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Abstract: - Geoacoustic parameters inverted from reverberation vertical correlation (RVC) are often directly 
used to predict the acoustic transmission loss (ATL) in shallow water. However, little work has been applied to 
the problem of quantifying uncertainty in predicted ATL produced by geoacoustic parameters uncertainties. In 
this paper, a posterior predictive probability analysis method (PPPAM) is first employed to evaluate the effects 
of geoacoustic parameters uncertainties inverted from RVC data on both coherent and incoherent ATL 
predictions. Where, the geoacoustic parameters uncertainties are characterized by their posterior probability 
distributions (PPD). And then the uncertainties of ATL prediction are analyzed quantitatively based on the 
posterior predictive probability distributions of ATL, which are the function of the PPDs of geoacoustic 
parameters and can be estimated using a Markov Chain Monte Carlo sampling method. Finally, the Yellow Sea 
Reverberation experimental results illustrate the PPPAM and show that: (1) in the range from 1km to 5 km, the 
mean values of 90% posterior credibility intervals (PCI) of coherent and incoherent ATL in frequency range of 
500~800Hz exceed 6dB and 3dB, respectively; (2) the coherent ATL are more difficult to predict near the 
positions of destructive interference of the normal modes. These results derived in this paper are helpful to 
evaluate and improve the detection and localization performance of sonar system. 
 
 
Key-Words: - Transmission loss prediction, Uncertainty analysis, Geoacoustic inversion, Posterior predictive 
probability, Reverberation vertical correlation. 
 
1 Introduction 
Geoacoustic parameters, including the sea-bottom 
velocity, density and attenuation, are very important 
for the acoustic transmission loss (ATL) prediction 
in shallow water. Thus, how to obtain the accurate 
geoacoustic parameters is one of the key issues in 
ATL prediction. In the past 20 years, the acoustic 
inversion techniques have been proved to be the 
most efficient and popular way to estimate 
geoacoustic parameters, particularly for those that 
are difficult to measure using the direct geophysical 
sampling method (i.e. gravity sampling core) [1]. 
Many studies have shown that unknown geoacoustic 
parameters can be inverted from different data types: 
acoustic transmission data [2], reverberation loss 
data [3], reverberation vertical correlation (RVC) 
data [4-6], ship self-noise [7], etc. However, the 
inversion results of geoacoustic parameters based on 
each of these data types may present some degrees 
of uncertainties due to the effects of theoretical 
model simplification and observed noise [8-11]. If 
the geoacoustic inversion results are directly used to 
calculate the ATL using a numerical acoustic 

propagation model, the ATL prediction will be 
affected by this uncertainty [12].  

Recently, the above problem of quantifying the 
uncertainties in predicted ATL produced by 
geoacoustic parameters uncertainties has received 
much attention. Refs. [13] and [14] proposed an 
analytical method to describe the uncertainties of 
ATL prediction, respectively. The disadvantage of 
these methods is that they are only used to solve the 
simple problems. Refs. [15] and [16] then presented 
a numerical analysis method based on Bayesian 
interference to quantify the uncertainties of coherent 
ATL prediction in the presence of geoacoustic 
parameters uncertainties in matched-field inversion 
(MFI). One of the limitations of these studies is that 
they did not consider the case of incoherent ATL 
prediction in advance. But in fact, many researchers 
have pointed out that someplace the incoherent ATL 
prediction is more useful than coherent ATL 
prediction, especially in a complicated environment. 
Furthermore, the main conclusions presented in 
Refs.[15] and [16] are only proper to the problem of 
MFI. MFI is considered as an effective but 
expensive method for geoacoustic inversion. So in 

WSEAS TRANSACTIONS on SIGNAL PROCESSING Wei Gao

ISSN: 1790-5052 85 Issue 2, Volume 5, February 2009

mailto:wellgao2003@163.com


many cases, the geoacoustic parameters are often 
inverted from other data types (such as RVC data) 
and then used to predict ATL. In contrast to MFI, 
the obvious advantage of using RVC for 
geoacoustic inversion is quick and inexpensive 
because all of the required data can be obtained 
from only one ship for the experiment. In recent 
years, the RVC inversion technique has been 
developed by many authors and the uncertainties of 
geoacoustic inversion results have also analyzed in 
detail [3-6]. However, for the RVC inversion 
problem, few works have examined the effects of 
geoacoustic inversion uncertainties on the ATL 
prediction. 

The main objective of this study was to investigate 
the effects of geoacoustic parameters uncertainties 
inverted from experimental RVC data on the both 
coherent and incoherent ATL prediction. First, 
based on the RVC data acquired from the Yellow 
Sea Reverberation Experiment 2005 (YSRE2005), 
the uncertainties of geoacoustic parameters 
inversion results are characterized by their posterior 
probability distributions (PPDs) in this paper. Then 
a posterior predictive probability analysis method is 
first used to evaluate the effects of geoacoustic 
inversion uncertainties on ATL prediction in the 
frequency range from 500Hz to 800Hz. To the 
author’s knowledge, the similar work has not been 
reported in the literature. 

The remainder of this paper is organized as 
follows. Section 2 briefly describes the basic 
formulas of the posterior probability analysis 
method, which can be used to quantify the 
uncertainties of geoacoustic inversion results. In 
section 3, the posterior predictive probability 
analysis method and the corresponding numerical 
integration technique are introduced. Section 4 
describes the Yellow Sea reverberation experiment 
2001 and then applies the posterior predictive 
probability analysis method to the experimental 
RVC data with the goal of evaluating the effects of 
geacounstic parameters uncertainties on ATL 
prediction. Finally, the results of this work are 
summarized and discussed. 
 
 
2 Posterior probability distributions 
for geoacoustic parameters 
The RVC inversion technique is widely applied to 
estimate the geoacoustic parameters [4-6]. The basic 
principle of the RVC inversion technique is to 
estimate the unknown geoacoustic parameters 

[ ]1 2 Nm m mLm =  by minimizing a misfit 

function ( )φ m  via nonlinear optimization method, 
such as Simulated Annealing, Genetic Algorithm, 
and hybrid inversion algorithms. Where ( )φ m  
quantifies the mismatch between the observed RVC 
and the theoretical RVC, N is the number of 
unknown parameters. The best estimates for the 
unknown parameters then correspond to the lowest 
mismatch. However, because of the ambiguity 
imposed by a variety of factors, including 
unavoidable observed noise and theoretical 
simplifications of RVC model, the parameters 
inversion result using the technique above may 
present some degrees of uncertainties.  

From the viewpoint of Bayesian inverse theory, 
the uncertainties of geoacoustic parameters can be 
estimated by their posterior probability density 
(PPD) [17]. The PPDs combines prior information 
about the model with the information provided by 
an observed data set. Let C  and represent the 
observed RVC data and the unknown geoacoustic 
parameters, the PPDs of m given  may be 
expressed as the following conditional probability 
distribution 

m
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The like  function ( )L m  is determined by the 
form of the data and the statistical distribution of the 
data errors, including both observed and theoretical 
error. In practical cases, the data error is often 
assumed Gaussian distributed, second-order 
stationary with zero mean and diagonal covariance 
matrix vI [18]. Under this assumption, the 
likeliho nction satisfies 
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problem, the error function can be described by 
 

available function. For RVC inversion 
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where ( ) ( ) 2

f fφ = −m C m C  is the misfit 

function [6], f  is the frequency which is selected to 
invert the geoacoustic parameters. F  is the number 
of the selected frequencies. C and are the 
observed and theoretical values of RVC, 
respectively. The data variance at the

(C m
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)

f frequency 

can be estimated by solving 0
f
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where )m  is the maximum a posterior solution, 
which corresponds to the minimum value of the 
misfit function.  

If the bottom scattering coefficient is assumed to 
satisfy the Lambert scattering law, the normal-mode 
model of RVC between two different receivers can 
be expressed as [19] 
 
( ) ( ) ( ) ( )

1 2
  

Nt t tC C C⎡ ⎤= ⎣ ⎦LC m m m m               (6) 

 
where 
 

( )
( ) ( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( )
( ) ( )

n

n

m

2
1 2

1-2

1
2 2 2

1

1-2

1
2 2 2

2

1-2

sin e

sin e

sin e

n r n n r
t r

n n n

n r n

r
n n n

n r n

r
n n n

z A h z
C

z A h

z A h

β

β

β

α μ

α μ

α μ

−

−

−

−

−

⎡Φ Φ
⎢=
⎢ ⎥⎣ ⎦

⎧ ⎫⎡ ⎤Φ⎪ ⎪⎢ ⎥×⎨ ⎬
⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

⎧ ⎫⎡ ⎤Φ⎪ ⎪⎢ ⎥×⎨ ⎬
⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

∑

∑

∑

m
⎤
⎥

              (7) 

 
where  and are the depth of receivers. 

 stands for the n th normal mode functions, 
1rz 2rz

)(znΦ

nμ  and nβ  represent the horizontal wavenumber of 
mode and the mode attenuation, respectively. 

 denotes the amplitude of the mode function, 
 is the water depth, ,  is the average 

velocity of sea water, t  is the reverberation time. 

)(hAn

h

n

/ 2r ct= c

α  is the incident angle of  normal mode. thn

The 1-D marginal PPD for the parameter in 
the model vector  is defined as 

thi
m

 
( ) ( ) ( )i i i

M

P m m m p dδ ′ ′= −∫d m ′d m                (8) 

 
where δ  represents the Dirac delta function and M  
is the domain of integration which spans the multi-
dimensional model space. The 1-D marginal PPD is 
considered as the most important moment in 
quantifying the uncertainties of unknown 
geoacoustic parameters [17].  
 
 
3 Posterior predictive probability for 
transmission loss  
In most cases, the geoacoustic parameters inversion 
results are often directly used to predict the 
transmission loss. Then the uncertainties of 
geoacoustic parameters are also mapped into the 
predicted ATL via the acoustic propagation model. 
To address this uncertainty of ATL prediction, the 
fundamental equation and the corresponding 
numerical integration technique of posterior 
predictive probability of ATL will be presented in 
this section. 
 
3.1 Fundamental equation 

For given range and given depth, the posterior 
predictive probability ( )p u C  of ATL u given C  

is obtained from [16]  
 
( ) ( ) ( )

M

p u p u p= ∫C m m C dm                        (9) 

where ( )p m C  is the PPD of geoacoustic 

parameter (see section 2), the conditional 
probability distribution (p u m )  satisfies: 

 
( ) ( )( )p u Uδ u= −m m                                     (10) 

 
where ( )U m  is the predicted ATL via an acoustic 
propagation model. The mapping between 
geoacoustic parameters m  and ATL U  is assumed 
deterministic. Substitute Eq.(9) into Eq.(8), we may 
obtain the analytical expression of posterior 
predictive probability of ATL 
 
( ) ( )( ) ( )

M

p u U u pδ= −∫C m m C dm            (11) 
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Eq.(11) not only describes the functional 
relationship between uncertainties of the inverted 
geoacoustic parameter and that of the predicted 
ATL, but also can be used to quantify uncertainties 
in predicted ATL produced by inverted parameters 
uncertainties. But in general, there is not an 
analytical method to estimate the multi-dimensional 
integrals of Eq.(11), which is typically carried out 
using a numerical integration technique. In the 
following subsection, an efficient numerical method 
based on Metropolis-Hasting algorithm will be 
presented. 
 
3.2 Markov Chain Monte Carlo sampling 
Markov Chain Monte Carlo (MCMC) sampling 
method is based on an analogy with thermodynamic 
processes as described by statistical mechanics [20]. 
The most common application of MCMC is 
numerical calculating multi-dimensional integrals. 
In this paper, MCMC is used to obtain the unbiased 
sampling of posterior predictive probability of ATL. 
A briefly summary of the steps needed in MCMC 
sampling method outlines here. 
Step 1: Determine the search space of unknown 
geoacoustic parameters based upon the prior 
information; select an appropriate misfit function 

 and an optimization algorithm. ( )φ m
Step 2: Apply the optimization algorithm to 
minimize the misfit function and then obtain the 
maximum a posterior solution )m ubstitute . S )m  in  
Eq.(5) and we may obtain the value of the data 
variance v . 

to

Step 3: )m  is set as the starting point of MCMC 
sampling processing. And the number of criteria i  
equals to 1. 
Step 4: Generate a new candidate point m'  from a 
proposal distribution ( )q ′m m . For simplicity, the 

most common ( )q ′m m  used in practice is the 

symmetric distributions, such as the uniform 
distribution and the Gaussian distribution. 
Step 5: Compute the acceptance probability α  
according to the following expression 

 
( ) ( )
( ) ( )min 1, i

i i

p q
p q

α
⎧ ⎫′ ′⎪ ⎪= ⎨ ⎬′⎪ ⎪⎩ ⎭

m C m m
m C m m

                    (12) 

where  represents the PPD of  . ( )p m

Step 6: Generate a random number [ ]0,1a∈
a

 
uniformly. If the acceptance probability α > , then 

the candidate point is accepted ( 1i+ ′m = m ). 
Otherwise . 1i i+m = m
Step 7: Repeat step 4-6 above until the convergence 
of the estimated PPD have been verified. A popular 
MCMC convergence criterion is that the maximum 
difference between the cumulative marginal 
distributions for all parameters estimated from two 
runs in parallel is less than a prescribe threshold ε . 
Mathematically, this convergence criterion can be 
expressed as: 
 

( ) ( )1 2max j jp m p m ε⎡ ⎤− <
⎣ ⎦

C C                    (13) 

 
where ( )jp m C  is the marginal PPD of the 

thj parameter in  given .  m C
Step 8: The program is terminated. And all samples 
during MCMC sampling procedure are used to 
calculate the PPDs of unknown parameters in terms 
of the following expression 
 

( )
( )

1
-

Q

k
kp

Q

δ
==
∑ m m

m C                                   (14) 

 
According to Eq.(9), (10, (13)) and (14), the 
posterior predictive probability of u for a set of 
discrete ranges and depths given the observed RVC 
data can be computed by C
 

( )
( )( )

1
-

Q

k
k

U u
p u

Q

δ
==
∑ m

C                               (15) 

 
where, Q  denotes the total number of sample points. 
 
 
4 Experimental results and discussion 
4.1 Reverberation experiment 
A reverberation experiment was conducted in 
shallow water with a depth of 36.25m on 22:46:23 
September 8, 2005 at a site in the Yellow Sea, 
centred at 121°21.11'E � 35°15.00'N. Explosive 
sources with 50-g TNT were used as sound sources 
in the experiment, and the source depth is around 25 
m. The sound speed profile in the water column, 
measured by conductivity temperature depth (CTD), 
is shown in Fig.1. Two receivers were located at 
depths of 18.9m and 21.9m. Fig. 2 shows the 
shallow water reverberation time series obtained by 
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the 18.9 m receiver and the sampling frequency was 
12 KHz. Then the experimental RVC between two 
receivers for reverberation time t  and centre 
frequency f  can be calculated by 
 

( ) ( )

( ) ( )

/ 2

1 2
/ 2

1
/ 2 / 22 2

1 2
/ 2 / 2

t t

f
t t

t t t t

t t t t

p t p t

p t p t

+Δ

−Δ

−
+Δ +Δ

−Δ −Δ

⎡ ⎤= ⎢ ⎥⎣ ⎦

⎡
×⎢ ⎥
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∑

∑ ∑

C

⎤

⎦

                       (16) 

 
where 1p  and 2p are the reverberation data received 
by two different receivers, respectively. For 
inversion, the experimental area is characterized by 
a fair flat bottom. And the sea bottom is modelled as 
a half infinite space with the uniform sound velocity, 
density and attenuation. Then the sea bottom sound 
velocity , density c ρ  and attenuation fα  for all 
frequencies are the unknown parameters that are to 
be inverted from the RVC data. Moreover, the 
Multi-frequency hybrid inversion scheme is used to 
invert the geoacoustic parameters in this analysis, 
where the frequencies selected to the inversion 
include 500, 600, 700 and 800Hz. 
 
4.2 Geoacoustic inversion result 
In this subsection, the PPDs of unknown 
geoacoustic parameters based on RVC data obtained 
during the reverberation experiment above will be 
reported and be used to analyze the uncertainties of 
the geoacoustic inversion results. To estimate the 
PPDs of unknown parameters, Genetic Algorithm 
(GA) is applied to obtain the maximum a posterior 
solution and the data variance v  during MCMC 
sampling procedure (see step 1 and 2 in subsection 
2.2). GA is adaptive heuristic search algorithm 
premised on the evolutionary ideas of natural 
selection and genetic. The complete description of 
GA is documented in [21].The values of GA 
parameters in this study are as follows: the 
population size was set to 64; reproduction size was 
0.5; crossover probability was 0.8; mutation 
probability was 0.08; the generation of GA was 200.  

The 1-D marginal PPD for the six parameters are 
shown in Fig.3. The horizontal axes show the search 
spaces, the vertical axes indicate the posterior 
probabilities, and the vertical dashed lines are 
positions corresponding to the optimum values (i.e. 
maximum a posterior solution) of each parameter. It 
can be seen from Fig.3 that for the sea bottom sound 
velocity  and attenuation c α , their PPDs all 
converge to the optimum values with high 

probabilities. On the other hand, the posterior 
probability of density ρ  is lower near its optimum 
value. These results show that c and α are all well 
determined, but inversions for bottom density ρ  are 
comparatively less reliable. 
 
4.3 ATL prediction 
According to the classical normal mode theory [22], 
the coherent acoustic transmission loss (ATL) 
( ), ,u R D m  at a depth D  and range R  in an 

environment may be expressed as 
 
( )

( )

( ) ( )

( )
( )

1

, , 20 l

1 2 exp
n s n

n
ns

n

u R D

D D

ik
D R

k

π
ρ

∞

=

= − og

, ,

R

Φ Φ⎧ ⎫
⎪ ⎪⎪ ⎪⎡ ⎤⎨ ⎬⎣ ⎦
⎪ ⎪
⎪ ⎪⎩ ⎭

∑

m

m

m

m m
      (17) 

 
where nΦ  is the normal mode corresponding to the 
horizontal wave number . nk sD  is the depth of 
source, ρ  is the density of sea water. Eq. (17) is 
only suitable to the case of the coherent ATL.  
However, the incoherent ATL is also important for 
the problem of predicting acoustic transmission loss 
in many practical applications. Because the ocean 
environments are very complex and variable in both 
space and time, it is hard to predict or observe the 
coherent ATL associated with modal interference in 
some cases. Thus, the interference between the 
different modes is often neglected. The theoretical 
expression of incoherent ATL is given by [22] 
 

( )

( )

( )
( )
( )

( )

Inc

1

, , 20 log

, ,
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n s n
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u R D

D D
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∞

=
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Φ Φ
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⎧ ⎫
⎪ ⎪⎪ ⎪⎡ ⎤⎨ ⎬⎣ ⎦
⎪ ⎪
⎪ ⎪⎩ ⎭

∑

m

m m

m

m

  (18) 

 
Obviously, the coherent and incoherent ATLs are all 
the function of the geoacoustic parameter . As 
long as m is known, the transmission loss as given 
by Eq. (17) or (18) may be calculated using any 
normal-mode code, such as KRAKEN [23] and 
MOATL [24]. That is to say, the transmission loss 
may be predicted at all frequencies, ranges and 
depths in the same geoacoustic environment.  

m

Fig.4 shows the posterior predictive probabilities 
of coherent ATL for 500Hz and a source depth of 
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20m at different ranges ( R =1.5, 2.5, 3.5 and 4.5km) 
and depths ( =15, 25 and 30m). The dashed lines 
are positions corresponding to the optimum values 
of coherent ATL prediction which are calculated 
using Eq.(17) based on the optimum geoacoustic 
parameters inverted from RVC data. It can be seen 
from Fig.4 that: 

D

(i) At some positions ) , 

and

( 15m, 3.5kmD R= =

( )15m, 4.5kmD R= = ( )25m, 3.5kmD R= = , 
the posterior predictive probability distributions of 
coherent ATL are relative flat and can not converge 
to the optimum values with high probabilities. 
Moreover, it is observed that these positions all 
correspond to the local maximum values of coherent 
ATL, i.e. the points of modal destructive 
interference (see Fig.4 for detail). This result 
indicates that the modal destructive interference is 
more sensitive to the geoacoustic parameters 
uncertainties; it is more difficult to predict coherent 
ATL near the positions of destructive interference.  
(ii) Depending on the measured results of sound 
speed profile using CTD, the thermocline depth at 
the experimental site ranges from about 22m to 27m 
(see Fig.1). It is found that the posterior predictive 
probabilities near the optimum values of predicted 
coherent ATL at D =30m (below the thermocline) 
are higher than the cases of D =15m (above the 
thermocline) and D =25m (in the thermocline) at 
the same range. That is to say, the uncertainties of 
coherent ATL prediction are relative small below 
the lower bound depth of thermocline. This 
phenomenon is not reported previously and might 
be explained by the fact that the coherent ATL 
below the thermocline is dominated by the low-
order modes, which is not sensitive to the 
attenuation and less affected by the attenuation 
uncertainties.  

Fig.5 shows the optimal values (dashed lines) and 
90% posterior credibility intervals (PCI) of coherent 
ATL versus range for 500Hz at three different 
depths. In this paper, %x  PCI is defined as the 
interval such that %x  of the highest area of the 
posterior predictive probability is contained in this 
interval. The values of %x  PCI are often used to 
quantify the uncertainties of ATL prediction. In 
general, the ATL prediction result with a small PCI 
is more reliable than a result with a large PCI. It can 
be seen from Fig.5 that the uncertainties of coherent 
ATL prediction are relative large: in the range from 
1km to 5km, the maximum values and the mean 
values of 90% PCI exceed 20dB and 6dB, 
respectively.  

Let us now consider the case of incoherent ATL 
prediction. Fig.6 shows the posterior predictive 
probabilities of incoherent ATL for 500Hz. In this 
figure, the ranges and the depths are the same as in 
Fig.4. The dashed lines correspond to the optimum 
values of predicted incoherent ATL. Fig.7 shows the 
optimum values (dashed lines) and 90% PCI of 
incoherent ATL versus range for 500Hz at different 
depth. It can be seen from Fig.6 and Fig.7 that the 
posterior predictive probability distributions of 
incoherent ATL may converge to the optimum 
values with high probabilities; the maximum values 
and the mean values of 90% PCI are less than 5dB 
and 3dB, respectively. The incoherent ATL can be 
well predicted based on the geoacoustic parameters 
inverted from RVC data. Furthermore, it can be seen 
form Fig.5 and Fig.7 that the uncertainties of the 
coherent and incoherent ATL prediction all increase 
with range increasing due to error accumulation 
effect.  

This paper gets the similar conclusions above in 
the case of 600Hz, 700Hz and 800Hz. 
 
 
5 Summary 
In this paper, the uncertainties of geoacoustic 
parameters inverted from RVC data which collected 
during Yellow Sea Reverberation Experiment 2005 
are analyzed based on the PPDs of geoacoustic 
inversion results. And then the effects of these 
parameters uncertainties on ATL prediction are 
investigated using the posterior predictive 
probability method. The main results obtained are 
summarized below: 
(i) Near the positions of destructive 
interference of the normal modes, the posterior 
predictive probability distributions of coherence 
ATL are relative flat. This indicates that the 
maximum values of coherent ATL are more difficult 
to predict. 
(ii) The degrees of uncertainties in coherent and 
incoherent ATL prediction vary with the depth of 
receiver. It is found that below the thermocline the 
coherent and incoherent ATL may be predicted with 
high accuracy. On the contrary, the geoacoustic 
parameters uncertainties have much more 
significant effects on the ATL prediction above (or 
in) the thermocline. 
(iii) In the case of coherent ATL prediction, the 
maximum value and the mean value of 90% PCI in 
the range from 1km to 5 km exceed 20dB and 6dB, 
respectively. At the same conditions, the maximum 
values and the mean values of 90% PCI for 
incoherent ATL prediction are less than 5dB and 
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3dB. These results indicate that relative 
uncertainties in predicted incoherent ATL are small. 
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Fig. 1. Sound velocity profile during reverberation 

experiment 
 

 
Fig. 2. Shallow water reverberation time series. 

Receiver depth=18.9m 

 
Fig. 3. 1-D marginal posterior probability 

distributions (PPDs) of the geoacoustic parameters. 
The dashed lines are positions corresponding to 
optimal values of the parameters. The horizontal 

axes indicate the search bounds 
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Fig. 4. Posterior predictive probability of coherent ATL at different range  and depth . The dashed lines 

are positions corresponding to optimal values of coherence ATL 
R D

 
Fig. 5.  The optimum values (dashed lines) and 90% posterior credibility intervals of coherent ATL versus 

range for 500Hz in the range from 1km to 5km. 
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Fig. 6. Posterior predictive probability of incoherent ATL at different range  and depth . The dashed lines 

are positions corresponding to optimal values of incoherent ATL 
R D

 
Fig. 7.  The optimal values (dashed lines) and 90% posterior credibility intervals of incoherent ATL versus 

range for 500Hz in the range from 1km to 5km
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