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Abstract: - In this paper, we propose a reconfigurable architecture of systolic array (SA) processors for near 
real time implementation of high-resolution reconstruction of remote sensing (RS) imagery. The proposed 
design is based on a Field Programmable Gate Array and performs the image enhancement/reconstruction tasks 
in an efficient reconfigurable processing architecture mode that involves the systolic array processors aimed to 
meet the (near) real time imaging systems requirements in spite of conventional computations. In particular, the 
reconfigurable architecture of SA processors is employed with the objective to decrease the computational load 
of the large-scale RS image enhancement/reconstruction tasks required to implement the RS 
enhancement/reconstruction algorithms based on the descriptive regularization techniques with the 
corresponding iterative fixed-point Projection Onto Convex Sets unified via the proposed Hardware/Software 
Co-Design paradigm. 
 
 
Key-Words: - Remote sensing, Reconfigurable architecture, FPGA, Systolic array processors, 
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1 Introduction 
The newer techniques for high resolution remote 
sensing (RS) and radar image 
enhancement/reconstruction are computationally 
extremely expensive [1], [3]. Therefore, these 
techniques are not suitable for (near) real time 
implementation with existing digital signal 
processors (DSP) or personal computers (PC). The 
traditional architecture and model of computation of 
the majority of PCs and DSPs used today is still 
based on the Von Neumann architecture introduced 
in the late 1940s [10]. Any instruction is executed 
one by one in a sequential manner using one 
processor. Given such architecture, there exist 
physical limits beyond which it is very difficult to 
increase the computing power. The growing 
demands on speed and processing power of the 
recently developed image reconstruction RS 
techniques make them unacceptable to be 
implemented in a (near) real time. However, the use 
of specialized arrays of processors will become a 
real possibility for high speed RS applications in the 

nearest few years. In mid 80’s, a lot of research 
work was undertaken to speed-up the execution of 
specific signal processing (SP) computationally 
intensive algorithms with the use of systolic arrays 
(SAs) architectures [2], [4], [10]. Such SA 
architecture consists of a mesh of regularly 
connected processing elements (PEs) with local 
memory and local interconnection topology. Each 
PE in a SA executes one instruction during one 
clock cycle. A SA belongs to the class of special-
purpose parallel architectures also called hardware-
specific or dedicated [10]. The SA may be used as a 
coprocessor with an embedded processor inside a 
FPGA where the data received from the embedded 
processor pass through the PEs and the final result is 
returned to the embedded processor. This interesting 
architecture design approach with the SA 
coprocessor and the embedded processor 
corresponds to the celebrated FPGA-based 
Hardware/Software (HW/SW) co-design. However, 
one crucial issue in the HW/SW co-design is the 
integration of the customized user cores (SA 
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coprocessors) with the embedded processor (SW) 
due the intense data exchange of the large amount of 
data involved in such type of RS operations. 
Furthermore, the principal innovative proposition 
that distinguishes the proposed here approach from 
the previous studies [1], [3], [5]−[8], [17]−[19] 
consists of a Field Programmable System on Chip 
(FPSoC) implementation of the RS image 
enhancement/reconstruction tasks with the new 
reconfigurable architecture of SA processors. In this 
study, the RS tasks correspond to the descriptive 
experiment design regularization (DEDR) method 
that involves a convergence enforcing regularization 
based on the iterative fixed-point Projection Onto 
Convex Sets (POCS-regularization). The latter is 
performed in context of the (near) real time 
computing pursuing the Hardware/Software Co-
Design paradigm. 

     Finally, we report and discuss the 
implementation and performance issues related to 
(near) real time enhancement of the large-scale real-
world RS imagery indicative of the significantly 
increased processing efficiency gained with the 
developed reconfigurable architecture of SA 
processors. 
 
 
2 Background 
In this section, we present a brief summary of the 
DEDR-POCS-regularization method that was 
recently developed in [3], [8]. Hence, some crucial 
model descriptions are repeated for convenience to 
the reader. Consider a coherent RS experiment in a 
random medium and the narrowband SAR 
assumption [11] that enables us to model the 
extended object backscattered wavefield in the 
baseband format [12] by imposing its time invariant 
complex scattering (backscattering) function  e(x) in 
the object image domain (scattering  surface) X ∋ x. 
The measurement radar/SAR data field u(y) = s(y) + 
n(y) consists of the echo signals  s  and additive 
noise  n  and is available for observations and 
recordings within the prescribed  time-space 
observation domain Y = T×P, where y = (t, ρ)T 
defines the time(t)-space(ρ) points in Y; t∈T, ρ∈Ρ; 
y∈Y.  
     The model of observation wavefield u is 
specified by the linear stochastic equation of 
observation (EO) of operator form [12]: u = Se + n; 
e∈E; u,n∈U; S:E→U. Next, we take into account 
the conventional finite-dimensional vector form 
approximation [12] of the continuous-form EO 

     u = Se + n                           (1) 

where u, n and e define the vectors composed of the 
coefficients of the finite-dimensional approximation 
of the fields u, n and e, respectively, and S is the 
matrix-form approximation of the signal formation 
operator (SFO) S specified by the particular 
modulation format employed in the RS system [12]. 
The average *{ , ; 1,..., }k kvect e e k K= < > =b  of the 
random scattering vector e has a statistical meaning 
of the average power scattering function 
traditionally referred as the spatial spectrum pattern 
(SSP), where the asterisk indicates the complex 
conjugate. The SSP is a second order statistics of the 
scattered field that represent the brightness 
reflectivity of the image scene B=L{ b }, represented 
in a conventional pixel format over the rectangular 
scene frame [8]. The RS imaging problem is stated 
as follows: to find an estimate of the scene pixel-
frame image B̂  via lexicographical reordering B̂ = 
L{ b̂ } of the spatial spectrum pattern (SSP) vector 
estimate b̂  reconstructed from whatever available 
measurements of independent realizations {u(j); j = 
1, …, J} of the recorded data vector. 
     The DEDR-POCS-regularization method is 
described as follows [3], [8]: 
 First, to avoid the cumbersome operator inversions 
prescribed by the DEDR-related robust spatial 
filtering (RSF) and robust adaptive spatial filtering 
(RASF) methods [1], [3], [8] the processing 
techniques are modified to the iterative fixed-point 
procedures that define a sequence of estimates 

[ 1]
ˆ

i+b = [ ] [ ]
ˆ{ }i ibT = { [ ] [ ]

1 1
i i

+ − −
n nK S R YR SK }diag ; 

i = 0, 1,…,                                                        (2) 

where 1−
nR = (1/N0)I, is the diagonal-form inverse 

noise correlation matrix  specified by the noise 
power N0, Y = aver{uu+} is the current RS 
correlation data matrix estimate and the nonlinear 
fixed-point iteration operator [ ]iT  is defined by the 
right-hand side of (2);  

[ ] [ ]
ˆ( )i i=K K b =(Ψ+α [ ]

1 ˆ( )i
−D b )–1                (3) 

represents the adaptive reconstruction operator at 
the ith iteration step with the regularization term 

[ ]
1 ˆ( )i
−D b = [ ]

-1 ˆdiag ( )ib  and the point spread matrix 
(PSM) [1] 

Ψ  = 1+ −
nS R S .                            (4) 
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 Using (3)–(4), the (2) can be next transformed to 
the following iterative mapping 

[ 1]
ˆ

i+b = [ ] [ ]
ˆ{ }i ibT  = T[i] [ ]

ˆ
ib ; i = 0, 1, …          (5) 

with the output of the matched space filter (MSF) 
algorithm [3] 

 [0]b̂  = ( )
ˆ

MSFb  = { +S YS }diag                  (6) 

as the zero-step iteration and the matrix-form fixed-
point iteration operator 

T[i] = Q[i] – [ ] [ ]i i
∗Q Q ;  i = 0, 1, …          (7) 

where superscript * stands for complex conjugate,   
denotes the Shur-Hadamar (element-by-element) 

matrix product [11], and Q[i] is adaptively updated at 
each iteration as 

Q[i] = Q( [ ]
ˆ

ib ) = I – ( Ψ + [ ]
-1 ˆdiag ( ))ibα ;  

           i = 0, 1, …                                                   (8) 

 Note that the operator (8) does not involve 
operator inversions (in contrast to the initial one 
(2)), which are now performed in an iterative 
fashion (5). 
Second, to modify the fixed-point algorithm (5)–(7) 
let us make the use of factorization of the PSM (4) 
over the azimuth (x) and range (y) coordinates valid 
for all SAR systems [1], [11], [12]. We formalize 
this stage by introducing the range-azimuth 
factorization operator a r⊥P . Next, we incorporate 
the sparseness properties of the PSM (4) via 
imposing the range-azimuth factorized projection 
operator 

a r⊥Pκ κ that acts as a composition of the 
orthogonal sliding windows with the window 
apertures adjusted to the PSM widths corresponding 

,a rκ κ  along the range-azimuth coordinates.  
 The defined above orthogonal projecting 
window operator 

a r⊥Pκ κ , the range-azimuth 
factorization operator a r⊥P  and the positivity 
operator +P  are projectors onto convex sets, i.e. 
POCS operators [3], [8] thus a composition 

POCSP = 
a r a r+ ⊥ ⊥P P Pκ κ                   (9) 

is a POCS operator as well that constitute the 
necessary and sufficient conditions [8] of the 
convergence of the overall POCS-regularized fixed-
point iterative RASF algorithm 

[ 1]
ˆ

i+B =  [ ]POCS iT {L{ [ ]
ˆ

ib }};  i = 0, 1, … ,    (10) 

in which the zero-step iteration [0]B̂ = L{ [0]b̂ } is 
formed using the conventional (i.e. low-resolution) 
MSF imaging method (6), and the matrix-form 
POCS-regularized fixed-point iteration operator 

[ ]POCS iT  is specified now as [8]  

[ ]POCS iT  = 
a r a r+ ⊥ ⊥P P Pκ κ {Q[i] – [ ] [ ]i i

∗Q Q };   
        i = 0, 1.                                                          (11) 

     The established POCS-regularized fixed-point 
iterative RASF algorithm (10), (11) does not involve 
the cumbersome operator inversions (in contrast to 
the initial one defined (2)) and, moreover, is 
performed separately along the range (y) and 
azimuth (x) directions making also an optimal use of 
the PSM sparseness properties.  
     Next, we accomplish our algorithmic 
developments at the SW co-design stage with the 
analytical analysis of the convergence issues related 
to the presented unified DEDR-POCS method. 
Following the POCS regularization formalism [8], 
the convergence enforcing projectors in the iterated 
procedure are to be constructed formally as  

            ( )= − −P I P Iλ
ι ι ιλ ;  ι = 1, 2, … ;   

 1P  = a r⊥P ; 2P =
a r⊥Pκ κ ; 3P  = +P ,             (12) 

where ;ιλ ι = 1, 2, 3 represent the relaxation 
(speeding-up) regularization parameters and  I  is 
the identity operator. The iteration rule (10) for the 
composed regularizing projectors (12) becomes  

[ 1]
ˆ

n+B = 3 2 1
λ λ λP P P [0]B̂ + 3 2 1

λ λ λP P P [ ] [ ]
ˆ{ }n nT B ;   

        i = 0, 1, …                                                    (13) 

and is guaranteed to converge to the point in the 
intersection of the convex sets specified by Pλ

ι  
provided 0 2< <ιλ for all ι = 1, 2, 3 regardless of 
the initialization [0]B̂  that is a direct sequence of the 
fundamental theorem of POCS [8]. Note that the 
employed specifications of the projectors in (12), 
i.e., 1P  = a r⊥P ; 2P =

a r⊥Pκ κ ; 3P  = +P ; with ιλ = 1 

for all ι = 1, 2, 3,  and [0]B̂ = L{ ˆ
MSFb },  satisfy these 

POCS convergence conditions, in which case the 
formal convergent POCS procedure (13) becomes 
the developed above fixed-point DEDR-POCS 
algorithm given by (10).  
     Note that the formal SW-level of such DEDR-
POCS-regularization method (7), (8), (10), (11), can 
be considered as a properly ordered sequence of the 
vector-matrix and matrix-matrix multiplication 
procedures that one next can perform in an efficient 
computational fashion following the proposed 
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HW/SW co-design paradigm. Now we are ready to 
proceed with the design stage of the proposed 
reconfigurable architecture of SAs.  
 
 
2.1 Matrix-Vector Multiplication 
Let us consider the matrix A of order n×m and the 
vector x of order m×1, where y is an n element 
output vector. The i-th element of y is defined as: 

1
, 1 1

m

i i j j
j

y a x i n j m
=

= ∀ ≤ ≤ ∧ ≤ ≤∑     (14) 

where ija represents the ij-th element of A. 
     To find their product =y Ax  the following 
piecewise regular locally recursive algorithm [2] can 
be used  

T 2

[ , ] 1 1

[0, ] 1

[ ,0] 0 1

[ , ] [ , 1] [ , ] [ , ]
[ , ] [ 1, ]

[ ] [ , ] 1 1

{( , ) | 1

ij

j

input operations
a i j a i n j m

x j x j m

y i i n
computations
y i j y i j a i j x i j
x i j x i j
output operations
y i y i m i n j m
where the index space is
I i j i n

← ∀ ≤ ≤ ∧ ≤ ≤

← ∀ ≤ ≤

← ∀ ≤ ≤

← − + ⋅
← −

← ∀ ≤ ≤ ∧ ≤ ≤

= ∈ ≤ ≤ ∧ 1 }j m≤ ≤

    

                 

2.2 Matrix-Matrix Multiplication  
The product matrix C = AB of dimension m×p is 
the result of the multiplication of two matrices A of 
order m×n and B of order n×p that it is defined as 

1
, 1 1

p

ij ik kj
k

c a b i n j m
=

= ∀ ≤ ≤ ∧ ≤ ≤∑       (15) 

     The recurrent piecewise regular locally recursive 
algorithm that computes this matrix-matrix 
multiplication is specified as follows               

[ ,0, ] 1 1
[0, , ] 1 1

[ , ,0] 0 1 1

[ , , ] [ , , 1] [ , , ] [ , , ]
[ , , ] [ , 1, ]

ik

jk

input operations
a i k a i n k p
b j k b j m k p

c i j i n j m
computations
c i j k c i j k a i j k b i j k
a i j k a i j k

← ∀ ≤ ≤ ∧ ≤ ≤

← ∀ ≤ ≤ ∧ ≤ ≤

← ∀ ≤ ≤ ∧ ≤ ≤

← − + ⋅
← −

 

T 3

[ , , ] [ 1, , ]

[ , ] [ , , ] 1 1

{( , , ) | 1 1
1 }

b i j k b i j k
output operations
c i j y i j p i n j m
where the index space is
I i j k i n j m

k p

← −

← ∀ ≤ ≤ ∧ ≤ ≤

= ∈ ≤ ≤ ∧ ≤ ≤
∧ ≤ ≤

 

Once the algorithms are represented into their 
locally recursive versions, the data dependencies in 
the computations are exposed in dependence graphs 
(DG) to represent the parallel characteristics of the 
algorithms. Now, the algorithms are ready to be 
transformed onto the SAs processors. 
 
 
3 Algorithms transformation onto SA 
In this section, we briefly introduce the bases of 
how to synthesize a SA from a given functional 
specification of a given problem. The steps involved 
in this will be explained using the reconstructive RS 
operations for the DEDR-POCS-regularization 
method (i.e., the matrix-vector and matrix-matrix 
multiplication operations).  
First, in order to derive a regular systolic array [2], a 
linear projection is often represented by a projection 
vector d. Next, we seek for an efficient linear matrix 
transformation T such that 

1ˆ: N N−→T G G                       (16) 

where an N-dimensional DG ( NG ) is mapped onto a 
(N-1)-dimensional systolic array ( 1ˆ N−G ). The linear 
transformation matrix T can be partitioned in two 
functions as follows 

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

Π
T

Σ
                           (17) 

where Π  is (1×p)-dimension vector of the first row 
of T, which determines the time scheduling. This 
vector indicates the normal direction of the equi-
temporal hyper-planes in the corresponding DG. All 
the nodes on the same hyper-plane must be 
processed at the same time. The sub-matrix Σ  of 
(p−1)×p dimension (the rest rows of T), determines 
the space processor. 
      Second, to achieve the maximal parallelism in 
an algorithm, the data dependencies in the 
computations must be analyzed [2], [4]. The systolic 
design maps the N-dimensional dependence graph 
(DG) into a lower dimensional DG (N−1 
dimension).  
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3.1 Matrix-Vector SA Implementation  
Let us consider a matrix-vector product with matrix 
A of size m×n and a vector x of size n×1, i.e. y = 
Ax.  Next, select the projection vector d = [1 0]T 
with a vector schedule s = [1 1]T. The corresponding 
SA for implementing this product and its dynamic 
behavior are illustrated in Fig. 1. The pipelining 
period for this SA is one. The number of PEs 
required by this structure is n. The computational 
time achieved is  2n−1 clock periods. 

 
Fig. 1. Dynamic behavior of the systolic matrix-vector. 

 
3.2 Matrix-Matrix SA Implementation 
Let A be an m×n matrix and B be an n×k matrix. 
The product of the matrices is an m×k matrix 
C=AB. The DG of a standard matrix-matrix 
multiplication algorithm corresponds to a 3-D space 
representation. In Fig. 2, the dynamic behavior of 
the systolic structure for implementing such a 
product with the projection direction vector             
d = [0 0 1]T are presented. This architecture requires 
an array of mk PEs and n+m+k−1 clock periods. 
 
 
4 Reconfigurable architecture of SA 
One of the advantages of the FPGA-based 
embedded systems consists in their ability to 
integrate the customized user cores with a soft or 
hard embedded processor in system-on-a-chip (SoC) 

solutions for RS applications. Considerable 
improvements in the algorithm execution time are 
expected when such customized reconstructive SP 
cores are used as hardware accelerators to perform 
the computationally intensive RS techniques. 

 
Fig. 2. Dynamic behavior of the matrix-matrix SA. 
 
 
     The HW/SW co-design is a hybrid method aimed 
at increasing the flexibility of the implementation 
and improvement of the overall design process. In 
this study, to perform the HW/SW co-design, we 
select the Microblaze embedded processor (for the 
restricted platform) and the On Chip Peripheral Bus 
(OPB) [9] for transferring the data from/to the 
embedded processor to/from the reconfigurable 
architecture of SA processors. Such OPB is a fully 
synchronous bus that connects other separate 32-bit 
reconfigurable architectures. 
    The proposed reconfigurable architecture of SAs 
manages the low data-bandwidth of the system 
input-output (I/O) transfer bus and the high 
bandwidth for the data exchange of the 
corresponding SA processors. To deal with such 
high data-bandwidth demanding requirements of the 
SA processors, we propose to incorporate memory 
buffers into the interface with the SAs.
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Fig. 3. Reconfigurable Architecture of SA. 

 
     Fig. 3 presents the reconfigurable architecture of 
the SAs for the selected matrix-matrix and matrix-
vector operations. As one can deduce from the 
analysis of the structure presented in Fig. 3, the 
proposed architecture has the ability to reconfigurate 
the data sequence flow to the corresponding SAs in 
the specific time.  
     First, the first-input first-output (FIFO) memory 
receives the low bandwidth data.  
 

 
Fig. 4. Low data-bandwidth store block. 

     The FIFO memory stores the RS data acquisition 
data and the algorithm specifications, e.g., the noise 
correlation model, the POCS model parameters, the 
azimuth-range SFO, etc. that are properly ordered as 
a sequences of vector x and matrices A and B for 
the computations of the vector-matrix and matrix-
matrix multiplication procedures as it is illustrated 
in Fig. 4. 
     Second, the spatial-temporal procedure 
rearranges the sequence of data into the specific 
order for the corresponding SAs. Two architectures 
blocks are defined: the spatial data flow block which 
is implemented by a multiplexer architecture and the 
temporal data flow employed by a set of Random 
Access memories (RAMs) as illustrated in Fig. 5.  

     As one can notice from Fig. 5, once the RAMs 
blocks are complete loaded the data are extracted in 
parallel (high data-bandwidth) to the corresponding 
SA architecture. For the purpose of the 
reconfigurability, the addressable generation units 
(AGUs) based on look up tables (LUTs) were 
incorporated into the architecture. With the AGUs 
block based on LUTs, the reconfigurable 
architecture is able to balance the low data-
bandwidth from the system input-output (I/O) 
transfer bus in a high data-bandwidth for the 
corresponding SA processors. 
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Fig. 5. Spatial-Temporal block. 

     Such AGUs are implemented based on the 
Random Access memories (RAM), so the user can 
load each AGU via the corresponding embedded 
processor as specified in the block diagram of     
Fig. 6. 

 
Fig. 6. AGU block based on LUT. 

 
     Next, in order to balance the high bandwidth 
requirements of the SA processors, memory buffers 
were incorporated into the reconfigurable 
architecture of SAs. 
     In summary, the developed reconfigurable 
architecture of SAs provides the necessary 
reconfigurability for the HW-level implementation 
of the SW-optimized complex multi-purpose RS 
imaging algorithms. 

5 Simulations and Performance 
Analysis 
 
5.1 Performance Metrics 
In the simulation experiments, it is considered a 
conventional side-looking SAR with the fractionally 
synthesized aperture as an RS imaging system [11].     
The regular signal formation operator (SFO) of such 
SAR is factored along two axes in the image plane 
[3]: the azimuth or cross-range coordinate 
(horizontal axis, x) and the slant range (vertical axis, 
y), respectively. The conventional triangular, Ψr(y), 
and Gaussian approximation, Ψa(x) = exp(–(x)2/a2) 
with the adjustable fractional parameter a, are 
considered for the SAR range and azimuth 
ambiguity function (AF) [1], [3]. Note that in the 
imaging radar applications [1], [12], an AF is 
referred to as the continuous-form approximation of 
the PSM Ψ defined by (4) and serves as an 
equivalent to the point spread function in the 
conventional image processing terminology [13]. 
The image degradation and noising effects were 
incorporated to simulate the process of formation of 
the degraded speckle-corrupted MSF images. 
Following [1] the degradation in the spatial 
resolution due to the fractional aperture synthesis 
mode were simulated via blurring the original image 
with the range AF Ψr(Δy) along the y axis and with 
the azimuth AF Ψa(Δx) along the x axis, 
respectively. Next, the degradations at the image-
formation level due to the propagation uncertainties 
were simulated using the statistical model of SAR 
image defocusing [3], [14]. 
     In analogy to the image reconstruction [13], first, 
it is employed the quality metric defined as an 
improvement in the output signal-to-noise ratio 
(IOSNR) 

IOSNR=10log10 

( )
( )

2
( )

1
2

( )
1

ˆ

ˆ

K MSF
k kk

K p
k kk

b b

b b

=

=

−

−

∑
∑

; p = 1, 2  (18) 

where kb  represents the value of the kth element 

(pixel) of the original image b, ( )ˆ MSF
kb  represents the 

value of the kth element (pixel) of the degraded 
image formed applying the Matched Space Filter 
(MSF) technique (6), and ( )ˆ p

kb  represents a value of 
the kth pixel of the image reconstructed with two 
developed methods, p = 1, 2, where p = 1 
corresponds to the POCS-RSF algorithm and p = 2 
corresponds to the POCS-RASF algorithm, 
respectively.  
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     According to these quality metrics, the higher are 
the IOSNR, the better is the improvement of the 
image enhancement/reconstructed with the 
particular employed algorithm. 
 
 
5.2 Simulations 
In this study, the simulations were performed with a 
large scale (1K-by-1K) pixel format image 
borrowed from the real-world high-resolution 
terrain SAR imagery (south-west Guadalajara 
region, Mexico [15]). The quantitative measures of 
the image enhancement/reconstruction performance 
gains achieved with the particular employed POCS-
RSF and POCS-RASF techniques, evaluated via 
IOSNR metric (18), are next reported in Table 1 and 
Fig. 7.  

Table 1. Image enhancement of the DEDR-
POCS RSF/RASF algorithms. 

DEDR-POCS 
RSF Method 

DEDR-POCS 
RASF Method SNR 

[dB] IOSNR [dB] IOSNR [dB] 
5 4.21 6.74 

10 5.56 8.38 
15 7.78 9.86 
20 9.26 11.47 

 
     From the analysis of the qualitative and 
quantitative simulation results reported in Figure 6 
and Table 1, one may deduce that, the RASF 
method over-performed the RSF method in all 
simulated scenarios. Moreover, the relationship 
between the resulting IOSNR quality metric and the 
visually reconstructed image represents the high 
degree of correlation between the two images 
(original and reconstructed image). In this study, 
with the POCS regularization, the appearance of the 
POCS-RSF/RASF reconstructed images 
demonstrated substantial improvement up to 10 
iterations from the initial MSF image. 
 
 
5.3 HW/SW Co-Design Performance 

Analysis 
The synthesis metrics related to the implementation 
of the reconfigurable architecture of SAs are 
summarized in Table 2. These metrics specify the 
area and time behaviors of the corresponding 
interface and the hardware systolic arrays, i.e. the 
Matrix-Vector and the Matrix-Matrix cores. The 
system clock was adjusted to 100 MHz and we 
assumed a precision of 32 bits running in a Virtex4 
XC4VS X35-10ff668. 

 
a) 

 
b) 

 
c) 

 
d) 

Fig. 7. Operational scenario, scene (SNR = 15 dB):                
(a) original scene; (b) degraded uncertain scene 
image formed applying the MSF method; (c) image 
reconstructed applying the POCS-RSF algorithm; 
(d) image reconstructed employing the RASF 
algorithm. 
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The components blocks of the reconfigurable 
architecture of SAs are exemplified for the simple 
illustrative test case of the data matrix of size 4×4 
and the matrix-vector of size 4×1. 

 
Table 2. Synthesis results of the components blocks 
of the proposed reconfigurable architecture of SAs. 

Synthesis 
metrics 

Systolic 
matrix-
matrix  

Systolic 
matrix-
vector  

FIFO 
Block 

Number of Slices 386 48 62 
Number of 
DSP’48 16 4 NA 

Number of LUTs 513 NA 54 
Number of Flip-
Flops 768 96 16 

Equivalent Gate 
Count 13,222 1024 4,676 

Fmax (MHz) 115.3 210.6 215.4 

Synthesis 
metrics 

Spatial-
Temporal 

blocks 

AGUs 
blocks 

Buffer 
Memory 

Block 
Number of Slices 763 351 82 
Number of 
DSP’48 NA NA NA 

Number of LUTs 626 483 71 
Number of Flip-
Flops 896 326 23 

Equivalent Gate 
Count 15,148 5,771 4,836 

Fmax (MHz) 410.7 200.2 224.3 
 

In Fig. 8, we report the resource utilization of the 
proposed here SAs hardware architectures (i.e., the 
matrix-vector and the matrix-matrix multiplication 
blocks) for different numbers of employed 
processors elements (PEs). 

The proposed reconfigurable architecture 
represents a parallel and pipelined solution which 
exploits the hardware efficiency of the SAs. This 
proposed architecture is required to improve the 
time implementation performance of the complex 
RS algorithms. For example, in [5] it was presented 
the parallel computing Cluster-based algorithm for 
hyperspectral image processing where the achieved 
processing time using 64 processors was 48 
seconds. To further speed-up the processing time, it 
is necessary to implement the corresponding high 
performance reconfigurable architecture based on 
specialized hardware modules such as proposed here 
reconfigurable FPGA-SAs. 

In order to compare the SA matrix operations 
with another stand alone modules or FPGA-based 
modules, the relevant examples of efficient circuits 
for matrix operations are presented.  

 
a) Matrix-vector multiplication 

 
b) Matrix-matrix multiplication 

Fig. 8. Resource utilization with different PEs. 
 
In the case of the matrix-vector multiplication 

SA architecture, the total time for performing the 
multiplication of a square n×n matrix and an n-
vector requires only  2n-1 clock periods and 
occupies an area of 48 slices (for the test example of 
n=4) with a data precision of 32-b. An interesting 
alternative design of a unidirectional linear systolic 
array (ULSA) for computing a matrix-vector 
multiplication was performed in [16], however, the 
total time required was 3n-2 clock cycle, i.e. 
superior to the proposed here solution.  

With the n×n matrix-matrix multiplication 
systolic architecture developed in this study, the 
most time consuming operations required only 3n-2 
clock cycles and the area occupied 386 slices for the 
data precision of 32-b (e.g., considering the same 
n=4 test case). Another alternative implementation 
for systolic matrix-matrix multiplication was 
presented in [20] where the systolic matrix-matrix 
multiplication design occupied an area of 110 slices 
(i.e., data precision of 8-b) with the corresponding 
processing time of n2+3n+2 clock cycles. Mencer et 
al. in [21] presents the matrix-matrix multiplication 
architecture with an area performance of 954 slices 
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for a data precision of 8-b. Thus, it is evident that 
the proposed SAs architectures manifest the best 
area-time tradeoff. 
     Last, the required processing times for two 
different implementation techniques were compared 
as reported in Table 3. In the first case, the iterative 
fixed-point DEDR-POCS-regularization RSF/RASF 
algorithms [3], [8] were implemented in the 
conventional MATLAB software on a personal 
computer (PC) running at 1.73GHz with a Pentium 
(M) processor and 1GB of RAM memory, while in 
the second case, the same iterative fixed-point 
POCS-regularized algorithms were implemented 
using the proposed reconfigurable architecture 
FPGA-based via the HW/SW co-design paradigm.  

 
Table 3.Comparative time processing analysis 

Processing 
Time [secs] Method 

RSF RASF 
Iterative fixed-point DEDR-POCS- 
Regularized  (PC implementation) 19.70 20.05 

Proposed Reconfigurable 
Architecture of SAs for the DEDR-
POCS-Regularization algorithm via 
HW/SW Co-design  

2.34 2.41 

 
Analyzing the reported results one may deduce 

that the proposed reconfigurable architecture of SAs 
via the HW/SW co-design for implementing the 
iterative fixed-point DEDR-POCS-regularized 
RSF/RASF image reconstruction algorithms 
manifests the finest (near) real time computational 
requirements. 
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7   Conclusion 
The principal result of the undertaken study relates 
to the design of a reconfigurable architecture of 
SAs. With the proposed SA-based architecture, the 
corresponding iterative fixed-point DEDR-POCS-
regularized RSF/RASF algorithms were executed in 
a (near) real time computational mode (the ‘near-
real’ being understood in a context of conventional 
RS users). The latter was achieved pursuing the 
proposed hardware/software co-design paradigm. 
Doing this, we performed the reconstructive post-

processing of the large-scale real-world RS imagery 
attaining the desirable enhancement performance in 
a real-time mode. We do believe that by pursuing 
the addressed HW/SW co-design paradigm one 
could approach definitely the real time image 
processing requirements. 
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