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Abstract: - In this paper, a restoration approach for noisy image is proposed where a boundary resetting 

boundary discriminative noise detection (BRBDND) and a median filtering with smallest window (MFSW) are 

applied. In the proposed image restoration approach, two stages are involved: noise detection and noise 

replacement. The BRBDND is used to detect noisy pixels in an image. If a pixel is uncorrupted, then keep it 

intact. Or replace it with an uncorrupted neighborhood pixel through the MFSW. Note that miss detection 

happens in the BDND presented in [17] when the noise density is high. The miss detection is even worse for 

cases with unbalanced noisy density where the portions for the salt noise and the pepper noise are different. A 

boundary resetting scheme is incorporated into the BDND. By this doing, the problem of miss detection 

described above can be prevented. Note that a larger window used in the median filtering leads to a stronger 

smoothing effect on the restored image. The reported median filtering approaches, like the modified noise 

adaptive soft-switching median filter (MNASM) in [17], uses larger windows generally. Thus, a median 

filtering with smallest window (MFSW) is proposed to improve the visual quality of restored image. Two 

examples are provided to justify the proposed image restoration approach BRBDND/MFSW where 

comparisons are made with the BDND/MNASM. The results indicate that the proposed BRBDND is able to 

deal with the miss detection problem in the BDND. It also shows that the proposed MFSW indeed improves the 

visual quality of restored image as expected. The simulation results suggest that the proposed restoration 

approach BRBDND/MFSW generally outperforms the BDND/MNASM both in the PSNR and the visual 

quality of restored image. 
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1 Introduction 
Digital images are prone to be contaminated by 

noise which significantly degrades the visual quality 

or the performance of following image processing 

system in general. Consequently, noise removal has 

drawn a great deal of attention in the field of image 

processing. Many noisy image restoration 

approaches have been reported [1-3]. One of 

common noises is the impulse noise. During the 

transmission or capture process, an image may be 

contaminated by the impulse noise. A popular way 

to remove the impulse noise is the median filtering 

[4] or its variations [5-8]. With its simplicity, the 

median-based filtering schemes have been 

commonly used when the noise density is low. In 

this case, these schemes work well generally. 

However, for the image highly corrupted by the 

impulse noise the median-based approach have a 

difficulty to remove the impulse noise and thus an 

unsatisfied restored image is resulted. 

To deal with the problem of median-based 

schemes, switching or selective schemes [9-13] for 

image restoration to remove impulse noise were 

proposed. Basically, an image restoration based on a 

switching scheme consists of two stages: noise 

detection and noise replacement. In the stage of 

noise detection, given a window a pixel is 

determined as noisy or uncorrupted. If a pixel is 

considered uncorrupted, then the pixel remains as it 

is. Otherwise, the pixel is replaced by an 

uncorrupted pixel within the window. Several 

approaches for noise detection have been reported. 

They can be roughly divided into three categories: 

fuzzy scheme as in [14-15], neural approach as in 

[16], and boundary-based approach as in [17]. 

Among the three categories, the boundary-based is 

preferred because of its simplicity when compared 

the computational complexity and system structure 

with the other two categories. The boundary-based 

approach in [17] called the boundary discriminative 
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noise detection (BDND) is well-known in the 

community of image restoration. However, as 

shown in [17] the BDND has difficulty to deal with 

cases of high noise density and unbalanced noise. In 

this paper we propose a boundary resetting scheme 

to improve the performance of BDND in those cases. 

In the stage of noise replacement, many median-

based schemes have been proposed. One of them 

was the noise adaptive soft-switching median filter 

(NASM) [18]. For a low and medium noise density, 

the NASM had a good performance. To improve the 

performance in cases of high noise density, a 

modified NASM (MNASM) was introduced in [17]. 

Note that the MNASM used many larger windows 

in the filtering process when the noise density was 

high. This leaded to a strong smoothing effect on the 

restored image. To improve the visual quality of 

restored image, a median filtering with smallest 

window (MFSW) is proposed in this paper where 

the smallest window is employed in the filtering 

process. By this doing, it is expected that a better 

restored image can be obtained. 

By the proposed boundary resetting BDND 

(BRBDND) and the median filtering with smallest 

window (MFSW), an image restoration approach is 

presented in this paper which can be applied to an 

image highly contaminated by the impulse noise. 

This paper is organized as follows: In Section 2, the 

BDND in [17] is briefly reviewed where an example 

is provided to show the problem in the BDND. Then 

the proposed BRBDND is introduced in Section 3. 

Next the MNASM is briefly reviewed in Section 4 

where an example is given to demonstrate why a 

larger window is used in the MNASM. In Section 5, 

the proposed MFSW is described. In Section 6, two 

examples are given to verify the proposed 

BRBDND and MFSW. Moreover, the performances 

of noise removal approaches BRBDND/MFSW and 

BDND/MNASM are compared in Section 6 as well. 

Finally, conclusion is made in Section 7. 

 

 

2 Review of the BDND 
In this section, the well-known noise detection 

approach called the BDND in [17] is reviewed. The 

implementation steps for the BDND are given in 

Section 2.1. In Section 2.2, an example is given to 

show the problem of miss detection in the BDND 

where a case of high noise density is concerned. 

 

 

2.1 Implementation steps for the BDND 
The BDND proposed in [17] is briefly reviewed. 

For details, one may consult [17]. Here, we have 

rephrased the steps in [17]. Given a 2121×  window, 

the steps in the BDND to identify a noisy in the 

window are given as follows. 

Step 1. Sort pixels in the window in the ascending 

order and denote the resulted vector as 
o

v . 

Step 2. Calculate the difference of adjacent pixels in 

o
v  and record them in vector 

d
v  whose 

element is )()1()( iviviv
ood

−+=  where 

)(iv
o

 are elements of 
o

v . 

Step 3. Find the maximum value in 
d

v  within the 

indices 0 to 2/)12121( +×=
med

I . Then the 

corresponding pixel in 
o

v  is set as the lower 

boundary 
1

b . 

Step 4. Similarly, from indices 
med

I  to )12121( −×  

find the maximum value in 
d

v  and its 

corresponding pixel in 
o

v  is set as the upper 

boundary 
2

b . 

Step 5. By boundaries 
1

b  and 
2

b , the pixel 
ji

x
,

 is 

clustered as the low-density cluster if 

1,
0 bx

ji
≤≤ , the middle cluster if 

2,1
bxb

ji
≤< , and the high-intensity cluster 

if 255
,2

≤<
ji

xb . 

Step 6. If the center pixel is within the middle 

cluster, then consider it as an uncorrupted 

pixel. Move the window to the next pixel 

and go to Step 1. Otherwise, the center pixel 

is noisy. Go to Step 7. 

Step 7. Resize the window to 33×  and redo Step 1 

to Step 5. Then go to Step 8. 

Step 8. If the center pixel belongs to the middle 

cluster, then it is considered as uncorrupted. 

Otherwise, the center pixel is a noisy pixel. 

Step 9. Record the detection result for all pixels in a 

binary matrix having same size of the image 

under consideration, where 1 indicates a 

noisy pixel and 0 otherwise. 

The binary matrix obtained in Step 9 will be used 

in the following stage of noise replacement. It 

should be mentioned that there are two passes in the 

BDND to identify a noisy pixel. Two passes are 

similar except the window size for the first pass is 

2121×  while 33×  is used in the second pass. 

When the pixel under detection is considered as 

uncorrupted in the first pass, there is no need to 

enter into the second pass in the BDND. That is, if 

miss detection happens, the noisy pixel will be kept 

in the restored image.  
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2.2 An example for the BDND 
Though the BDND works well in many cases, it 

suffers in cases of high noise density and 

unbalanced noise. In those cases, the number of 

miss detections in the BDND increases significantly. 

Consequently, the quality of the restored image is 

degraded accordingly. The reason is that in the miss 

detection a noisy pixel is considered as uncorrupted. 

The pixel remains as it is and therefore is shown in 

the restored image. The following example is 

provided to show the miss detection problem in the 

BDND. 

A highly noisy 55×  image block B 

contaminated by the salt and pepper noise is given 

as follows. 

 
By the steps described in Section 2.1, 

intermediate results for the example are described as 

follows. After Step 1, the sorted result 
o

v  is found 

as 

]255255255255255255255255255255

255255255255255255255255255255255

255255255255255255919082818172

7271700000000000000[=
o

v

 

By Step 2, the vector 
d

v  is given as 

]000000000000

000000000000001641810

901170000000000000[=
d

v

 

Then with the median index 

252/)177( =+×=
med

I , the low boundary 
1

b  can 

be found from the maximum value in )(iv
d

 for 

med
Ii ≤≤0 , which is 164. The corresponding pixels 

in 
o

v  are 91 and 255. Consequently, the lower 

boundary 
1

b  is set to 91. Similarly, the upper 

boundary 
2

b  is found from the maximum value in 

)(iv
d

 for 48≤≤ iI
med

 which is 0. Since all pixels 

are 255, the upper boundary 
2

b  is set to 255. Thus, 

the ranges for the middle cluster and the high-

intensity cluster are 25591
,

≤<
ji

x  and 

255255
,

≤<
ji

x , respectively.  

Note that in the given example the noisy pixel, 
which is of value 255, will be classified into the 

middle cluster and considered as an uncorrupted 

pixel while the high-intensity cluster is an empty set 
because of the inappropriate inequality.  Moreover, 

there is no need to enter into the second pass of the 

BDND since the pixel under detection has been 
considered as uncorrupted. In other words, the noisy 

pixel remains as it is and therefore will be shown in 

the restored image. This is an undesired result in the 
noise removal or image restoration. 

 

 

3 The Proposed BRBDNR 
In this section, the motivation for the proposed 

noise detection scheme called the boundary resetting 

BDNR (BRBDND) is described and the additional 

steps incorporated into the BDND are introduced as 
well. 

The reason for the miss detection happened in 

the example given in Section 2.2 is that the BDND 

has difficulty to determine the upper boundary 
2

b . 

Similar results may happen when the lower 

boundary 
1

b  is found inappropriately. Fortunately, 

the problem in the determination of lower and upper 

boundaries can be solved by a simple but effective 
boundary resetting scheme. 

To show how the boundary resetting scheme 

improves the detection performance of the BDND, 
the example given in Section 2.2 is reconsidered 

here. In the example, the miss detection can be 

avoided by resetting the upper boundary 
2

b  to 
1

b . 

By this doing,   the center pixel 255 which is noisy 
will be clustered into the high-intensity cluster and 

thus considered as a noisy pixel as it should be. 

Based on the idea just described, a boundary 
resetting BDND (BRBDND) is proposed. In the 

BRBDND, two additional steps are employed in the 

BDNR to reset boundaries 
1

b  and 
2

b  such that the 

miss detection can be avoided. The two additional 

steps are put into Step 4 and Step 7, respectively. 

The modified Step 4 and Step 7 are given as follows. 

Step 4. Similarly, from indices 
med

I  to )12121( −×  

find the maximum value in 
d

v  and its 

corresponding pixel in 
o

v  is set as the upper 

boundary 
2

b . 

Step 4a.When the maximum value in 
d

v  within the 

indices 0 to 
med

I  is 0, then reset 
21

bb = . On 

the other hand, when the maximum value in 

d
v  from indices 

med
I  to )12121( −×  is 0, 

then reset 
12

bb = . 
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Step 7. Resize the window to 77 ×  and redo Step 1 

to Step 5. Then go to Step 8. 

Step 7a.When there is only one non-zero element in 

d
v , then reset 

12
bb = . 

By resetting boundaries 
1

b  and 
2

b  as in Step 4a 

and Step 7a, the miss detection in the BDND for the 

case of high noise density can be prevented. One 

more difference between the proposed BRBDND 

and the BDND in [17] is the window size in Step 7 

where the former uses 77×  and the latter 33× . The 

reason for it is that better detection performance can 

be achieved by our experiments. 

Consider the example given in Section 2.2. It 
demonstrates how the boundary resetting scheme 

works and the miss detection is avoided. In the 

example, all elements of )(iv
d

 for 48≤≤ iI
med

 are 0. 

Thus, by the Step 4a in the BRBDND the boundary 

2
b  is reset to 

1
b  which is 91. Therefore, the 

inequalities for the low-intensity cluster, the middle 
cluster, and the high-intensity cluster are 

910
,

≤≤
ji

x , 9191
,

≤<
ji

x , and 25591
,

≤<
ji

x , 

respectively.  Therefore, the pixel under 

consideration is within the high-intensity cluster and 

identified as a noisy pixel. This avoids the miss 
detection in the BDND. 
 

 

4 Review of the MNASM 
This section gives a brief review of the noise 

replacement scheme called the modified NASM 

(MNASM) in [17]. In Section 4.1, the 

implementation steps are described and the problem 

using larger windows is mentioned. Then an 

example is given in Section 4.2 to show the problem 

of window expansion criterion in the MNASM. 
 

 

4.1 Implementation steps for the MNASM 
In the MNASM, the initial window size is set to 

33×  and the maximum window size to 77 × . 

Denote the number of uncorrupted pixels in the 

current window 
cc

WW ×  as 
c

N . The criterion to 

expand the window is )(5.0
cccc

WWTN ×=< . If 

cc
TN ≥ , the conventional median filtering is 

performed with the uncorrupted pixels in the current 

window when 77 ×≤×
cc

WW . Or the window size 

cc
WW ×  will keep expanding until at least one 

uncorrupted pixel is found even the current 
cc

WW ×  

reaches the maximum window 77 × . Once some 

uncorrupted pixels are found, then the conventional 
median filtering is used to remove the noisy pixel. 

The implementation steps for the MNASM are 
described as follows. 

Step 1. Initialize 
cc

WW ×  as 33× . 

Step 2. Calculate 
c

T  and count 
c

N  in the current 

window. If 
cc

TN ≥ , perform the 

conventional median filtering with the 

uncorrupted pixels in the current window 
and replace the noisy pixel with the median. 

Then move the window to the next pixel and 

go to Step 1. Otherwise, go to Step 3. 

Step 3. If 
cc

WW ×  does not reach to the maximum 

window 77 × , then expand the window and 

go to Step 2. Otherwise, go to Step 4. 

Step 4. Expand the 
cc

WW × window till 0≠
c

N . 

Then perform the conventional median 

filtering. 

Though the MNASM works well generally, it, 

however, leads to a strong smoothing effect on the 

restored image in the case of high noise density. By 

observations, the reason is that many larger 

windows are employed in the filtering process. The 

fundamental problem for this is the criterion for 

window expansion. In other words, the smoothing 

result follows the inappropriate criterion of window 
expansion in the MNASM. The following example 

given in Section 4.2 will explain the inappropriate 

window expansion in the MNASM. 
 

 

4.2 An example for the MNASM 
In this section, the problem of the window 

expansion in the MNASM is shown through the 
example given in Section 2.2. The image block B is 

duplicated here where different window sizes 33× , 

55× , 77×  are shown as well. 

33×

55×

77×  
With the example, the filtering process of the 

MNASM is described as follows. In the initial 

window size 33× , there is only one uncorrupted 

pixel, i.e., 1=
c

N  which is less than 

5.43)0.5(3 =×=
c

T .  Thus the window is expanded 

to 55×  where 4=
c

N . Since 
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5.125)0.5(5 =×=<
cc

TN , the window is then 

expanded to 77×  where 9=
c

N . Since 

5.247)0.5(7 =×=<
cc

TN , thus the window is 

expanded further to 99× . By the Step 4, the 

MNASM will do the noise replacement in the 

window size 99× . 

Note that the problem here is that 
c

T  is increased 

as the window size is expanded. Though 
c

N  

increases as the window size getting larger, however 

it cannot catch up with 
c

T . This explains why the 

MNASM uses larger windows in the case of high 
noise density. 
 

 

5 The Proposed MFSW 
The motivation for the proposed noise 

replacement scheme is based on the observation in 

the MNASM. In the case of high noise density, the 

MNASM expands window size when 
cc

TN < . 

However, it still generally has difficulty to find 
enough uncorrupted pixels within a larger window 

since 
c

T  is increased as the window is expanded. 

Thus, a window size larger than the maximum size 

77 ×  is generally used in the filtering. Consequently, 

a restored image with strong smoothing effect is 

resulted. As in the example given in Section 4.2, the 

key problem for the MNASM is the way to expand 

the window. Thus a median filtering with smallest 

window (MFSW) is introduced in this section to 
improve the visual quality of restored image. 

Note that the noise replacement can be achieved 

by substituting a noisy pixel with any uncorrupted 
pixel within the window. That is, the noise 

replacement can be done as long as, at least, one 

uncorrupted pixel exists in the current window. 
Therefore, to avoid using larger windows in the 

filtering process, the criterion to expand window for 

the proposed MFSW is that no uncorrupted pixel 

exists in the window. By this doing, the window 

will have the smallest size as it can be. Thus, the 

proposed noise replacement scheme is called the 

median filtering with smallest window (MFSW). 

Denote the number of uncorrupted pixels in the 

current window 
cc

WW ×  as 
c

N . The implementation 

steps for the proposed MFSW are given as follows. 

Step 1. Initialize 
cc

WW ×  as 33× . 

Step 2. Check if 0=
c

N . If 0=
c

N , expand the 

window size and redo Step 2. Otherwise, go 

to Step 3. 

Step 3. Perform the conventional median filtering 

with uncorrupted pixels in the current 

window and replace the noise pixel with the 
median. 

Note that the noisy pixels have been identified in 

the noise detection stage. Thus the noise 
replacement is based on the result of noise detection. 

Consider the given example in Section 4.2. By the 

proposed MFSW, the noisy pixel will be replaced 

by 81 where the window size is 33× , instead of 

99×  as in the MNASM. Thus a better restored 

image can be expected in the proposed MFSW since 

higher correlation can be found for closer pixels 

generally.  This will be verified in the following 

section. 
 

 

6 Simulation Results 
In this section, two examples are provided to 

justify the proposed BRBDND and the MFSW. 

Besides, the performance of the proposed noise 
removal or image restoration approach, the 

BRBDND/MFSW, will be compared with the 

BDND/MNASM in [17]. For fair comparison, the 

window size 33×  at Step 7 for the BDND in 

Section 2.1 is changed to 77 ×  for all related results. 

In the simulation, the 512512×  images Boat and 

Goldhill are used as examples which are 

contaminated by the salt and pepper noise with 

various noise densities. The simulation consists of 

three parts. In Section 6.1, the detection 

performance of the BRBDND is investigated under 

different noise densities and unbalanced noise 

densities. Those results are compared with those for 

the BDND. In Section 6.2, the replacement 

performance of the proposed MFSW is justified 

where the perfect detection is assumed.  The results 

are compared with those from the MNASM where 

the application numbers of different window sizes in 

the MFSW and the MNASM are compared. In 

Section 6.3, the restored images from the 

BRBDND/MFSW are evaluated and compared with 

the BDND/MNASM in terms of peak signal-to-

noise ratio (PSNR) and subjective visual 

assessments. 
 

 

6.1 Detection Performance of the BRBDND 
To evaluate the detection performance, images 

Boat and Goldhill are first contaminated by the 

balanced salt and pepper noise (BSPN) and the 

unbalanced SPN (USPN), varied from 10% to 90%. 

The balanced BSPN means the salt noise and pepper 

noise are equally distributed in the images while the 

USPN has different portions of salt and pepper noise. 

For example, the 80%+10% USPN means the total 

noise density is 90% where 80% is the pepper noise 
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and 10% the salt noise. Then the detection results of 
the BRBDND and the BDND for the BSPN and 

USPN are obtained. 
 

 

(A) BSPN 

For the BSPN, the detection results of the 

proposed BRBDND for images Boat and Goldhill 
are, respectively, recorded in Table 1 and Table 2 

where MD stands for the miss detection and FA the 

false alarm. The miss detection considers a noisy 
pixel as an uncorrupted one and the false alarm 

considers an uncorrupted pixel as a noisy one. The 

MD affects the restored image much more than that 
in the FA since the noisy pixel remains in the 

restored image while the FA replaces an 

uncorrupted pixel with another uncorrupted one in 
the noise replacement stage. 

For comparison, the corresponding results 

obtained from the BDND are shown in Table 1 and 
Table 2 as well. Table 1 and Table 2 indicate that 

the BRBDND has zero MD for all cases while the 

BDND has few MD in the case with 80% noise 
density and over two thousand for the 90% case. As 

for the FA, both BRBDND and BDND have 

identical performance except the 90% case. By the 
results, it indicates that the proposed BRBDND is 

able to deal with the miss detection problem while 

the BDND fails to. In other words, the BRBDND 
improves the detection performance of the BDND. 
 

Table 1  Detection performance of the BSPN for the 

BRBDND and the BDND (Boat) 

Noise 

density 

MD FA 

BRBDND BDND BRBDND BDND 

10% 0 0 296 296 

20% 0 0 326 326 

30% 0 0 200 200 

40% 0 0 302 302 

50% 0 0 231 231 

60% 0 0 283 283 

70% 0 0 187 187 

80% 0 1 218 218 

90% 0 2,916 201 192 

 

Table 2  Detection performance of the BSPN for the 

BRBDND and the BDND (Goldhill) 

Noise 

density 

MD FA 

BRBDND BDND BRBDND BDND 

10% 0 0 30 30 

20% 0 0 30 30 

30% 0 0 27 27 

40% 0 0 30 30 

50% 0 0 21 21 

60% 0 0 25 25 

70% 0 0 18 18 

80% 0 3 11 11 

90% 0 2,546 49 40 

(B) USPN 
The results obtained from the proposed 

BRBDND and the BDND for the USPN are given in 

Tables 3 and 4, respectively, for images Boat and 
Goldhill. Again, the BRBDND has zero MD for all 

cases. However, the BDND is not able to handle the 

cases with USPN. As for the FA, the proposed 
BRBDND always is a little higher than the BDND. 

However, it does not affect the restored image too 

much since the amount of FA is not high. It seems 
that the BRBDND trades a little FA for zero MD. 

 
Table 3  Detection performance of the USPN for the 

BRBDND and the BDND (Boat) 

Noise 

density 

MD FA 

BRBDND BDND BRBDND BDND 

80%+10% 0 186 1,286 434 

70%+20% 0 320 1,227 421 

60%+30% 0 480 1,320 442 

50%+40% 0 679 623 301 

40%+50% 0 70,090 819 606 

30%+60% 0 157,375 1,269 830 

20%+70% 0 182,328 1,346 880 

10%+80% 0 209,394 1,213 781 

 
Table 4  Detection performance of the USPN for the 

BRBDND and the BDND (Goldhill) 

Noise 

density 

MD FA 

BRBDND BDND BRBDND BDND 

80%+10% 0 177 398 118 

70%+20% 0 344 368 90 

60%+30% 0 559 421 136 

50%+40% 0 717 170 63 

40%+50% 0 69,085 219 166 

30%+60% 0 157,160 349 251 

20%+70% 0 182,309 395 285 

10%+80% 0 209,142 430 290 

 

 

6.2 Replacement Performance of the MFSW 
In this section, the performance of the proposed 

MFSW is justified. For a fair comparison with the 
MNASM, the perfect detection is assumed in the 

following simulation, i.e., no MD and no FA 

happens.  Only the BSPN is under consideration 
here. Two comparisons are made: the PSNR and the 

application numbers of different window sizes in the 

filtering process. 

 

 

(A) PSNR 
The PSNR obtained from the proposed MFSW 

and the MNASM for images Boat and Goldhill are 

shown in Figure 1. For both images, the proposed 

MDSW and the MNASM have similar PSNR in 

lower noisy densities. For other cases, the proposed 

MFSW has better PSNR than the MNASM. 
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(a) 

 
(b) 

Fig. 1 The PSNR for the MFSW and the MNASM 

(a) Boat (b) Goldhill 

 

 

(B) The application numbers of window sizes 
The application numbers of different window 

sizes in the filtering process are investigated both 

for the MFSW and the MNASM. Since similar 

results are found in both images, only image Boat is 

under consideration. The application numbers of 

different window sizes in the MFSW and the 

MNASM are given in Tables 5 and 6, respectively. 

The results show that the application numbers of 

different window sizes are mostly distributed among 

smaller windows for the proposed MFSW. However, 

the distribution for the MNASM generally is among 

larger windows, especially for cases with higher 

noise densities. 

 
Table 5  The application numbers of window sizes in the 

MFSW (Goldhill) 

Window 

size 
33×  55×  77×  

99×  

and up 

10% 26,213    

20% 52,437    

30% 78,701 5   

40% 105,135 85   

50% 130,511 481   

60% 154,398 2,693 1  

70% 172,887 10,326 30  

80% 174,806 33,876 945 4 

90% 134,572 83,201 16,681 1,389 

 

 

 

Table 6  The application numbers of window sizes in the 

MNASM (Goldhill) 

Window 

size 
33×  55×  77×  

99×  

and up 

10% 26,201 12   

20% 51,932 501 4  

30% 74,115 4,111 453 27 

40% 86,634 11,996 4,209 2,381 

50% 83,735 15,185 7,586 24,486 

60% 64,104 8,453 2,445 82,090 

70% 35,574 1,675 98 145,896 

80% 11,703 60 0 197,868 

90% 1,218 0 0 234,625 

 
To see how the window size affects the visual 

quality, the Boat shown in Figures 2 and 3 are 

restored from the cases of 30% and 80% noise 
density, respectively. Both restored images from the 

30% noise density for the proposed MFSW and the 

MNASM have similar visual quality since the 

window size 33×  used in the filtering process most 

of time as indicated in Tables 5 and 6. As for the 

case of 80% noise density, the proposed MFSW 

usually applies 33×  window in the filtering while 

the MNASM mostly uses window size 99×  and up. 

As shown in Figure 3, a stronger smoothing effect is 

found in the restored image for the MNASM while 

the MFSW retains more details in the restore Boat. 

The results shown in Figures 2 and 3 suggest that 

the window size used in the filtering process has 

smoothing effect on the restored image. That is, a 

larger window leads to a stronger smoothing effect 

and vice versa. 

 

   
                       (a)                                    (b) 

Fig. 2  Restored Goldhill by (a) the MNASM 

(b) the MFSW (30% BSPN) 

 

   
                          (a)                                  (b) 

Fig. 3  Restored Goldhill by (a) the MNASM 

(b) the MFSW (80% BSPN) 
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6.3 Performance of the BRBDND/MFSW 
In this section, the proposed BRBDND and 

MFSW are integrated into a noise removal approach 

called the BRBDND/MFSW, which is applied to 

noisy image restoration. Both the BSPN and the 
USPN are considered in the simulation. Moreover, 

the results of the proposed BRBDND/MFSW are 

compared with those for the BDND/MNASM. 

 

 

(A) BSPN 
The PSNR for the restored Boat and Goldhill 

with the BSPN are given in Figure 4 where the 

corresponding PSNR from the BDND/MNASM are 

also shown. From Figure 4, it indicates the 
BRBDND/MFSW generally has better PSNR than 

the BDND/MNASM, especially for the 90% case. It 

is because the BDND has a large amount of MD in 
the 90% case as shown in Tables 1 and 2. Therefore, 

many noisy pixels remain in the restored image. 

 

 
(a) 

 
(b) 

Fig. 4  The PSNR for the BSPN with BRBDND/MFSW 

and the BDND/MNASM (a) Boat (b) Godhill 

 

As for the visual quality, the restored Boat and 
Goldhill from 80% noise density by the 

BRBDND/MFSW and the BDND/MNASM are 

shown in Figures 5 and 6, respectively. As expected, 
the resorted images from the BRBDND/MFSW 

have better visual quality because better 

replacement performance is achieved in the MFSW. 

The restored Boat and Goldhill by the 

BDND/MNASM show a strong smoothing effect 

because many larger windows are employed in the 

median filtering. On the other hand, the proposed 

MFSW uses the smallest window possible in the 
filtering process and thus has better visual quality 

with more details. 

 

   
(a)                                       (b) 

Fig. 5  Restored Boat by (a) the BDND/MNASM 

(b) the BRBDND/MFSW (80% BSPN) 

 

   
(a)                                       (b) 

Fig. 6  Restored Goldhill by (a) the BDND/MNASM 

(b) the BRBDND/MFSW (80% BSPN) 

 

 

(B) USPN 

As for the USPN, the PSNR for the proposed 

BRBDND/MFSW and the BDND/MNASM are 
given in Tables 7 and 8. The results indicate that the 

BRBDND/MFSW has better PSNR than the 

BDND/MNASM for the first four cases while 
having much better PSNR for the other cases. It 

should be noted that the proposed BRBDND/MFSW 

obtains similar PSNR for all cases. It suggests that 

the BRBDND/MFSW is able to handle the USPN 
very well.  However, the BDND has a problem in 

the detection of the USPN, especially for cases with 

large portions of the salt noise. By the detection 
results shown in Tables 3 and 4, the number of MD 

is increased significantly as the portions of the salt 

noise is increased. It means that many pixels 
contaminated by the salt noise remain in the restored 

images. Even in a better case, say the 80%+10% 

case, the BDND/MNASM still has difficulty to deal 
with the salt noise as shown in Figures 7 and 8 

where while pixels are the remained noisy pixels 

corrupted by the salt noise. 
In summary, the proposed noise removal 

approach BRBDND/MFSW generally has better 

performance than the BDND/MNASM in [17] both 
in the PSNR and the visual quality of restored 
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images, where both the BSPN and USPN are 
considered. 

 
Table 7  The PSNR for the USPN with BRBDND/MFSW 

and the BDND/MNASM (Boat) 

Noise 

density 

PSNR 

BRBDND/MFSW BDND/MNASM 

80%+10% 21.87 21.64 

70%+20% 21.79 21.48 

60%+30% 21.79 20.96 

50%+40% 22.32 20.71 

40%+50% 22.32 7.66 

30%+60% 21.85 6.06 

20%+70% 21.85 6.03 

10%+80% 21.88 6.02 

 
Table 8  The PSNR for the USPN with BRBDND/MFSW 

and the BDND/MNASM (Goldhill) 

Noise 

density 

PSNR 

BRBDND/MFSW BDND/MNASM 

80%+10% 24.43 23.96 

70%+20% 24.46 22.47 

60%+30% 24.31 22.18 

50%+40% 24.57 20.97 

40%+50% 24.66 6.64 

30%+60% 24.53 5.03 

20%+70% 24.43 5.01 

10%+80% 24.45 5.00 

 

   
(a)                                          (b) 

Fig. 7  Restored Boat by (a) the BDND/MNASM 

(b) the BRBDND/MFSW (80%+10% USPN) 

 

   
(a)                                           (b) 

Fig. 8  Restored Goldhill by (a) the BDND/MNASM 

(b) the BRBDND/MFSW (80%+10% USPN) 

 

 

7 Conclusion 
A noisy image restoration approach applied to an 

image highly contaminated by the SPN has been 

presented in this paper. Two stages are involved: 

noise detection and noise replacement. In this paper, 
the boundary resetting BDND (BRBDND) for noise 

detection has been introduced. By resetting 

boundaries in the BDND, the detection performance 
of the BDND has been improved significantly and is 

able to deal with cases of high noise density and 

unbalanced noise. For the noise replacement, the 
median filtering with smallest window (MFSW) has 

been proposed. In the MFSW, the criterion to 

expand window is no uncorrupted pixel exists in the 
current window. By this doing, the smallest window 

used in the median filtering is guaranteed and a 

restored image of better visual quality has been 
obtained when compared with the MNASM in [17]. 

Simulation results have justified the feasibility of 

the proposed approach BRBDND/MFSW and have 
indicated the BRBDND/MFSW is better than the 

BDND/MNASM in [17] both in the PSNR and the 

visual quality of restored images. 
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