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Abstract: - In this paper is offered a method for non-linear still image representation based on pyramidal 
decomposition with a neural network. This approach is developed by analogy with the hypothesis for the way 
humans do image recognition using consecutive approximations with increasing similarity. A hierarchical 
decomposition, named Inverse Difference Pyramid (IDP), is used for the image representation. The 
approximations in the consecutive decomposition layers are represented by the neurons in the hidden layers of 
the neural networks (NN). This approach ensures efficient description of the processed images and as a result – 
a high compression ratio. This new way for image representation is suitable for various applications (efficient 
compression, multi-layer search in image databases, etc.). 
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1 Introduction 
The solutions of the problems concerning the 
efficient still image representation depend on the 
application: medicine, digital libraries, electronic 
galleries, geographic information systems, 
documents archiving, digital communication 
systems, etc.  

Two basic forms for digital image presentation 
are widely used – the primary (not compressed) and 
the secondary forms, obtained from the primary one 
and based on some kind of compression [1-6]. The 
primary form for digital image presentation is the 
matrix. The secondary forms are based on various 
techniques: multi-dimensional vectors, pyramids, 
linear prediction with fixed coefficients, linear 
orthogonal transforms, discrete wavelet transforms, 
fractal transforms, tree structures, algebraic models, 
models for visual information perception, etc.  

Another form is the vector representation, used 
for image compression with vector quantization and 
for image analysis and recognition based on 3-
dimensional color features, textural features, K-

dimensional color histograms, multi-dimensional 
shape features, RST-invariant features, R-tree, etc.  

The pyramidal representation describes the 
image with progressively increased resolution, 
which corresponds to the layers of the Gaussian-
Laplacian Pyramid. The derivatives of this 
representation are the Reduced Sum/Difference 
pyramid; the S-transform pyramid, the Hierarchy-
Embedded Differential Pyramid; the Least Square 
Pyramid, the Morphological Pyramid, etc. This 
group of pyramids is called over-complete because 
the data needed for the full pyramid representation 
is larger than that for the non-compressed image.  
The Orthogonal pyramids are non-over-complete: 
they are based on Wavelets or Contourlets functions 
and have higher efficiency and computational 
complexity than pyramids from the first group.  

The spectral image representation is based on 
orthogonal transforms: statistical (Karhunen-Loeve 
Transform, Principle Component Analysis, 
Independent Component Analysis, Singular Value 
Decomposition) and determined (Discrete Fourier 
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Transform, Discrete Cosine Transform, Walsh-
Hadamard Transform, Hartley Transform, Lapped 
Orthogonal Transform, Slant Transform, etc.). In 
this group could be included the new algebraic 
image transform based on 2D angular windowing 
functions, which is suitable for the synthetic shape 
local phase and orientation evaluation.  

The knowledge-based models for image 
representation are used mostly in the systems for 
Visual Information Retrieval. The main approach 
for image representation used is the pyramid model 
of 4 layers, which contain correspondingly: the 
primary matrix, the features vectors, the description 
of the relations between the features and the 
semantic image structure. One more approach for 
image representation is the perceptual one, based on 
anisotropic filtration controlled by the Human 
Visual System (HVS) visual attention model. 

The requirements on the object representation 
models are contradictory: minimum features number 
and invariability together with exact description, low 
computational complexity, etc. The methods, 
described above, solve these problems to some 
degree, but can’t achieve the best balance, because 
they are not flexible enough (they do not involve 
learning and feedback procedures). The state-of-the-
art analysis shows that there still exist unexplored 
possibilities for a wider cognitive approach in the 
creation of the object representation model and the 
context-based retrieval.  

The main disadvantages of the image 
representation methods, described above, are the 
relatively poor use of the image content knowledge 
obtained through learning, and the too complicated 
cognitive structures used.  

A group of methods for image representation, 
based on the use of artificial neural networks (NN) 
[7-15] had recently been developed. Unlike the 
classic methods, this approach is distinguished by 
higher compression ratios because the NN training 
is performed together with the coding.  The results 
already obtained show that these methods can not 
successfully compete with the still image 
compression standards, JPEG and JPEG2000 [3]. 
For example, the Adaptive Vector Quantization 
(AVQ), based on SOM NN [8, 13], requires the use 
of code books of too many vectors, needed to ensure 
high quality of the restored image and this results in 
lower compression. 

In this paper is presented one new approach for 
non-linear image representation based on pyramidal 
decomposition with neural network. This approach 
is based on the analogy with the hypothesis for the 
way humans do image representation using 
consecutive approximations with increasing 

resolution. Significant elements of the new 
representation include the use of feedback, which 
provides iterative change of the cognitive models’ 
parameters in accordance with the data similarity 
results obtained. 
 
 
2 General Principles of the IDP 
Decomposition 
Mathematically the digital halftone image is usually 
represented as a matrix of size H×V, whose 
elements j)b(i, correspond to the image pixels; i 
and j define the pixel position as a matrix row and 
column and b is the pixel brightness. The halftone 
image matrix [B(i,j)] is defined as: 
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The essence of the IDP decomposition for 8-bit 
grayscale images is presented as follows. First, the 
digital image is processed with two-dimensional 
(2D) Direct Orthogonal Transform (DOT) using a 
limited number of coefficients. The values of the 
coefficients, calculated in result of the transform, 
constitute the lowest pyramid level. The image is 
then restored with the Inverse Orthogonal 
Transform (IOT) using only the retained 
coefficients’ values. The first (coarse) 
approximation of the original image is obtained, 
which is then subtracted pixel by pixel from the 
original one. The difference image, which is of same 
size as the original, is divided into 4 sub-images and 
each is then processed again with the 2D DOT. The 
values of the so-calculated coefficients constitute 
the second pyramid layer. The processing continues 
in similar way with the next pyramid layers. The set 
of coefficients of the orthogonal transform, retained 
for every pyramid layer, can be different and define 
the restored image quality. The image 
decomposition stops when the needed quality for 
approximating the image is obtained – usually 
earlier than the last possible pyramid layer. The 
values of the coefficients obtained as a result of the 
orthogonal transform from all pyramid layers are 
then sorted in accordance with their spatial 
frequency, scanned sequentially, and losslessly 
compressed.  

The IDP decomposition used in practice, is 
usually “truncated”, i.e. it starts from some of the 
higher layers and for this, the discrete original image 
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is divided into blocks (sub-images), represented as 
matrices [B(2n)] of size m×m (m=2n). After that, 
each block is represented by an individual pyramid, 
whose elements are defined by the already described 
recursive calculations. The number р of the IDP 
layers is in the range 0 ≤ p≤ n-1. The case p = n-1 
corresponds to complete pyramidal decomposition 
of maximum number of layers, for which the image 
is restored without error (all decomposition 
components are used).   

In correspondence with the described principle, 
the matrix ]B[

0k  of one image block could be 
represented as a decomposition of (n+1) 
components: 

]E[]E~[]B~[]B[
n1p00 k

1n

1p
kkk +∑+=

−

=
−

                   (2) 

for  kp=1,2,..,4pK  and  p=0,1,...,n-1. 

Here kp is the number of the sub-matrices of size 
mp×mp (mp=2n-p) in the IDP layer р; the matrices 

]B~[
0k  and ]E~[

1pk −
 are the corresponding 

approximations of ]B[
0k  and ]E[

1pk −
; ]E[

nk  is the 

matrix, which represents the decomposition error in 
correspondence with Eq. (2), for the case, when 
only the first n components are used.  

The matrix ]E[
1pk −

 of the difference sub-block 

kp-1 in the IDP layer р is defined as:  

]E~[]E[]E[
2p2p1p kkk −−−

−= ,                              (3) 

for p = 2,3,..., n-1. In this case p = 1: 

]B~[]B[]E[
000 kkk −=                                     (4) 

The matrix ]E[
1pk −

 of the difference sub-block in 

the layer р is divided into 4pK sub-matrices ]E[
pk  

and for each is then calculated the corresponding 
approximating matrix ]E~[

pk . The submatrices 

]E~[
pk  for kp=1,2,...,4pK define the next 

decomposition component (p+1), represented by Eq. 
(2). It is necessary to calculate the new difference 
matrix for this and then perform the same operations 
again, following the already described order. 
 
 
3 Image Representation with NN-
Controlled IDP 
The new method for image representation is based 
on one modification of the IDP decomposition, in 

which the direct and inverse transforms in all layers 
are performed by using 3-layer neural networks with 
error back propagation (BPNN) [7]. A 3-layer 
BPNN structure of the kind m2 × n × m2 was chosen 
for this application, as shown in Fig. 1. The input 
layer has m2 elements, which correspond to the 
input vector components; the hidden layer has n 
elements for n < m2, and the output layer has m2 
elements, which correspond to the output vector 
components. The input m2-dimensional vector is 
obtained as a result of the transformation of the 
elements m (i, j) of each image block of size m × m 
into one-dimensional massif of length m2. 
 

1m

2m

2m

1m

2m

3m 3m

2m

1n

2n

nn

 
 
Fig. 1.  A 3-layer BPNN with nn < m2 neurons in the 
hidden layer and m2 neurons in the input and output 
layers 

In order to obtain higher efficiency, the processed 
image is represented by the sequence of m2-
dimensional vectors K21 X,...,X,X

rrr
 are then 

transformed into the n-dimensional corresponding                   
vectors, K21 h,...,h,h

rrr
. The components of the 

vectors kh
r

 for k=1,2,..K, correspond to the neurons 
in the hidden layer of the trained 3-layer BPNN. In 
the output NN layer, the vector kh

r
 is transformed 

back into the m2-dimensional output vector kY
r

, 

which approximates the input vector, kX
r

. The 
approximation error depends on the training 
algorithm and on the BPNN parameters. The 
training vectors, K21 X,...,X,X

rrr
 at the BPNN input 

for the decomposition layer p = 0 correspond to the 
starting image blocks. The algorithm of Levenberg-
Marquardt (LM) was chosen for training [8], which 
ensures good efficiency in cases when high 
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accuracy is not required - i.e., it is suitable for the 
presented approach.   

The parameters of the 3-layer BPNN define the 
relations between the inputs and the neurons in the 
hidden layer and between the neurons from the 
hidden and the output layers. These relations are 
represented by using weight matrices and vectors, 
which contain threshold coefficients and by 
functions for non-linear vector transforms. The 
relation between the input m2-dimensional vector 

kX
r

 and the corresponding n-dimensional vector kh
r

 
in the hidden BPNN layer for the IDP layer p = 0 is: 

 )bX]W([fh 1k1k

rrr
+=  for k =1,2,..K,             (5) 

 where, 1]W[  is the matrix of the weight coefficients 
of size m2 × n, which is used for the linear transform 
of the input vector kX

r
; 1b
r

 is the n-dimensional 
vector of the threshold coefficients in the hidden 
layer and f(x) is a linear activating sigmoid function 
defined by the relation: 

    )e1/(1)x(f x−+= .                                     (6) 

In result the network performance becomes 
partially non-linear and this dependence is stronger 
when x is outside the range [-1.5, +1.5].  

The relation between the n-dimensional vector 

kh
r

 of the hidden layer and the m2-dimensional 

BPNN vector kY
r

 from the IDP layer p = 0, which 

approximates kX
r

, is defined in accordance with Eq. 
(5) as follows: 

     )bh]W([fY 2k2k

rrr
+=  for k =1,2,..K              (7) 

where 2]W[  is a matrix of size n × m2 representing 
the weight coefficients used for the linear transform 
in the hidden layer of the vector kh

r
, and 2b

r
 is the 

m2-dimensional vector of the threshold coefficients 
for the output layer. Unlike the pixels in the halftone 
images, whose brightness is in the range ]255,0[ , 
the components of the input and output BPNN 
vectors are normalized in the range ]1,0[)k(y),k(x ii ∈  
for i=1, 2,.., m2. The components of the vector, 
which represents the neurons in the hidden layer 

]1,0[)k(h j ∈ , for j=1, 2,.., n are placed in the same 
range because they are defined by the activating 
function, ]1,0[)x(f ∈ . The normalization is 
necessary, because it enhances the BPNN efficiency 
[8]. 

The image representation with IDP-BPNN 
comprises two consecutive stages:  

1) BPNN training;  
2) Coding of the obtained output data.  
For the BPNN training in the IDP layer p = 0, the 

vectors kX
r

 are used as input and reference ones, 
which are compared to the corresponding output 
vectors. The comparison result is used to correct the 
weight and the threshold coefficients so as to obtain 
a minimum MSE (mean square error). The training 
is repeated until the MSE value for the output 
vectors becomes lower than some predefined 
threshold. 

The vectors obtained after dividing the 
difference block ]E[

1pk −
 (or sub-block) into 4pK 

sub-blocks and their transformation into 
corresponding vectors are used for the training of 
the 3-layer BPNN in the next IDP layers (p > 0). 
The BPNN training for each layer p > 0 is 
performed in the way already described for the layer 
p = 0.   

In the second stage, the vectors in the hidden 
BPNN layers for all decomposition layers are coded 
losslessly with entropy coding [6]. The block 
diagram of the pyramid decomposition for one 
block of size m×m with 3-layer BPNN for 
decomposition layers p = 0, 1, 2 and entropy 
coding/decoding is shown in Fig. 2.  

When the BPNN training is finished for each 
layer, p are defined for the corresponding output 
weight matrix [W]p and the threshold vector [b]p. 
The coded data, which are later transferred to the 
decoder, comprise the following information. 

• The vector of the threshold coefficients for the 
neurons in the output NN layer (common for all 
blocks in the layer p); 

• The matrix of the weight coefficients, which 
represents relations between the neurons in the 
hidden layer towards the output BPNN layer 
(common for all blocks in the layer p); 

• The vector of the neurons in the hidden BPNN 
layer, personal for each block in the layer p. 

In the decoder is performed the entropy decoding 
(ED) of the compressed data. After that the BPNN 
in the layer p is initialized setting the values of the 
threshold coefficients for the neurons in the output 
layer and of the weight coefficients for the neurons, 
connecting the hidden and the output layers.  

At the end of the decoding, the vector of neurons 
in the hidden BPNN layer, has each block 
transformed into the corresponding output vector. 
The so obtained output vectors are used for the 
restoration of the processed image. 
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4 IDP-BPNN Algorithm  
The IDP-BPNN algorithm for grayscale images 
comprises the steps, given below: 
Coding: 

Step 1. The input halftone image is represented 
as a matrix of size H×V, 8bpp; 

Step 2. The input image matrix is divided into K  
blocks of size m×m (m=2n). The value of m is 
selected so that to retain as much as possible the 
correlation between the block pixels (for big images 
of size 1024×1024 or larger, this block is usually 
16×16 or 32×32, and for smaller images it is 8×8); 

Step 3. The matrix of every block (sub-block) of 
p2 2/m  elements in the layer р is transformed into 

the input vector of size 1)2/m( p2 × . The so obtained 
K4p  input vectors build a matrix of 

size K4)2/m( pp2 × , which is used for the BPNN 
training and as a matrix of the reference vectors, 
which are then compared with the BPNN output 
vectors; 

Step 4. The matrix used for the BPNN training is 
normalized – transforming its range [0,255] into 
[0,1]; 

Step 5. The training function of the NN is 
defined; 

Step 6. The BPNN working function is set, i.e., 
the mse function; 

Step 7. The criterion for the end of the BPNN 
training is defined by setting the MSE threshold 
value or by setting the possible maximum number of 
training cycles. 
At the end of the training, the following information 
is saved in a special file:  

- The neurons of the hidden layer, which in 
general are different for every block (sub-block); 

- The threshold coefficients for the output layer; 
- The matrix of the weight coefficients between 

the hidden and the output BPNN layers. 
Step 8. The data, described in Step 7 is losslessly 

coded (entropy coding) and is saved in a special file, 
which contains the compressed data for each of the 
consecutive layers. 

Step 10. The decomposition stops when the 
module of the approximation error (Eq. 3) becomes 
smaller than the pre-defined threshold value, or 
when the highest possible (or set) layer is processed. 

Step 11. The coded data for all decomposition 
layers is gathered in a common file. 
Decoding: 

Step 1. The common file is loaded in the decoder; 
Step 2. The data, which corresponds to the 

consecutive layers, is separated; 

Step 3. For every decomposition layer p are 
decoded: the values of the neurons in the hidden 
layer for each block (sub-block), the threshold 
coefficients and the matrix of the weight 
coefficients for the corresponding output BPNN 
layer; 

Step 4. The components of the vector for each 
block (sub-block) in the output BPNN layer are 
restored;  

Step 5. The output BPNN vector is transformed 
into the block (sub-block) matrix; 

Step 6. The range [0, 1] of the matrix elements is 
transformed back into [0, 255]; 

Step 7. The matrices from all decomposition 
layers maxp,..,1,0p = are summed, and in result the 
restored image is obtained. 

For the image representation in accordance with 
the IDP-BPNN method was developed new format, 
which contains information about the 3 main BPNN 
components for every layer, as follows:  

• The vector of the values of the neurons in the 
hidden layer – personal for each block/sub-block;  

•  The vector of the threshold coefficients for the 
output layer – common for all blocks/sub-blocks;  

•  The matrix of the weight coefficients for the 
output layer - common for all blocks/sub-blocks.  
 
 
5  Experimental results 
The presented IDP-BPNN algorithm was simulated 
with MATLAB. The simulation (coding/decoding) 
was accomplished by following the already 
described steps. For the experiments with the IDP-
BPNN algorithm were used test images of size 
224×352, 8 bpp (i.e. 78 848 B). Some of the original 
test images are shown in Fig. 3 and the 
corresponding images obtained after the processing 
– in Fig. 4.  

In the initial IDP layer p = 0 the image was 
divided into K blocks of size 8×8 pixels, (K=1232). 
At the BPNN input for the layer p = 0 was passed 
the training matrix of the input vectors of size 
64×1232 = 78 848. In the hidden BPNN layer, the 
size of each input vector was reduced from 64 to 8.   

The restoration of the output vector in the 
decoder was performed using these 8 components, 
together with the vector of the threshold values and 
the matrix of the weight coefficients in the BPNN 
output layer. For the layer p = 0, the size of the data 
obtained was 83 456 B, i.e. - larger than that of the 
original image (78 848 B). As it was already pointed 
out, the data has high correlation and this ensures 
efficient compression with entropy coding. For 
example, the compressed data size for the same 
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layer (p=0) of the test image 
“Grayscale_forest010032.bmp” is 1510 B (the 
result is given in Table 1). Taking into account the 
size of the original image, the compression ratio 
CR=52,21 is calculated.  

The Peak Signal to Noise Ratio (PSNR) for the 
first test image Grayscale_forest010032.bmp for 
p=0 (Table 1) is PSNR = 23,45 dB. In the same 
table are given the compression ratios obtained with 
IDP-BPNN for other 18 test images of same size 
(224×352). It is easy to see that for the mean 
compression ratio CR = 52,13 is obtained 
PSNR>22,52 dB, i.e. the visual quality of the 
restored test images is suitable for various 
applications. Better image quality is obtained when 
the next pyramid layers are added. 
     In Table 2 are given the results for the group of 
18 test images of the kind “forest” after IDP-BPNN 
compression, implemented with MATLAB. The 
results obtained (Table 2) show that IDP-BPNN 
method performance for group of similar test 
images surpasses that for single images (Table 1). In 
the same table are given the results obtained using 
the JPEG 2000-based compression for the same test 
images. The results show that the CR and the 
PSNR are a little higher for IDP-BPNN than for 
JPEG 2000.  

Table 1. Results obtained for 18 test images from 
the group named “forest” after IDP-BPNN 
compression (78 848 Bytes for each original image). 
Image 

No. 
CR PSNR 

[dB] 
Bits per 

pixel (bpp) 
Compressed 
file size [B]

1 52.21 23.45 0.1532 1510 
2 52.42 23.05 0.1526 1504 
3 51.53 19.10 0.1552 1530 
4 50.54 17.14 0.1583 1560 
5 52.35 22.71 0.1528 1506 
6 52.35 19.72 0.1528 1506 
7 53.06 22.28 0.1508 1486 
8 52.49 23.40 0.1524 1502 
9 52.85 31.63 0.1514 1492 

10 51.80 21.55 0.1544 1522 
11 52.21 21.92 0.1532 1510 
12 52.21 22.28 0.1532 1510 
13 52.35 19.87 0.1528 1506 
14 51.73 19.50 0.1546 1524 
15 52.43 22.31 0.1526 1504 
16 52.08 23.67 0.1536 1514 
17 52.49 28.07 0.1524 1502 
18 51.20 23.63 0.1563 1540 

Mean 52.13 22.52 0.1535 1513 
 

Thus, the results obtained show higher 
compression ratio CR = 63,21 for a group of images 
than the mean compression ratio CR=52,13 obtained 
after individual processing of the same test images.  
     The NN architecture used for the experiments 
comprises 64 neurons in the input layer, 8 neurons 
in the hidden layer, and 64 neurons in the output 
layer for the zero decomposition level. The chosen 
ratio for the input vectors was correspondingly: 80% 
for Training; 10 % for Validation, and 10% for 
Testing. 

Table 2. Results obtained for a group of 18 test 
images of the group “forest” after IDP-BPNN 
compression (1419264 B for the whole group). 

Image Image 
size 

CR PSNR 
[dB] 

File size
 [B] 

 Original  6336×224 - - - 

IDP-BPNN 6336×224 63.21 21,35 22 452 

 JPEG2000 6336×224 63.00 21,02 22 528 

In Fig. 5 are shown the restored images of the 
test image “Boy” after compression using 5 
methods: IDP-BPNN, JPEG and JPEG 2000. 
MATLAB (im2jpeg, imwrite) and Lura Smart 
Compress (JPEG and JPEG 2000) were used for 
these experiments.  

The results obtained for several test images are 
given in Table 3.  

In Fig. 6 are shown the results (restored images 
and enlarged parts) for the test image “Boy” after 
compression with JPEG 2000 and IDP-BPNN. The 
conditions in both cases are similar: CR = 60 and 
PSNR = 29 dB. It is easy to notice that for same 
compression and PSNR the image processed with 
IDP-BPNN is not as blurred as that, processed with 
JPEG 2000, i.e. the quality evaluation with PSNR in 
this case does not correspond to human perception.  

The IDP-BPNN method is suitable for coding of 
uncompressed images represented in RGB sampling 
format 4:4:4. In this case, it is necessary to 
transform the image first into the YCrCb sampling 
format 4:2:0 and then apply the IDP-BPNN on each 
component individually. The decoding is performed 
in reverse order. The experiments with such images 
confirmed the efficiency of the method.  

In Fig. 7 are shown the results for the color test 
image “Lena” (512×512 pixels, 24 bpp) – the 
restored images obtained for same compression 
(CR>60) with the IDP-BPNN method and with 
JPEG.  

The experiments with high-resolution (satellite) 
images are very promising because they give high 
compression ratio for retained visual quality (PSNR 
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higher than 30 dB) after decoding. For example, an 
image of size 8192×8192 pixels was restored with 
retained visual quality after CR > 120 [16], while 
equivalent visual quality was obtained for CR<100 
with JPEG 2000. 
 
 
6 Conclusion 
In this paper is presented one new approach for non-
linear image representation based on NN-controlled 
pyramidal image decomposition. The method is 
similar to the way in which humans recognize 
images – starting with a coarse approximation and 
continuing with successively closer approximations 
until the needed result is obtained. Another analogy 
is provided by the training procedure – just like 
humans, the method requires some training before 
recognition – the better the training, the better the 
recognition results.  

The method is asymmetric (the coder is more 
complicated than the decoder) and this determines it 
mostly in application areas, which do not require 
real time processing – i.e. applications, for which 
the training time is not crucial. 

The experimental results show that for the same 
compression, the image approximations obtained 
using the IDP-BPNN method have better visual 
quality than the compression standard JPEG 2000. 
The method could be successfully applied for the 
efficient representation of images and for layered 
image search in large databases. 

The future development of the method is aimed at 
the preliminary definition of the basic NN 
parameters (i.e. the training to be done in advance). 
This is to be accomplished for some large image 
classes (medical images, texts, natural pictures, 
faces, fingerprints, etc.). This will solve the 
difficulties due to the main disadvantage of the IDP-
BPNN method – the need for long training time and 
will permit real-time applications. 
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            Fig. 2. Block diagram of the 2-layer inverse pyramidal image decomposition with 3-layer BPNN.  
            Here [b]p – the vector of the threshold coefficients in the output layer for p=0,1,2; [W]p – the matrix of   
            the weight coefficients between the hidden and the output BPNN layer for p=0,1,2. 

 
 

 
Fig. 3. The original test images 
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Fig.4. The restored images after IDP-BPNN compression whit mean compression ratio CR = 52,13 

 

 

                               
                           Original                        IDP-BPNN: p=0;CR=60.4;PSNR=29    JPEG (im2jpeg):CR=29.6;PSNR=28.89 

                                                         
      JPEG (imwrite): CR=28.4 PSNR=29.34  LURA JPEG: CR=28.4 PSNR=29.33  LURA JPEG2000: CR=50 PSNR=29.15 

Fig. 5. The restored image “BOY”, after compression with 5 methods 
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                                                             a      b 

    
c                                               d 

                    Fig. 6. The test image “Boy” after processing with JPEG 2000 (a,b) and IDP-BPNN(c,d) 
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             a. Original test image “Lena”                    b. IDP - BPNN                                   c. JPEG  
                512 x 512 pixels, 24 bpp         CR = 65,22; PSNR = 29.90 dB       CR = 66,49;  PSNR = 28.97 dB) 
                               Fig. 7 Results for the test image Lena_color.bmp (512×512 pixels, 24 bpp)                

 

    

 Table 3. Results for several test images after compression with different methods performed with 
MATLAB and Lura Smart Compress. 

MATLAB LuraWave SmartCompress  
AIDP-
BPNN 

JPEG 
(im2jpeg) 

JPEG 
(imwrite) 

JPEG 2000 Lura JPEG Lura 
JPEG2000 

 
Image 

CR PSNR CR PSNR CR PSNR CR PSNR CR PSNR CR PSNR
Boy 60.40 29.05 29.6 28.99  28.47  29.34 25.23 28.97 28.48 29.33 50.04 29.15 
Fruit 60.29 32.89 30.53 33.01 31.67  32.78 32.64 32.69 31.67 32.78 60.00 33.11 
Vase 60.18 26.83 37.66 26.72 35.18  27.01 35.75 27.20 35.18 27.00 70.04 27.07 

Clown 60.01 31.81 30.43 31.88 31.36  31.88 31.71 31.47 31.37 31.88 60.03 31.87 
Peppers 60.23 30.94 37.63 31.17 36.80  31.17 38.39 30.70 36.81 31.16 80.02 30.85 
Text1 60.23 18.69 19.09 19.00 20.12  18.89 17.86 18.35 22.37 18.23 30.02 18.21 
Lena  59.57 29.15 30.48 29.53 30.75  29.53 32.10 29.20 30.75 29.52 60.03 29.31 
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