8.6605e+008 4.2909e+007 20.1836
200x200 4.6445e+009 1.9609e+008 23.6856
300x300 1.1422e+010 4.7334e+008 24.1301
400x400 2.1198e+010 8.8202e+008 24.0333
500x500 3.3973e+010 1.4273e+009 23.8028
600x600 4.9746e+010 2.1130e+009 23.5427
700x700 6.8519e+010 2.9425e+009 23.2856
800x800 9.0290e+010 3.9185e+009 23.0418
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Table 15: The theoretical speed up ratio for time delay neural networks (2D-complex values input matrix, n=30). 
Size of 
input 

matrix 

Number of computation steps required for 
classical complex-valued neural networks

Number of computation steps required 
for fast complex-valued neural networks 

Speed up 
ratio  

100x100 1.0886e+009 4.2901e+007 25.3738
200x200 6.3143e+009 1.9608e+008 32.2021
300x300 1.5859e+010 4.7334e+008 33.5045
400x400 2.9722e+010 8.8201e+008 33.6981
500x500 4.7904e+010 1.4273e+009 33.5640
600x600 7.0405e+010 2.1130e+009 33.3197
700x700 9.7225e+010 2.9425e+009 33.0412
800x800 1.2836e+011 3.9185e+009 32.7581

 
Table 16: Practical speed up ratio for time delay neural networks (2D-complex values input matrix). 

Size of input matrix Speed up ratio (n=20) Speed up ratio (n=25) Speed up ratio (n=30) 
100x100 38.33 46.99 62.88 
200x200 39.17 47.79 63.77 
300x300 38.44 48.86 64.83 
400x400 37.92 47.23 65.99 
500x500 37.32 46.89 64.89 
600x600 36.96 46.48 64.01 
700x700 36.67 46.08 63.31 
800x800 36.38 45.78 62.64 
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