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Abstract: - Based on autoregression(AR) model in phase domain, this paper proposes a novel impulsive 
interference(IMI) detection algorithm for over-the-horizon radar. This is achieved by regarding IMI phase 
spectrum as complex sinusoid signal and modeling it by AR model. Then we can take the full advantage of the 
sinusoid signal estimation algorithm. After getting zeros of AR model transfer function, the amount of the 
contained sinusoid signals and their frequency parameters can be estimated. The angular value of zero is 
exactly corresponding to IMI position of interest. Details and improvements are also discussed in this paper. 
This algorithm's operational performance is evaluated using experimental data sets collected from a high 
frequency surface wave (HFSW) OTHR system, and is proved to be suitable for most types of IMIs.  
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1 Introduction 
Over-the-horizon radar regularly operates in high 
frequency(HF) band(3-30MHz) and utilizes linear 
frequency modulated continuous 
waveform(FMCW) processing. OTHR has the 
attractive ability of radiation propagation beyond the 
line-of-sight, either by ground-waves diffracted 
around the earth curvature or by sky-waves 
refracted by the ionosphere[1]. The former 
propagation, referred to as ground-wave or surface-
wave OTHR, can see over the horizon of 200-
300km, whereas the latter see up to 1000-3000km. 
Both are widely used for ocean state remote sensing, 
marine ships and aircrafts detection in both military 
and civilian applications[2-6]. 

HF OTHR works in a very crowded 
electromagnetic environment mainly due to the 
rapid development of human short-wave 
communication and other electromagnetic 
applications. HF band is now so crowded that 
unoccupied clean frequency channel with sufficient 
bandwidth(50-100kHz) is extremely difficult to 
find[7,8].  

Meanwhile, OTHR works in a very complicated 
environment which brings significant impact on 
radar sensitivity, mainly resulted from both strong 
clutter and impulsive interference (IMI). Firstly, the 
echo signal is mixed with strong ocean and ground 

clutter. Ground clutter, mainly caused by 
backscattering from ground surfaces, exhibits 
regularly as narrow-band signal with Doppler 
frequency close to zero-Herz, which can be modeled 
as constant in temporal echo. The ocean clutter is 
usually modeled as two Bragg peaks for first-order 
scattering and surrounding continuum for high-order 
scattering, where both scatterings are the selective 
reaction of electromagnetic wave and ocean 
currency wave[9]. The Bragg peaks usually have 
amplitudes of two orders of magnitude higher than 
those of the surrounding continuum[8]. Secondly, 
OTHR operations regularly experience shortfalls in 
performance particularly in the presence of external 
IMIs. Typical external IMI may be either natural or 
man-make sources, including the echo of meteor 
trail from the universe [10][11] [12], the lightning in 
the air[13], the shortwave radio communication 
electromagnetic wave interference[8]. IMIs are 
usually 20-40dB stronger than the thermal noise of 
receiver[14]. Each IMI deposits high-amplitude 
broadband noise energy in the Doppler spectrum. 
IMIs typically mask the entire range-Doppler search 
space and is characterized by wider bandwidth, 
short duration and complicated spectrum structures. 
For example, the physics of lightning IMI indicates 
total impulse durations lasting 200 to 400ms. 
Therefore, the continuous coherent processing 
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interval(CPI) of 2 to 4 seconds typically used for 
aircraft detection are quite vulnerable to IMIs. This 
may reduce the radar sensitivity on the order of 
10dB, making it unacceptable to track small 
aircraft[13]. 

Meteor trail echo is a kind of backscatter signal 
that is transmitted from the transmitter and reflected 
by the meteor trail body. Its duration is proportional 
to the mass of the meteor body, typically hundreds 
of milliseconds to several seconds, for example 
between 0.188s to 2.5935s[10]. Lightning impulse 
rates of one per second to one per 5 seconds are 
typical during active storms, and the physics of 
lightning indicates total impulse durations lasting 
200 to 400ms[13]. Short-wave radio communication, 
such as broadcast station and communication station, 
is a kind of man-made interference source. The 
radio station has the repetition period asynchronous 
with that of OTHR. Short-wave communication 
signal is normally single-side amplitude modulated. 
When through the receiver, its equivalent bandwidth 
is equal to that of the receiver[15]. 
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Fig.1 Block Diagram of Typical IMI Detection and 

Suppression 
While the problem of IMI effects on OTHR 

performance have been noted for many years, not 
until recently could a set of detection and 
suppression algorithms using advanced digital 
signal processing algorithms be proposed and 
implemented in radar operations depending on 
hardware with high computational performance. 
Figure 1 illustrates a block diagram of typical IMI 
detection and suppression processing, where a key 
part is the IMI detection. “Clutter suppression” first 
suppresses clutter in the original temporal data from  
adaptive digital beamforming(ADBF) and match 
filter, corresponding to a certain range bin; “IMI 
Detection unit” detects and estimates the IMI 
position; “Corrupt Data Discarding” deletes the 
corrupt data segment where IMI exists; 
“Restoration” restores the corrupt segment by using 
linear prediction and estimating data from the 
neighboring good data samples for the purpose of  
keeping the continuity and coherency of data; then 
the data is processed by “Fd-FFT” to extract the 
Doppler information. From the viewpoint of 

interference suppression, the IMI Detection is a key 
step to the next processing. 

Some proposals for IMI detection and 
suppression has been reported[7,8,11-13,16-21]. 
Fabrizio focuses on spatial processing, and proposes 
a set of SAP and STAP algorithms[7,8,17-19]. 
Huang[20] and Xin[21] adopt wavelet singular 
detection method and amplitude threshold method 
respectively for IMI detection. In these methods, the 
processing depends greatly on the costly clutter 
suppression, or must selectively utilize the 
secondary data without clutter as in [7,8]. 

In [4] Barnum directly masked the clutter 
Doppler bins to zero, and took IFFT to transform 
back to time domain. After that, the IMI can be 
detected by means of RMS threshold updated at 
every sample within CPI. Barnum’s algorithm is 
simple to implement. However, it uses an ideal 
high-pass filter without transitional region to mask 
the Doppler bins, leading to long temporal trail with 
higher amplitude. As a result, if one IMI has 
significantly higher amplitude than other IMI-s, the 
long trail from this dominant IMI peak will extend 
to almost the whole CPI, submerging the peaks for 
other IMI-s. This would make the IMI-s with lower 
amplitudes effectively undetectable. This effect is 
illustrated by Fig.2, where a dominant IMI is at 110-
th sweep and two minor at 25-th and 90-th 
respectively. Two minor IMIs are almost invisible in 
the figure, and undetectable through threshold 
examination. 

 
Fig.2 Processed Result by Barnum’s Method 

This paper proposes a novel IMI detection 
algorithm based on phase-domain AR model while. 
It is known that the AR model is usually used for 
temporal signal modeling, where the basis is 
extended to phase-domain in this paper. This paper 
firstly analyzes the characteristics of IMI Doppler 
spectrum, and models its phase spectrum as 
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complex sinusoid signal. Based on this 
consideration, every IMI's phase spectrum can be 
modeled by AR model. The zeros of AR model 
transfer function exclusively capture the information 
on the IMI amount and position. This proposed 
algorithm need a pre-processing including DFT and 
clutter suppression. Its operational performance is 
evaluated using experimental data from a HFSW 
OTHR system, indicating that this proposed 
algorithm works efficiently and is suitable for most 
types of IMIs. In this paper, we do not consider 
spatial processing and restrict the attention to 
temporal only, that is to say, the data objects are the 
output of beamforming and denoted as a function of 
time. 

This paper experimentally extends the 
application of AR modeling from time domain to 
phase domain, from targets signals estimation to 
interference. This also finds a way of estimating 
IMIs by means of sinusoid signal estimation, that is, 
any sinusoid estimation method for conventional 
target signal can also theoretically be utilized here 
for IMI, such as MUSIC or ESPRIT. 

This paper is organized as follows. The signal 
model is constructed in Section 2, after which the 
proposed detection algorithm steps are described in 
Section 3. The experimental results are shown in 
Section 4. Conclusions are given in Section 5. 
 
 
2 Signal Model 
2.1 Radar Echo Model 
Suppose that the radar transmits a burst of P 
coherent pulses in a CPI. OTHR has an antenna 
array with N elements corresponding to N reception 
channels. For every channel, the received signal is 
processed by amplification, filtering, A/D sampling, 
conversion to baseband and pulse compression 
respectively. The antenna beam is steered to a few 
directions covering the surveillance area. In one 
spatial beam, all data from N channels are combined 
to produce a complex range-sweep matrix with P-
row and L-column. L is the number of range bins 
and P is the number of coherent pulses or range 
sweeps in a CPI. Every column has P samples, 
corresponding to a certain range. The FFT (Fd-FFT), 
or coherent integration, is then performed on every 
column and converts the range-sweep matrix into 
range-Doppler one. For every matrix element, a 
threshold decision is carried out. If the detection is 
declared in a particular range-Doppler cell, the 
target is implicitly assigned a direction that 
coincides with the steer direction of this beam. 

A column of P scalar echo samples at a certain 
azimuth-range cell in one CPI can be modeled as 

( ) ( ) ( ) ( ) (
0, , 1

r t s t c t i t w t
t P
= + + +

= −L

)
               (1) 

where is the target signal of interest,  is the 
ocean and ground clutter, is the external IMI,  

is the internal thermal noise assumed as white 
and weak. An ideal target of constant reflectivity 
and radial velocity over the CPI is modeled as a 
complex sinusoid signal: 

( )s t ( )c t
( )i t

( )w t

( ) dj t
ss t A e ω=                         (2) 

where 2d dfω π=  is the Doppler frequency of 
target. 

The dominant spectral components of OTHR 
ocean clutter is modeled as two complex sinusoid 
signals, whereas the high-order continuum is 
ignored[8]. The ground clutter has a very strong 
zero-Herz component and can be modeled as 
complex number. Therefore, the clutter component  
is modeled as 

( ) ( ) ( )c B c Bj t j t
a rc t c e c e cω ω ω ω+ −

g= + +

B

        (3) 
where 2B fω π=  is the Bragg frequency, 

2c cfω π= is the Doppler frequency corresponding 
to the ocean currency velocity, and  are the 
advance and recede first-order ocean clutter 
amplitudes respectively,  

ac rc

gc is the ground clutter  
amplitude. Because the ocean currency radial 
velocity is low and changes slowly along time, the 
Doppler frequency  cω  is very small compared with 
Bragg frequency Bω , and regarded as approximately 
constant over the whole CPI. 

The external IMI is usually regarded as an 
impulse due to the short duration compared with 
CPI. As the main concern of this paper is to 
determine the position of the external interference, it 
is modeled as a Dirac function ( 0t tδ )− with 

amplitude , and position parameter that is 
exactly the aim of interest of this algorithm.  

iA 0t

So the echo sample in (1) is rewritten as 
( ) ( ) ( )

( ) ( )0

0, , 1

c B c B

d

j t j t
a r

j t
s i

r t c e c e c

A e A t t w t
t P

ω ω ω ω

ω δ

+ −
g= + +

+ + − +

= −L

  (4) 

2.2 Pseudo-target and Pseudo-noise 
The solution to IMI detection problem in (4) is to 
identify the existence of and estimate its ( )δ
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parameter . Let us look at the spectrum of the echo 
in (4), which can be expressed as: 

0t

( )
( ) ( ) ( )

( ) ( )0

a c B r c

j t
g d i

R c c

c Ae Wω

Bω δ ω ω ω δ ω ω ω

δ ω δ ω ω ω

= − − + − +

− + ++ +
(5) 

where ( ) (a c B r cc c )Bδ ω ω ω δ ω ω ω− − + − +

( )gc

is the 

spectrum of ocean clutter, δ ω

( )d

spectrum of 

ground clutter, δ ω ω−
0j t

spectrum of target 

signal, iAe ω spectrum of external IMI, ( )W ω  
spectrum of noise which is very weak and 
approximately close to constant. 

Make the variable substitution as   
,      t tω ω′ ′→ →  

So, (5) can be expressed as    
( ) ( ) ( )

( ) ( ) ( )0

a c B r c

j t
g d i

R t c

c t

t t t c t t t

t t Ae W tω

δ δ

δ δ ′ ′

′ ′ ′ ′ ′ ′= − − + − +

′ ′ ′+ + − + +

′
  (6) 

The equation (5) is entirely identical to (6) except 
for the variable symbol representing. Signal in (6) 
may be regarded as in a new “time domain”. 
Components with representation and the last 

component in (6) are all viewed as noise in 
the “time domain”, referred to as  pseudo-noise. The 
complex sinusoid signal 

( )δ
( )W t

0j t
iAe ω′ ′ is the “target signal 

of interest” or pseudo-target with “frequency” 0ω′ . 
This sinusoid can be modeled by AR modeling 
method, and its detection and parameter estimation 
is a typical temporal sinusoid frequency estimation 
problem. When there are more IMIs than one, (6) 
can be generalized to have sum of complex sinusoid 
components with different “frequencies” kj n

ikA e ω′ ′

k∑
kω′ . The sinusoid frequency estimation algorithm 

can still work perfectly. 
Define the pseudo-signal-to-noise-ratio as 

SSNR
N
′

′ =
′

 

where is the power of pseudo-target or IMI,  
is the power of other components in (6). When 

the is high enough, the frequency estimation 
algorithm can separate multiple sinusoid signal and 
estimate their corresponding frequency that declares 
the existence of IMI. 

S ′

R
N ′

SN ′

In fact, the frequency estimation algorithm in the 
new “time domain” is applied in the phase domain. 
The estimated “frequency” or pseudo-frequency is 
just on the original time domain. The pseudo-
frequency just indicates the temporal position of 
IMIs. That is to say, the “frequency spectrum” of 

the frequency spectrum is just the time waveform. 
This fact can be comprehended through space 
transformation theory. Fourier transformation (FT) 
performs a kind of space transformation from one 
space to another. Generalized, the source space and 
the target one can be any linear space, either the 
time or the frequency space. So FT on the frequency 
space is reasonable and feasible, where the FT result 
is the time-reversed replica of original time 
waveform.  

 
Fig.3  Transformation Relation of DFT and IDFT 

The derivation can be briefly performed only on 
DFT. Fig.2 can explain the transformation relation, 
where we ignore the influence of factor N or 1/N. 
According to classical DFT:  

( ) ( )
1

0

1 N
nk

N
n

x n X k W
N

−
−

=

= ∑       

( )
1

0
( )

N
nk

N
n

X k x n W
−

=

=∑  

2 /j N
nW e π−=  

Make the variable substitution as n m= − , and 
we take 

( ) ( ) ( )
1

0

1 N
mk

N
n

x m x n X k W
N

−

=

= − = ∑  

So, applying DFT on the frequency spectrum 
samples ( )X k  can get ( )x m

)
, namely the time-

reversed replica of (x n . Consequently, when we 
use traditional temporal frequency estimation 
algorithms on frequency spectrum samples ( )X k , 
we must make an extra time-reversion operation on 
the estimated pseudo-frequency. 
 
 
2.3 AR Model and Frequency Estimation 
The AR model fitting and frequency estimation for 
IMI method proposed in this paper is derived from 
the research work of Khan[9].  

It is noted that, at high signal-to-noise ratio 
(SNR), linear prediction(LP), or autoregression 
(AR) based methods can be effectively utilized to 
estimate the frequencies of sinusoid signals. 
According to the principle of AR parametric model, 
the value ( )x k% at any time instance k can be 
predicted as a weighted sum of L known values 
prior to k: 
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( ) ( )
1

L

i
i

x k x k i
=

= − − ⋅∑% a           (7) 

where, L is the order of the prediction filter, and 
{ } 1,2,i i
a

= LL
are the prediction coefficients. 

The prediction-error filter (PEF) calculates the 
difference between the predicted signal value and 
the actual signal value. If the signal fits this 
parametric model, then the output of the PEF is 
close to zero. When these prediction coefficients 
{ } 1,2,i i
a

= LL
 are used in a PEF, the transfer function 

can be written as : 

 ( )
1

1
L

i
i

i
H z a z−

=

= +∑                    (8) 

According to the transfer function, it is known 
that this PEF is an all-zero filter. For a signal mixed 
with M complex sinusoids, the transfer function has 
M zeros located on the unit circle at the angular 
positions corresponding to the frequencies of these 
M sinusoids. If the transfer function has L zeros, 
where L>M, then the L-M extraneous zeros are 
uniformly distributed inside of the unit circle.  

To effectively extract the sinusoid at every 
position and provide an estimation with higher 
confidence level, the coefficients of the PEF must 
be estimated using very short data segments. A 
famous AR modeling method is implemented based 
on the forward-backward linear prediction (FBLP) 
method[16]. This is a robust technique which 
estimate the PEF coefficients by minimizing the 
prediction errors both in the forward and backward 
directions. For a signal vector x(k), k=1,2,…N, 
and a prediction order L, the prediction coefficients 
may be estimated by solving the following system 
of linear equation:    

Aa b= −                            (9) 
( ) ( ) ( )

( ) ( ) ( )

( ) ( ) (
( ) ( ) ( )

( ) ( ) (

* * *

* * *

1
1 2

1 2
2 3

1 2

x L x L x
x L x L x

)

)

1

1
A x N x N x N L

x x x

x N L x N L x N

−⎡ ⎤
⎢ ⎥+⎢
⎢ ⎥
⎢ ⎥

= − − −⎢ ⎥
⎢ ⎥+
⎢ ⎥
⎢ ⎥
⎢ ⎥− + − +⎣ ⎦

L

L

M M M

L

L

M M M

L

[

L

M

M

⎥

                                  ]1 2, , T
La a a a= L  

( ) ( ) ( ) ( ) ( )* *1 , 2 , , , 1 , ,
T

b x L x L x N x x N L⎡= + + −⎣ L L ⎤⎦

P

 
 

3 Detection Algorithm based on AR 
model in phase domain 
3.1 Pseudo-Target Estimation by AR Model  

Besides DFT, we can use other frequency 
estimation methods for the purpose of target 
detection. Here, the AR modeling is an optional one. 
Its PEF properties can be used to detect the pseudo-
target or IMI: A short frame of data in new “time 
domain” is applied for the AR modeling; then the 
number of zeros of the PEF on the unit circle 
determines the number of sinusoids or IMIs in the 
signal, and the angular φ of each zero determines 
each IMI position t, where the map relation is  

[0,2 ) [0, )tϕ π∈ ∈a             (10) 
According to analysis on DFT in Fig.3, the 

pseudo-frequency must be time-reversed to original 
time domain. Or we can perform an equivalent 
conjugation operation on the zeros of equation (8). 
 
 
3.2 Estimations on PEF Coefficients 
Equation (9) is generally over-determined and a 
typical least-squared (LS) solution is suitable. This 
is the first and immediate solution to PEF 
coefficients estimation. 

( ) 1H Ha A A A
−

b= − ⋅                    (11) 
Alternatively, the coefficients can be estimated 

iteratively in an adaptive mode. Based on the 
scheme in [9], this paper utilizes an adaptive filter 
scheme whose block diagram is shown in Fig.1. The 
input signal into adaptive filter is the data samples 
in Doppler domain, which is quite different from 
that in [9]. The iterative update was implemented 
using the SPNLMS [23], which is derived from the 
famous LMS algorithm[24]. The filter coefficients 
are updated for each input sample, according to the 
following: 

( ) ( ) ( ) ( )
( ) ( ) 2

2
1

1

e k X k
A k A k

L k

μ

σ

⋅ ⋅
+ = +

+ ⋅ ⎡ ⎤⎣ ⎦
        (13) 

( ) ( ) ( ) ( )2 2
1 1k x k kσ α α σ= ⋅ + − ⋅ −

2
⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦  

( ) ( ) ( ) ( )1 2, ,
T

LA k a k a k a k= ⎡ ⎤⎣ ⎦L  

( ) ( ) ( ) ( ), 1 ,
T

X k x k x k x k L= − −⎡ ⎤⎣ ⎦L  

0 1,   0 1μ α< < <     
Its adaptation performance is controlled by the 

convergence parameter μ and the “forgetting” factor 
α. The former must be matched to the signal 
statistics: too large will lead to slow convergence, 
whereas too small may lead to significant lagging 
behind the rapid changing signal statistics. The 
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factor α is participating in the exponentially 
weighted sum of the past values of x(k), and their 
effect becomes negligible after an interval of about 
1/α  samples.  

These two scheme of estimation on coefficients 
are both tested by sets of experimental data and 
illustrated in the following section. 

 
Fig.4 Block Diagram of Adaptive Iteration for 

Coefficients Estimation 
 
 
3.3 Clutter Suppression 
Unfortunately, in practical operations, the power N' 
is regularly higher than S' due to the energy of 
clutter far higher than that of IMI, which causes the  
SNR' lower and AR modeling fail. An intuitive 
solution is to suppress clutter prior to the AR 
modeling. 

Typical clutter suppression algorithms with 
perfect performance are usually characterized by 
high computational cost. For example, the iteration-
cancellation method is described in [22]. Each short-
time complex Doppler spectrum (at each range and 
azimuth) is operated upon separately, and then the 
clutter cancellation proceeds by iterations. At each 
iteration, the largest remaining Doppler peak 
(usually clutter) is modeled as a sinusoid(actually a 
complex exponential)and subtracted. Another 
method based on generalized MTI filter is described 
in [21], where the MTI is based on the subspace 
projection and filtering. The method with 
generalized MTI has a disadvantage of eigen-
decomposition on large-size covariance matrix. 

By virtue of clutter characteristics described in 
(3), Barnum proposes an extremely simple clutter 
suppression method[13]. The Doppler bins ranging 
are directly masked or set to zero for the purpose of 
filtering out dominant clutter energy, that is, the 
ground clutter and the first-order ocean clutter.   

Three schemes of clutter suppression are tested 
and compared in this paper. Although Barnum's 
simple masking may cause long temporal trail as 
analyzed in Section 1, experiments shows that this 
shortage brings little impact on the detection results. 
 
3.4 Zeros Clustering 
All zeros are illustrated in the zero-pole map, where 
some groups will be clustered obviously and 
compactly on the unit circle as shown in the 
following experimental result. Cluster center will 
give a proper mean estimation among these closely 

surrounding zeros. The well-known cluster 
algorithms can be used to estimate the cluster center 
such as K-mean and ISODATA[25]. The former is 
modified a little and utilized in this paper for zeros 
clustering. Its steps are described briefly as follow: 
1) All zeros with amplitude before 1.1 and below 
0.8 is discarded 
2) Initially, select the first zero into the set , and 
other zeros stayed in the un-clustered set  

1C

0C
3) Select one zero z from , calculate the 
minimum distance  

0C

( )
0

0
min ,E kk
z C

d D z C
>
∈

=  

where ( ),ED z C

kC

0C

k

0

 is the Euclidian distance from z 

to center of . If , then z will be moved 
from into a new set  as its first 
element, or z will be moved into its nearest cluster 

thd d>
,NC N >

4) Continue 3) until  is empty. 0C
5) Cluster with element amount less than η will be 
discarded as a false cluster. 
6) Amount of remained cluster indicates the amount 
of potential IMIs, and the cluster centers are the IMI 
positions. 

Here, the threshold  is a key factor which will 
significantly influence the clustered amount and 
center. There is no other a prior information for it, 
and we can only uses experimental statistics value. 
The statistics distribution will be illustrated in the 
following experimental results section. 

thd

 
3.5 Algorithm Steps 
According to the above analysis, the proposed 
algorithm step is described as: 
1) Perform the DFT or FFT on the echo r(t) in (1); 
2) Clutter Suppression; 
3) Extract a frame of N samples from the frequency 
spectrum and apply them to (11) or (12) to get the 
AR coefficients { } 1,2,i i L

a
= L

 

4) Fill the AR coefficients to the transfer function of 
the PEF and calculate its zeros according to (8) 
5) Move to the next starting position of frame and 
go back to step 3) until the frame ending position is 
exceeding over the last sample 
6) Plot all zeros derived from step 4) in the zero-
pole map, and the clustering zeros in the unit circle 
indicate an IMI and the angular position is mapped 
back to temporal sampling position. 
 
3.6 Improvements 
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A number of experimental data set shows that 
through this proposed algorithm, there is always a 
false zero at the last sample position as shown in 
next section. Deep analysis on the algorithm 
derivation indicates that it is arising due to the 
discontinuity on the boundary. Specifically, when 
we perform the DFT or FFT on the temporal data 
segment of P samples, we implicitly impose a 
periodic expanding on this segment. The 
discontinuity at the boundary between one segment 
and the next one is almost inevitable. This 
discontinuity leads to the unexpected false zero.  
To solve this problem, we propose a method of 
symmetrical periodic expanding before DFT 

       ( ) ( )
( )

,0 1
, 2

R P
R

1R P P
ω ω

ω
ω ω

< < −⎧⎪= ⎨ − < <⎪⎩ −
 

Correspondingly, the mapping relation (10) will be 
[0,2 ) [0,2 )t Pϕ π∈ ∈a  

After this improvement, there will exist two set 
of symmetrical zeros on both side of real axis of unit 
circle. But the unexpected false zero has 
disappeared. 
 
 
4  Experimental  Results 
4.1 Data Collection 
The algorithm described above is tested using 
experimental data collected from a real bistatic HF 
OTHR system in China. The receiving system is 
based on ULA of vertical monopole antenna 
elements. The isolation between transmit and 
receive sites permits bistatic operation with a linear 
FMCW. Experimental data were collected in a 
research for IMI suppression on OTHR during 
which the interference type was unknown and 
possibly arose due to a multiplicity of  man-made 
and natural sources. Total over hundred groups of 
data are collected, from which nine groups are 
selected for research on IMI suppression based on 
this proposed algorithm. Each CPI consists of 
P=256 linear FMCW pulses or sweeps with center 
frequency determined in real-time by the frequency 
management system. 
 
4.2 Zero-pole Maps Results 

Four groups of temporal echo samples 
corresponding to four azimuth-range cells are 
participating in the experimental verification. Fig.5 - 
Fig.8 illustrate their processed results by means of 
zero-pole maps. The first three tests use LS solution 
(11) with N = 20 and L = 6 for AR model 
coefficients estimation, but with different clutter 
suppression method. The fourth group uses adaptive 

scheme in Fig.4 for AR model coefficients 
estimation.  

In all four figures, there are zeros clusters 
obviously located on the unit circle, and other zeros 
are distributed randomly inside the unit circle. 
According to the above analysis, these obvious 
clusters may potentially correspond to IMIs.  

Fig.5 shows the zero-pole map for the first group 
of data. In its processing, the simple clutter masking 
to zero-value as in [13] is adopted. Fig.5 illustrates 
obviously three group of clustered zeros located on 
the unit circle, at angular of about , and  
respectively. These three positions correspond to 
three potential IMI positions. For the purpose of 
verification on estimated positions, we view with 
the naked eye on the temporal waveform. It is 
concluded that the first two positions are exactly 
true estimations, but the last one at  is a false one.  

030

00

0160 00

 
Fig.5 Zero-pole Map for 1st Group Data 

 
Fig.6 Zero-pole Map for 2nd Group Data 

Fig.6 shows the zero-pole map for the second 
group of data. The iterative cancellation in [22] is 
adopted here. Fig.3 also illustrates obviously four 
group of clustered zeros located on the unit circle, at 
angular of about , , and  
respectively. These first three are perfect 
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estimations with high confidence level. But last one 
at  is also a false one.  00

Fig.7 is corresponding to the third group, and 
uses the general MTI for clutter suppression as in 
[21]. It also has a false estimation at 0o as in Fig.5 
and Fig.6.  Here, Fig.7 illustrates three reliable 
estimations for IMI positions. From results in Fig.5 - 
Fig.7, it is obvious that the proposed algorithm can 
work perfectly with simple and complicated clutter 
suppression, but Fig.5 has a lower computational 
cost and consequently is preferred. 

 
Fig.7 Zero-pole Map for 3rd Group Data 

 
Fig.8 Zero-pole Map for 2nd Group Data 

Fig.8 is for the 4th group. It uses the simple 
clutter masking as in [13] and the adaptive iterative 
scheme for coefficients estimation as shown in 
Fig.4. It also has false estimation at 0o $ and should 
be discarded manually. From comparison between 
Fig.5 and Fig.8, both LS and adaptive scheme has 
perfect performance on parameter estimation.  

 
4.3 Angular Mapping into Temporal Position 

For the purpose of identify the position of IMIs 
as a function of temporal position rather than 
angular, the angular value of zero is calculated and 
mapped into temporal sample position or sweep 
according to (10). Fig.9 shows the temporal position 

map corresponding to zeros in Fig.5. All zeros with 
amplitude less than 0.9 is regarded as non-IMI and 
discarded. From this figure, zeros at 

and are corresponding to temporal of 25-th 
and 110-th sweep. Zero at corresponding to 1-th 
or 255-th sweep, namely the boundary, is the false 
one. 

030 0160
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Fig.9 Temporal Position of Estimated IMIs, for 1st 

Group Data 
 

4.4 False Cluster Rejection 
Through many groups of other experimental 

data, it is demonstrated that there is always a cluster 
of zeros centered at  position. According to the 
analysis on 3.6, these are all false IMIs, arising from 
the discontinuity of boundary when processing 
DFT. All false estimations at 0o should be discarded 
manually. But when a true IMI located near , it is 
hard to discriminate true or false. To solve this 
problem, Section 3.6 proposes a solution of 
symmetrical periodic expanding, through which 
these 1st group data are processed and shown in 
Fig.10. The false estimation at 0o has been entirely 
discarded automatically. It still uses N = 20 and L = 
6 for AR model.  

00

00
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Fig.10 Zero-pole map for symmetrical periodic 
expanding 1st group data 

 
 
4.5 Impact from PEF Order 
To LS fitting in (11), we must select a proper PEF 
order. If the order is small than the true amount of 
IMIs, at most  L/2 clusters will be illustrated in 
zero-pole map. If the order is too large, it will result 
in extra unexpected zeros close to unit circle 
boundary. This phenomenon is demonstrated in 
Fig.5, Fig.10 and Fig.11, where these three has 
different order L for same 1st group data. In Fig.10, 
the order is 4, and consequently there is obviously 
two clutters. In Fig.11, the order is 10. It not only 
has shown a same cluster positions as Fig.5 and 
Fig.10, but also a new position at . 
Unfortunately, there are other unexpected zeros 
loosely distributed from  to . 

0130

0180 0360
 

 
Fig.10 Effect of different PEF order, with order L=4 

 
Fig.11 Effect of different PEF order, with order L=8 

 
4.6 Statistics Properties of Cluster 
According to analysis above,  the cluster algorithm 
is the key step to find the cluster amount and its 

center in the zero-pole map. The threshold thd  is a 
key factor which can only determined by 
experimental statistics. Through many groups of 
experimental tests from real collected data, we get 
the statistics distribution curve of clustered zeros 
which are verified as true IMI by post-processing 
manually, as shown in Fig 12. 

We give out the statistics figure in Fig.10 where 
zeros of PEF order with 4,6 and 8 are participating 
in the statistics. From the statistics we can conclude 
that majority of zeros have amplitude between 0.8 
and 1.0, centered at about 0.92, so 0.2thd = is a 
proper value. 

 
Fig.12 Amplitudes Statistics Distribution of Clustered 

Zeros 

ell as a proper method for 
election on PEF order.  

 
 
5 Conclusion 
A viable algorithm for temporal IMI detection from 
OTHR data has been developed and demonstrated in 
this paper, where the IMI phase spectrum is 
regarded as complex sinusoid and modeled by 
means of AR model. The sinusoid frequency 
corresponding to IMI position is then estimated 
through the zeros of PEF transfer function. 
Experimental data from real OTHR system  are used 
to verify its performance, and the zeros perfectly 
indicate the potential IMIs, including the amount 
and their respective position. Experiments also 
prove that clutter suppression brings little impact on 
the results even the simplest processing. 
Consequently, this proposed algorithm can work 
soundly and efficiently.  

Further work will focus on the IMI suppression 
based on the position estimation provided by this 

roposed algorithm, as wp
s
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