
Wavelet Filter Design based on the Lifting Scheme and its

Application in Lossless Image Compression

TILO STRUTZ

Deutsche Telekom AG, Hochschule für Telekommunikation

Institute of Communications Engineering

Gustav-Freytag-Str. 43-45, 04277 Leipzig

GERMANY

tilo.strutz@hft-leipzig.de

Abstract: The description of filter banks using lifting structures does not only benefit low-complexity implementa-

tion in software or hardware, but is also advantageous for the design of filter banks because of the guaranteed per-

fect reconstruction property. This paper proposes a new design method for wavelet filter banks, which is explained

based on a single lifting structure suitable for 9/7 filter pairs. The filters are derived directly, the factorisation of

known filters is not necessary. In addition, it is shown that the signal boundaries can be treated with little com-

putational efforts. The modification of the standard design constraints leads to families of related filter pairs with

varying characteristics. It includes a filter bank that can be implemented in integer arithmetic without divisions,

shows better performance than the standard 9/7 filter bank for lossless image compression and competitive perfor-

mance when applied in lossy compression.
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1 Introduction

The standard 9/7 wavelet filters, initially constructed

for conventional two-channel filter banks and ap-

plied straightaway in image compression [1], became,

within a family of wavelets [2], the most successful

wavelet filter pair in lossy compression for a broad

range of natural images such as photographs. This

success was manifested in the compression standard

JPEG2000 [3].

Daubechies and Sweldens [4] have shown that

each two-channel filter bank consisting of filters with

finite impulse response (FIR) can be implemented

with the so-called lifting scheme, first introduced in

[5]. The filter coefficients of single lifting steps can

be determined via the factorisation of the polyphase

matrix of the filter bank.

The description of filter banks using lifting struc-

tures leads to a distinct reduction in computational

complexity and is especially attractive for filter de-

sign, since it guarantees perfect reconstruction of the

filter bank to be constructed. This fact has inspired re-

searchers, for example, to approximate the lifting co-

efficients of the well-known 9/7 wavelet filter bank by

rational values for low-complexity hardware and soft-

ware implementation [6, 7, 8] and to design similar

9/7 filter banks [9].

This contribution proposes a new design method

directly yielding wavelet filter banks in lifting repre-

sentation. No factorisation of known filter banks is

required.

The property of perfect reconstruction holds only

true in the domain of real values. Lossless data com-

pression, however, can only deal with values of lim-

ited precision, i.e. it must be possible to represent the

sub-band values with a possibly small number of bits.

That means, the filter bank must be able to map the in-

teger signal samples to integer sub-band values. Luck-

ily, the lifting principle is suitable for such integer-to-

integer mapping. The corresponding signal decom-

position is also known as integer wavelet transform

(IWT) [10]. The IWT is also applicable for two-

dimensional signals in a non-separable fashion [11].

The new design approach is explained using a lift-

ing structure suitable for the representation of a 9/7

wavelet filter bank. Relaxing the constraints of the

original filters from [2], the design can be parame-

terised leading to families of related wavelet filters.

The properties of these filters are analysed, their per-

formance when applied to lossless image compression

investigated and compared to the 5/3 wavelet filters

used in JPEG2000.

The outline is as follows. The next section re-

peats the foundations of the lifting principle and in-

troduces the flow chart used for the new approach.

Section 3 explains the filter design, first with conven-

tional constraints, followed by different parameterisa-
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Figure 1: Principle of lifting with alternating steps: a)

analysis, b) synthesis.

tions resulting in two families of related filter banks.

Section 4 discusses the compression results. A gen-

eral interpretation of the derived filter banks is given

in Section 5. The last Section summarises the article.

2 The lifting scheme

2.1 General structure

The conventional structure of two-channel filter banks

based on lifting steps is shown in Figure 1a). The

incoming signal (z domain) is split into two paths

(polyphase transform) containing the values at even

or odd sample positions. In order to devise the filter

properties, alternating lifting and dual lifting steps are

applied, in which samples from one path are filtered

by Li(z) and added to a sample of the other path. The

synthesis stage (Fig. 1b) applies the same lifting steps

in reverse order but using subtraction instead of addi-

tion. Finally, the two paths are reassembled to a single

signal. That is, the synthesis stage undoes each opera-

tion of the analysis stage and reconstructs the original

signal X(z).

2.2 Flow chart for 9/7 filter bank

With respect to the design method to be proposed,

however, the illustration with a different flow chart

is more helpful. Figure 2 depicts a lifting cascade

suitable for representing a 9-tap low-pass and a 7-tap

high-pass filter pair. Essentially, it shows the signal

flow for processing a signal with eight samples x0 to

x7. A pair of samples at even positions is weighted

by (typically negative) coefficients α and added to the

sample in between. The next lifting step combines

the results of the summations in pairs using the coef-

ficients β. The third and fourth lifting step act in the

same manner using the weights γ and δ.

a3d21d0d d3

β

a0 2aa1

x7x6x5x4x3x2x1x0

x5x4x3x2x1x0 x7x6

α α α α αα α α

β ββ β β ββ

γ γ γ γγ γ γ γ

δ δ δ δδδδδ

δδδδδδδδ

γγγγγγ

ββββββββ

α ααααααα

γ γ

Figure 2: Signal flow in signal decomposition with

9/7-tap filters (input signals with even length)

The property of integer-to-integer mapping,

which will be essential for lossless compression, is

simply imposed by properly rounding the intermedi-

ate values to integer values [10] (not shown in the flow

diagram).

The arithmetic calculations are (with m =
0, 1, 2, . . . )

d′m = x2m+1 + ⌊α·(x2m + x2m+2) + 0.5⌋
a′m = x2m + ⌊β ·(d′m−1 + d′m) + 0.5⌋
dm = d′m + ⌊γ ·(a′m + a′m+1) + 0.5⌋ (1)

am = a′m + ⌊δ ·(dm−1 + dm) + 0.5⌋ .

The result after all lifting steps is an interleaved

sequence of low-pass filter output am (approximation

signal) and the high-pass filter output dm (detail sig-

nal). Figure 2 also shows the reconstruction of the

original signal xn by performing the lifting steps in

reverse order and using the opposite signs

a′m = am − ⌊δ ·(dm−1 + dm) + 0.5⌋
d′m = dm − ⌊γ ·(a′m + a′m+1) + 0.5⌋

x2m = a′m − ⌊β ·(d′m−1 + d′m) + 0.5⌋ (2)

x2m+1 = d′m − ⌊α·(x2m + x2m+2) + 0.5⌋ .

2.3 Handling of signal boundaries

The flow diagram in Figure 2 simply explains the ex-

ception handling at the signal boundaries. When us-

ing conventional filter banks, the input signal has to be
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Figure 3: Signal flow in signal decomposition with

9/7-tap filters (input signals with odd length)
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Figure 4: Signal flow in signal decomposition with

9/7-tap filters (input signals with odd length and alter-

native signal extension)

symmetrically extended at both boundaries by a num-

ber of samples depending on the length of the filter

impulse responses. The structure in Figure 2 shows

clearly that in the lifting representation only one sin-

gle sample at both ends of the signal is required at the

most. When applied to signals with an odd length, the

handling has to be changed slightly (Fig. 3). Since

the filter design is typically aiming at detail values

close to zero dm ≈ 0, the required extensions at sig-

nal boundaries could be simply set to zero in the last

lifting step (Fig. 4).

3 Filter design

3.1 Derivation of filter impulse responses

The flow diagram, as depicted in Figure 4, allows the

derivation of the analysis filters of the correspond-

ing two-channel filter bank simply by considering all

paths from the input samples to a particular approxi-

mation sample am or detail sample dm, respectively.

For the moment, we will disregard the rounding oper-

ations.
First, let us concentrate on the sub-band value d1.

Following back the paths to the samples of the input
signal x[n], it becomes obvious that d1 is dependent
on the seven values x0 to x6. On the path from x0

to d1 we find the factors α, β and γ. Thus, the cor-
responding coefficient of the impulse response is the
product of these three values α ·β ·γ. The path from
x1 to d1 contains only two factors β and γ. The cor-
responding coefficient of the impulse response is ac-
cordingly β ·γ. All other coefficients can be derived in
the same manner leading to the symmetric 7-tap im-
pulse response of the analysis high-pass filter

h1[n] =
{

αβγ βγ [γ ·(2αβ + 1) + α·(1+γβ)]

(2βγ + 1) [γ ·(2αβ + 1) + α·(1+γβ)] βγ αβγ
}

=
{

αβγ βγ [3αβγ + α + γ] (2βγ + 1)

[3αβγ + α + γ] βγ αβγ
}

. (3)

Note that there are sometimes multiple paths. From

x3 to d1, for instance, there is a direct one and two

paths via β and γ.
The approximation values am are dependent on

nine input samples each. a2, for example, is directly
derived from x0 to x8 and the analysis 9-tap low-pass
filter reads as

h0[n] =
{

αβγδ βγδ

{δ · [γ · (2αβ + 1) + α·(1 + γβ)] + αβ ·(1 + γδ)}
[δ ·(2βγ + 1) + β ·(1 + γδ)]

{α · [δ ·(2βγ + 1) + β ·(1 + γδ)] + (1 + 2γδ)+

α·[δ ·(2βγ + 1) + β ·(1 + γδ)]}
[δ ·(2βγ + 1) + β ·(1 + γδ)]

{δ ·[γ · (2αβ + 1) + α·(1 + γβ)] + αβ ·(1 + γδ)}
βγδ αβγδ

}

=
{

αβγδ βγδ [4αβγδ + αβ + αδ + γδ]

[3βγδ + β + δ] [6αβγδ + 2·(αβ + αδ + γδ) + 1]

[3βγδ + β + δ] [4αβγδ + αβ + αδ + γδ]

βγδ αβγδ
}

. (4)

The synthesis filters are constructed by following

all paths from a particular approximation (or detail)

sample to the reconstructed signal values xn. In this

particular lifting structure, it turns out that they are

directly related to the analysis filters by

g0[n] = (−1)n+1 · h1[n] n = 0, 1, 2, . . . (5)

g1[n] = (−1)n · h0[n] . (6)

3.2 Filters with maximum number of vanish-

ing moments

The frequency response (in z-domain) of a t-tap filter

h[n] is

H(z) =
t−1
∑

n=0

h[n] · zn . (7)
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Figure 5: Spectra of three typical photographs

(semilogarithmic chart)

Since H0(z) = Z {h0[n]} should be a real low-pass
filter, its magnitude response at sampling frequency
must be equal to zero H0(z)|z=−1 = 0. This leads to
the following condition

0 = αβγδ − βγδ + [4αβγδ + αβ + αδ + γδ]

−[3βγδ + β + δ]

+[6αβγδ + 2·(αβ + αδ + γδ) + 1]

−[3βγδ + β + δ] + [4αβγδ + αβ + αδ + γδ]

−βγδ + αβγδ (8)

H1(z) = Z {h1[n]} is the corresponding high-
pass filter. Its magnitude response must be equal to
zero at frequency f = 0, i.e. H1(z)|z=1 = 0. This
leads to the condition

0 = αβγ + βγ + [3αβγ + α + γ] + (2βγ + 1)

+[3αβγ + α + γ] + βγ + αβγ . (9)

The original aim of filter design in [2] was to cre-

ate low-pass filters with frequency responses that are

as flat as possible at sampling frequency by imposing

a maximum number of so-called vanishing moments,

i.e. multiple zeros at H0(z)|z=−1 and H1(z)|z=1. The

positive effect of the latter one is simply based on

the frequency content of typical photographs (Fig. 5).

Figure 6 shows the photographs, which were taken

from [16]. The main image information is covered

by very low spatial frequencies. If the magnitude re-

sponse of the high-pass filter is maximally flat around

f = 0, then it propagates minimal signal energy into

the high-pass band.
Multiple vanishing moments can be incorporated

by substituting z with n

√
np (p = 0, 1, 2, . . . ) in equa-

tion (7). The second zero for H1(z) (and accordingly
for G0(z) at z = −1), for example, is included using
z = n

√
n leading to the condition

0 = 0·αβγ + 1·βγ + 2·[3αβγ + α + γ] + 3·(2βγ + 1)

+4·[3αβγ + α + γ] + 5·βγ + 6·αβγ . (10)

a)

b)

c)

Figure 6: Test images; a) ‘kodim07’; b) ‘kodim08’; c)

‘kodim09’, 768 × 512 pixels, only green component

each

A different interpretation of this approach is based on
the approximation of signal segments by polynomials
of increasing order [13]. The condition for the second
zero for H0(z) and G1(z) reads as

0 = 0·αβγδ − 1·βγδ + 2·[4αβγδ + αβ + αδ + γδ]

−3·[3βγδ + β + δ]

+4·[6αβγδ + 2·(αβ + αδ + γδ) + 1]

−5·[3βγδ + β + δ] + 6·[4αβγδ + αβ + αδ + γδ]

−7·βγδ + 8·αβγδ . (11)

The conditions (10) and (11) are, however, not

independent from (9) and (8). Two more constraints

are necessary for the unique determination of the four

weights α . . . δ.

Choosing z =
n

√
n2 imposes another vanishing
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moment. The corresponding conditions are

0 = 0·αβγ + 1·βγ + 4·[3αβγ + α + γ] + 9·(2βγ + 1)

+16·[3αβγ + α + γ] + 25·βγ + 36·αβγ (12)

and

0 = 0·αβγδ − 1·βγδ + 4·[4αβγδ + αβ + αδ + γδ]

−9·[3βγδ + β + δ]

+16·[6αβγδ + 2·(αβ + αδ + γδ) + 1]

−25·[3βγδ + β + δ] + 36·[4αβγδ + αβ + αδ + γδ]

−49·βγδ + 64·αβγδ . (13)

Equations (10) – (13) form a system of non-linear

equations resulting in the irrational weights

α≈−1.58613434206 γ≈0.88291107553

β≈−0.05298011857 δ≈0.44350685204 . (14)

Due to the inherent structure of the filter bank,

each of the conditions impose double zeros, i.e. each

filter shows four vanishing moments in total. This is

denoted by (Ñ , N) = (4, 4) in the following, where

Ñ is the number of multiple zeros in H1(z) and N the

number in H0(z).
The result is exactly the same as derived from the

factorisation of a polyphase matrix presented in [2].

3.3 Remarks

The major difference in filter design for lossless com-

pression compared to lossy applications is, apart from

the integer-to-integer mapping, the possibility to con-

centrate on the analysis filters only. The goal of filter

design for 2-channel filter banks is to propagate as lit-

tle signal energy as possible into the high-pass channel

(the detail signal) and to amplify the low frequencies

as little as possible. In lossy compression systems,

one has also to take into account the quantisation er-

rors introduced by the encoder, because the synthesis

filters amplify these errors decreasing the signal qual-

ity. Here, a balanced design considering both analysis

and synthesis is essential.

In the example of the 9/7 filters chosen for the

explanation of the design method, however, this dif-

ference is not pivotal, since the spectral properties of

analysis and synthesis filters are complementary ow-

ing to equations (5) and (6).

3.4 Parameterisation through relaxing con-

straints

Starting from the design example above, the design

has been modified in different ways in order to find

sets of wavelet filters suitable for lossless image com-

pression.

Table 1 contains several investigated cases with

different sets of lifting weights α . . . δ. The Ñ col-

umn denotes the number of vanishing moments in the

analysis high-pass filter H1(z), N the number of van-

ishing moments in the analysis low-pass filter H0(z).
The last three columns contain the bitrates for lossless

compression of three different grey-scale images (see

Fig. 6) using a JPEG2000-like compression system.

Only the green component for each has been used for

investigations.

3.4.1 Design of 5/3 wavelet filters

Setting the factors γ and δ equal to zero shortens the

flow chart of Figure 2 to only two lifting steps. The

lengths of the impulse responses are reduced to 5 taps

for the low-pass filter and 3 taps for the high pass,

respectively

h0[n] = {αβ β (1 + 2αβ) β αβ}
h1[n] = {α 1 α} . (15)

The required conditions are in z-domain

H0(z)|z=−1 = 0

= αβ − β + (1 + 2αβ) − β + αβ

H1(z)|z=1 = 0 = α + 1 + α (16)

leading to the unique solution of α = −1/2 and β =
1/4. This is in accordance with the original solution

in [5]. This filter bank is listed in Table 1 as case 0.

3.4.2 Variation of the 9/7 wavelet filters

Removing the constraint (13) releases one pair of ze-

ros in G1(z) and H0(z) leading to (Ñ , N) = (4, 2)
filter banks and a dependency of the weights on α

β = − 1

4 · (2α + 1)2
γ = −4α + 1 + 4α2

4α + 1

δ =
(8α2 + 6α + 3) · (4α + 1)

16 · (2α + 1) · (4α + 1 + 4α2)
(17)

The released pair of zeros can now be moved in order

to modify the frequency responses (cases 1 to 10 in

Table 1, sorted by α). The cases 1, 3, 5, and 9 have

also been found by a different design approach [9] and

case 5 also by [7]. Figure 7a) visualises the moving

zeros in H0(z). The complex pairs of zeros on the

unit circle belong to cases 1 . . . 5 leading to a steeper

slope of the low-pass filter (Fig. 7b). Case 6 is the

original 9/7 filter with (Ñ , N) = (4, 4). For the sake

of comparison, also the spectra of the 5/3 filter bank

are included (case 0).
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Table 1: Parameterised design, resulting lifting weights, and results of lossless compression [bpp]

Case α β γ δ Ñ , N kodim07 kodim08 kodim09

0 -1/2 1/4 0 0 2, 2 3.7774 5.5307 4.0270

1 -1 -1/4 1/3 15/16 4, 2 3.8688 5.6349 4.1060

2 −
√

2+3

4
2 ·

√
2 − 3 2+

√
2

8

6·
√

2−7

2
4, 2 3.8486 5.6065 4.0905

3 -5/4 -1/9 9/16 16/27 4, 2 3.8660 5.5866 4.0879

4 -4/3 -9/100 25/39 1079

2000
4, 2 3.8657 5.5836 4.0917

5 -3/2 -1/16 4/5 15/32 4, 2 3.8467 5.5762 4.0908

6 -1.5861.. -0.05298.. 0.8829.. 0.4435.. 4, 4 3.8430 5.5729 4.0945

7 -8/5 -25/484 121/135 9369

21296
4, 2 3.8394 5.5731 4.0935

8 −1√
2
− 1 1√

2
− 3

4
1 1

2
√

2
+ 1

16
4, 2 3.8279 5.5713 4.0852

9 -7/4 -1/25 25/24 51/125 4, 2 3.8525 5.5738 4.0966

10 -2 -1/36 9/7 161/432 4, 2 3.8549 5.5705 4.1101

11 -17/32 164−20·
√

4249

1089

2137−5·
√

4249

65536

79825+5405·
√

4249

287496
2, 4 3.9343 5.5804 4.1399

12 -3/4 3−2·
√

21

25

11−
√

21

32

32+12·
√

21

125
2, 4 3.8602 5.5718 4.0707

13 -1 7−
√

265

72

29−
√

265

32

205+17·
√

265

864
2, 4 3.8231 5.5614 4.0574

14 1+
√

6+

√
15+10·

√

6

−8
-0.08731.. 0.5732.. 1/2 2, 4 3.8368 5.5676 4.0775

15 -3/2 9−
√

273

128

23−
√

273

8

217+15·
√

273

1024
2, 4 3.8426 5.5755 4.0878

16 -8/5 235

3528
− 5·

√

849409

38808

13717

4000
− 11·

√

849409

4000

61679

296352
+ 827·

√

849409

3259872
2, 4 3.8387 5.5731 4.0945

17 -2 11−
√

321

200

201−9·
√

321

32

783+47·
√

321

4000
2, 4 3.8804 5.5854 4.1189

18 -11/4 21−2·
√

237

507

477−27·
√

237

32

1188+80·
√

237

6591
2, 4 3.9602 5.6233 4.1953

19 -1 -1/8 2/5 35/64 2, 2 3.8273 5.5594 4.0579

20 −
√

5/2 (
√

5 − 3)/8 1/2 1/2 2, 2 3.8424 5.5685 4.0776

21 -1 (2 −
√

7)/6 (
√

7 − 1)/4 1/2 2, 2 3.8117 5.5537 4.0513

22 -1 -33/256 64/161 1/2 2, ≈2 3.8047 5.5539 4.0522

23 -1 -33/256 51/128 1/2 ≈2, ≈2 3.8085 5.5549 4.0560

24 -1 -7/64 16/39 1/2 2, ≈2 3.8115 5.5537 4.0512

25 -1 -7/64 105/256 1/2 ≈2, ≈2 3.8123 5.5541 4.0512

r =
√

64a4 − 224a3 + 52a2 + 60a − 15

β = − 4a2 − a − 1.5 − 0.5 · r
4 · (1 + 2a) · (4a2 − 4a + 1)

γ =

(

−a2

4
+

7a

16
+

r − 7

32

)

· (1 + 2a)

δ =
−a2 − a

4
+ r+1

8
(

−4a2 + 7a + 8 + r−7

2

)

· a3 −
(

−5a2 + 35a
4

+ 5r−35

8

)

· a2 +
(

−23a2

4
+ 17a

16
+ 7r−17

32

) (18)
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Figure 7: Cases 0 . . . 10: a) movement of the zeros of

the analysis low-pass filter dependent on α, β, γ and

δ; b) frequency responses of analysis filters.

Keeping constraint (13) and ignoring (12) instead

releases a pair of zeros in H1(z) and G0(z) leading to

(Ñ , N) = (2, 4) filter banks. The dependency of β,

γ, and δ on α is shown in equation (18). Owing to the

complex relations between the weights, their depen-

dency is expressed utilising the intermediate variable

r.

Based on the variation of α, different sets of lift-

ing weights have been derived (Cases 11 . . . 18). The

domain of definition of α is, however, much more

restricted than for the (4, 2) filter banks due to the

square root in r.

Figure 8 shows the spectral properties of some

designed (2, 4)-filters. The complex pairs of zeros on

the unit circle in Figure 8a) belong to cases 17 and 18.

In contrast to the (4,2) filter banks, now the analysis

high-pass filter is more affected by the parameterisa-

tion than the low-pass filter, as can be seen in Figure

8b).

Owing to the good compression results for case

13, which has one integer factor (α = −1), expe-

riments have been carried out, whether the release

of even more vanishing moments can positively in-
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Figure 8: Cases 11 . . . 18: a) movement of the zeros

of the analysis high-pass filter dependent on α, β, γ
and δ; b) frequency responses of analysis filters.

fluence the compression results, while keeping the

lengths of the impulse responses. Accordingly, both

the constraint (12) and the condition (13) were re-

moved. The analysis filters (cases 19 to 21) show only

two vanishing moments each.

Finally, it was investigated, whether the irrational

numbers can be approximated by rational numbers

(cases 22 and 24) or even by fractions in which the

denominator is a power of two (cases 23 and 25). The

latter avoids any divisions in computation, since they

can be substituted by bitshift operations. This sim-

plifies, for instance, the implementation in hardware

[14]. Figure 9 shows the spectra of selected cases in

comparison to the original (Ñ , N) = (4, 4) analysis

filters. It can be seen that the magnitude responses are

still similar to the original one.

The zero-pole-diagrams in Figure 10 reveal the

non-existence of multiple zeros in case 25. They are

merely close to z = −1 and z = 1, respectively.

4 Compression results

The performance of the designed filter banks has been

tested using the green component of three typical im-

ages (see Fig. 6). Albeit the usage of only three sam-

ples may not allow a full statistical analysis, it never-

theless gives a very useful impression.

The different wavelet filter banks have been im-
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Figure 9: Cases 19 . . . 25: frequency responses of

analysis filters in comparison to case 6.
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Figure 10: Case 25: zeros of the analysis filters.

plemented in a JPEG2000-like compression system.

The last three columns of Table 1 contain the bitrates

resulting from the lossless compression of the three

images.

Case 0 corresponds to the 5/3 filter bank, which

is used in the JPEG2000 Standard for reversible com-

pression. As can be seen, the bitrates are much lower

compared to the result achieved using the 9/7 filters

with a maximum number of vanishing moments (case

6).

Releasing two vanishing moments in the analysis

low-pass filter enables the design of filter banks with

better performance. Case 8 yields the best results on

average for (4,2) filter banks.

If the number of multiple zeros is reduced in the

analysis high-pass filter instead, even lower bitrates

can be obtained (case 13). Please note that in both

cases at least one factor out of α, β, γ, and δ is equal

to one.

The compression performance can be further im-

proved by relaxing the conditions for multiple zeros

in both the high-pass and the low-pass analysis filters.

Case 21 has been found the best for (2,2) filter banks

with 9 and 7 taps. Interestingly, the approximation of

the irrational numbers β and γ of case 21 by ratio-

nal numbers does not influence the performance very

much (cases 22-25).

5 Discussion

Using the flow structure for 9/7 wavelet filter banks

and setting either α = 0 or δ = 0 would lead to a

lifting scheme with three lifting steps and analysis fil-

ters having impulse responses with 7 (low pass) and 5

taps (high pass) or 5/7 filters, respectively. As the cor-

responding compression results are distinctly worse

compared to the 9/7 filters, they are not considered

here.

The bitrates listed in Table 1 indicate the superi-

ority of the simple 5/3 filter bank. The rounding of

intermediate values at each single lifting step, which

must be introduced to enable the mapping of integer

signal samples to integer sub-band values, affects the

characteristic of the filters. They are no longer neces-

sarily true low- or high-pass filters. The more lifting

steps are involved, the higher is the degradation of the

filter properties. Figure 11 shows the deviation of the

magnitude response (cases 0 and 6) depending on the

value of a single impulse functioning as input signal.

The smaller the input value the higher the effect of

rounding.

The reasons for the superiority of the 5/3 filters

lie in the minimal accumulated influence of round-

ing at each lifting step leading to a minimal change

in the filter characteristics (Fig. 11a). Not only the

number of steps is lower (only two instead of four in

all other cases), but also the rounding error in its first

step is small, since the factor of α=−1/2 only leads

to errors when the sum of x2m and x2m+2 is odd (see

eq.(1), first equation). The degradation of the mag-

nitude response of the 9/7 filter, case 6, is distinctly

higher (Fig. 11b). This might lead to sub-band signals

with less inherent correlation adversely affecting the

signal decomposition cascade and the coding stage.

More investigations are needed for the exploration of

the exact reasons.

Comparing the compression results of cases 1 to
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Figure 11: Change of magnitude response caused

by rounding to integer values: a) case 0; b) case 6.

(solid: transfer function without rounding; dash, dash-

dot, and dot indicate signal values of 63, 31, and 15

used for determination of the impulse responses with

rounding)

18, it is interesting to see that case 13 is the best 9/7 fil-

ter bank for all three test images. One reason could be

the absence of rounding errors in the first lifting step

(α = −1), but this also holds true for case 1 having

a distinctly worse performance. Figure 12 shows the

affected filter characteristics. It is likely that the rela-

tively high gain of the low-pass filter of case 1 leads

to an unfavourable propagation of signal energy from

one decomposition level to the next.

Owing to the non-linear rounding effects, the fil-

ter spectra are changing when applied to varying sig-

nals and do not show multiple zeros in many cases.

That is why the vanishing moments are less important

in the filter design as long as the general spectral char-

acteristics are maintained.

The original aim was to design wavelet filter

banks for lossless compression. However, it also may

be of interest how the filter bank according to case

25 performs in lossy image compression, since its im-

plementation in hardware does not need any division.

The results are depicted in Figure 13. In comparison

to the 9/7 filter bank used in JPEG2000 (case 6), there

is a drop in compression for the image ‘kodim07’, no

difference for ‘kodim09’, and even a slight improve-
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Figure 12: Change of magnitude response caused by

rounding to integer values: a) case 1; b) case 13.
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Figure 13: Comparison of lossy compression using

filter banks cases 0, 6, and 25; a) images kodim07 and

kodim09, b) image kodim08
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ment for ‘kodim08’. Therefore, case 25 seems to be

competitive to the standard 9/7 wavelet filter bank to

a certain extent.

6 Summary

A new lifting-based method for filter design has been

proposed which has the advantage of determining co-

efficients directly instead of factorising the known fil-

ter banks, as introduced in [4] and extended for M-

channel filter banks in [15]. The method was demon-

strated based on 9/7 wavelet filters, but is applica-

ble when designing arbitrary lifting-based filter banks.

Even keeping the structure of Figure 2 and exchang-

ing the constraints, impulse responses with different

lengths can be derived, as, for example, in the 5/3

wavelet filter bank.

The application of the newly designed filters to

lossless image compression did not lead to an im-

provement compared to the 5/3 wavelet filter used in

JPEG2000 due to the disadvantageous non-linear ef-

fects of rounding. It has been demonstrated, however,

that the relaxation of design constraints can lead to an

increased compression performance. Multiple zeros,

also known as vanishing moments, play a less impor-

tant role compared to applications in lossy compres-

sion, since the rounding distorts the spectral charac-

teristic in any case.

The derived filters, however, may also be applied

in lossy compression systems, where rounding to in-

tegers is not required. As a side result of the investi-

gations made, a filter bank has been found that can be

implemented in integer arithmetic without divisions

and still shows competitive compression performance

compared to the 9/7 filter bank having a maximum

number of vanishing moments.
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