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Abstract: - The Direction of Arrival (DOA) estimation methods are useful in Sonar, 
Radar and Advanced Satellite and Cellular Communication systems. In this paper 
different Direction of Arrival(DOA) methods such as  Coherent Signal Subspace 
Processing (CSSM), the Weighted Average of Signal Subspaces (WAVES) and Test of 
Orthogonality of Projected Subspaces (TOPS) and Incoherent MUSIC(IMUSIC) is 
presented and their performance is also compared . The TOPS method performs better 
than others in mid signal–to-noise ratio (SNR) ranges, while CSSM and WAVES work 
better in low SNR. Incoherent methods like IMUSIC works best at high SNR. 
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1   Introduction 
 
The problem of locating radiating sources 
with sensor arrays has been a central topic of 
Signal Processing. Direction–finding 
algorithms have straight forward 
applications in Sonar and Radar and are also 
useful in Advanced Satellite and  Cellular 
Communication systems for adaptive 
beamforming of smart antennas. In this 
research paper, we present an overview of 
some of the already existing wideband DOA 
estimation methods such as CSSM, WAVES 
and TOPS. The TOPS method performs 
better than others in mid signal–to-noise 
ratio (SNR) ranges, while CSSM and  
 
WAVES work better in low SNR. 
Incoherent methods like IMUSIC works best 
at high SNR. We consider an array of M 
wide-band sensors which receive the 
wavefield   generated by d  wide bandpass 
sources in the presence of an arbitrary noise  
 
 

 
wave field. The array geometry can be 
arbitrary but known to the processor The 
source signal vector is, 
 
S(t)=[s1(t),s2(t),..,sd(t)]T                              (1) 
 
is assumed to be stationary over the 
observation interval TO with zero mean. 
Superscripts T and H denote transpose and 
Hermitian transpose, respectively. The source–
spectral density matrix is denoted as Ps (f), f 
€ F+ = [f0 –BW/2,f0 +BW/2] and F– =[-f0 –
BW/2, -f0 + BW/2] with BW comparable to 
f0. Ps(f) is an arbitrary d × d nonnegative 
Hermitian matrix unknown to the processor.  
The algorithm for CSSM is based on an 
appropriate frequency- domain averaging of 
the narrowband spatial covariance matrices. 
The frequency domain averaging can 
remove the  singularity in Ps(f). 
The noise wavefield  is assumed to be 
independent of the source signals with an 
arbitrary noise spectral density matrix Pn(f), 
M×M known to the system designer except 
for a multiplicative constant σn 2. The array 
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output  x(t), M×1, has a spectral density 
matrix , 
 
P(f) =A(f)Ps(f)AH(f)+σn

2Pn(fj)                   (2)    
 
where A(f) is M × d transfer matrix of 
source- sensor array system  with respect to 
some chosen reference point. It is assumed 
that the sensor number   M is larger than the 
number of sources d and that the rank of 
A(f) is equal to d for any frequency and 
angles of arrival. The array output vector 
x(t) is first decomposed in the temporal 
domain into non-overlapping narrow-band 
components  by using Discrete Fourier 
Transform (DFT) over a time segment of  
ΔT, the decomposed narrow-band 
components are uncorrelated and the 
covariance matrix for the component fj can 
be expressed as , 
 
cov(X(fi)) = (1/ΔT) Px (fj )                                     
 
=  (1/ΔT)A(fj )Ps(fj )AH(f j ) + ((σn 2)/  ΔT). 
Pn(fj) , 
 
 j=1,2….,J.                                                 (3) 
 
We assume that the array output x(t) 
observed over T0 seconds  is sectioned into 
K  subintervals of duration  ΔTs  each. Thus,  
ΔT is the duration of one snapshot in the 
usual terminology of narrow-band array 
processing and K is the total number of 
snapshots. We denote the jth narrow-band 
component obtained from the kth  snap shot 
by Xk (fj ) ,k=  1,2…,K, and j=1,2…,J. Our 
aim is to determine the number of sources d 
and estimate the angles θi, i=1,2,…d from 
data Xk(fj),k=1,2,..K and j=1,2…J. [1]   
 
 
2 Coherent Signal Subspace 
Processing   
 
Coherent Signal Subspace Processing 
(CSSM) presents a method of single signal-
subspace for high resolution-estimation of 
the angles of arrival  of multiple wideband 
plane waves. This technique relies on an 

approximately coherent combination of  the 
spatial signal spaces of the temporally 
narrow-band decomposition of the received 
signal vector from an array of sensors. The 
algorithm for CSSM is presented. It is 
possible to combine the signal subspaces at 
different frequencies in a manner to generate 
a single signal subspace  with algebraic 
properties indicative of  the number of 
sources  and angles of arrival. The following 
two theorems are considered for CSSM 
method.[1] 
 
Theorem 1: Under the condition that   
A(fj), j=1,2…,J, have a rank of d, there exist 
nonsingular M×M matrices T(fj ), j=1,2,…,J 
such that  
 
T(fj)A(fj)=A(f0),j=1,2,…J.                         (4) 
   
Theorem   2: Let  λi and ei , i=1,2,…,M be 
the eigen values and the corresponding eigen 
vectors of the matrix pencil (R,Rn) with λi   
in the descending order. The following is 
true. 

1) λd+1  =  λd+2 = ….=  λM = σn 2  ; 
2) the column span of En = [ ed+1 ,….,em 

]  is orthogonal to the column span of 
{A(f0)},i.e., AH(f0)En  = 0. 

 
To estimate the coherent signal   subspace, 
we need to estimate the covariance matrices 
and the transformation matrices using the 
observed data. The maximum-likelihood 
estimation of Cov(X(fj)) is, under the 
normality condition ,simply the snapshot 
averaged cross-products of Xk(fj ), 
k=1,2…K, i.e., 
                          K   
C^(X(fj ))= 1/K ∑ Xk(fj)Xk

H(fj ),j=1,2,…,J             
                        k=1                                    (5) 
 
It is clear from its definition that 
construction of T(fj) requires a knowledge  
of the unknown angles of arrival. A natural 
estimator of T, uses preliminary estimates of 
angles in its formulation. We hypothesize 
that a knowledge of the neighbourhoods of 
these angles is sufficient to effect the 
advantages of coherent processing. . The 
steps used for coherent signal-subspace 
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processing in the simulations are given 
below. Variations of these steps especially 
in obtaining the initial estimates of the 
angles, are possible. 
       1) DFT the array output; 
       2)Form C^(X(fj)) and perform a       
preliminary estimation of approximate 
central angles of arrival  ß1 , ß2 ,…, ßd1 using 
spatial periodogram as given by equation 
(5); 
        3) Form T(jj ) using equation (6) or (7) 
if d1= 1; 
        4) Form R^ or Rn

^ using equation (8) or 
(9); 
        5) Obtain λi

^  and ei
^; 

        6) Determine d^ using equation 
(10),(11)and (12) to determine Es

^ or En
^ ; 

        7) Determine the peak positions in a so-
called spatial spectrum , for example 
,MUSIC, given by equation (13) 
 
T^(fj)= [Aß(f0 )/B(f0)][Aß (fj )/B(fj )] –1 ,    
 
j=1,2,….J                                                   (6) 
 
T^(fj)= |a1ß(f0 )/a1ß(fj )  …………   0|             
 |            a2ß(f0 )/a2ß(fj )  …               │  

                                                             

It is pointed out that  steps 3) to 7) above 
can be iterated to improve the estimates.  
The problem of determining  the correct 
number (detection) and angles of arrival of 
multiple wide-band plane waves based on 
measurements by an array of sensors was 
considered. The signal subspace approach 
was selected due to its proven high  
resolution  angle estimation properties in the 
narrow-band case. In this proposed 
approach, a combined signal subspace is 
formulated that is a result of aligning and 
averaging the signal subspaces   from 
constituent narrow-band   spaces in the 
temporospatial received vectors. The 
coherently constructed signal space results 
in an appropriately frequency-averaged 
estimate of the spatial covariance matrix that 
is statistically more accurate and immune to 
the degree of correlation between the 
sources. Therefore, Akaike’s information  
criterion in this space yields accurate 
determination of number of sources, and the 
application of methods such as MUSIC give 
estimates of the angles  at a much lower 
signal-to-noise ratio than corresponding 
non-coherent methods.[1] 

            │  0                          aMß(f0 )/aMß(fj) │   
                                                                          
      (7)  
 
             J 
R^=ΔT∑T^(fj)C^(X(fj))T^H(fj)                                   
 j=1                                               (8) 
  
              J 
R^

n =     ∑ T^(fj )Pn(fj )T^H (fj )                         
             j=1                                                (9) 
 
AICE(d) = K (M-d)log (a0 /g0 ) +d(2M-d)                    
               (10) 
 
                      M 
a0 =(1/M–d ) ∑  λi

^                                                       (11)     

                      i=d+1 
 
           M 
g0 = { ∏λi

^  }1/M – d                                        (12)                                         

The standard CSSM has several drawbacks. 
The arrays cannot be generally focused over 
the entire field of view with small errors by 
linear transformations. With this constraint, 
the approximation error increases because 
fewer degrees of freedom are available for 
design. Most signal subspace and algorithms 
are sensitive to model errors. The 
background noise becomes “colored” in an 
unpredictable manner in presence of 
focusing errors. Most algorithms focus the 

          i=d+1 
 
P^ (θ)= 1/(Aθ

H (f0 ) En
^  En 

^H
  Aθ(f0) )    

 
   = 1/(Aθ

H(f0)Rn
^–1Aθ(f0) –Aθ

H (f0 )Es
^Es

^H 
Aθ(f0))                                                      (13) 
 

 
 
 
3   Weighted Average of Signal 
Subspaces 
 
3.1   Introduction 
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array only over narrow angular sectors that 
are selected after a preliminary beam 
forming search. Source cross-spectra and 
focusing errors vary across the sensor- 
passband .   
 
 But the Weighted Average of Signal 
Subspaces(WAVES) strategy combines   a  
robust near-optimal data-adaptive statistic, 
with an enhanced design of focusing 
matrices to ensure a statistically robust 
preprocessing of wideband data. The overall 
sensitivity of  WAVES to various error 
sources ,such as imperfect array focusing, is 
also reduced with respect to traditional 
CSSM algorithm. The intrinsic redundancy 
of wideband array data due to large time-
bandwith   product of  sources is exploited 
in WAVES., which furnishes a basis for 
universal focused signal subspace. 
Signal Subspace eigenvectors estimated 
from narrowband decomposition of the array 
outputs and properly focused generate a 
pseudodata  matrix ,which approximately 
obeys the  narrowband array model. The 
WAVES estimate is obtained from this 
matrix through the concept of 
pseudocovariance  which is drawn from 
robust statistics. The spatial data covariance 
matrix (SCM) eigenvectors are adaptively 
weighted to limit the impact of model errors 
on the final estimate. 
 
The sample WAVES is consistent under the 
hypothesis of absence of focusing errors 
when nonunitary focusing matrices are used. 
It is less sensitive than the Universal spatial 
covariance  matrix (USCM) against actual 
focusing errors, mistakes in selection of 
signalsubspace  eigen vectors and the 
presence of weak narrowband sources. 
Another critical issue for the statistical 
performance of coherent wideband 
processing is the synthesis of focusing 
matrices. Classical least square fitting is not 
directly related to optimization of  statistical  
performance. Therefore, WAVES   is a new 
angle-dependent error criterion for coherent 
focusing. It relies on the standard results of 
the aymptotical analysis of the subspace 
algorithms , to reduce the bias of 

beamforming invariance CSSM focusing , 
which does not require a preliminary search 
over large angular sectors .[2] 
 
3.2  Signal model  

 
 An M-element array receives D signals, 
radiated by point sources.  Each sensor 
signal is converted to the baseband and 
is time sampled  and frequency 
decomposed using a filter bank or the 
DFT into J complex subband 
components sampled with period T. The 
bandwidth of each filter is much smaller 
than its central frequency fi (i=1,2,…,J ) 
so that each subband  snapshot 
xi(nT)(n=0,1…..,N-1) approximately 
satisfies the classical  narrowband 
equation. 
 
xi(nT)=A(fi)si(nT)+ni(nT)                 (14) 
 
Where 
 
A(fi)=[a1(fi,θ1),….,aD(fi,θD)]              (15) 
 
is the M×D array transfer matrix at 
frequency fi and si(nT) is the vector of 
complex source signals. Columns of 
A(fi) are referred to as steering vectors 
and represent the array response to each 
wavefront. It is assumed that the generic 
steering vectors a(f,θ) has unit L2 norm 
and is a known, continous and 
differentiable function  of frequency f 
and the P location parameters {¢p; 
p=1,2,…,P}contained in vector 
θ(azimuth, elevation, range,…).For 
unique identifiability of the model, A(fi) 
must have full rank for any set of 
D+1<= M source locations. ni(nT) is the 
M×1 vector of additive noise at 
frequency fi and time nT.    The 
background noise is considered white 
and isotropic at any frequency, with 
variance σn 2 .Coloured noise whose 
spatio-temporal covariance is known, 
can be handled by prewhitening. The 
SCM at frequency fi  , Rxx(fi) obeys the 
following equation , 
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Rxx(fi)= E[xi(nT) xi
H(nT)] 

       
          =A(fi)Rss(fi)AH(fi)+σn

2IM .       (16) 
  
The eigenvectors corresponding to the 
 ήi ≤ D largest spatial covariance matrix 
eigen values λ1(fi)≥λ2(fi)….,≥λήi(fi), 
collected in the matrix Es(fi ) constitute a 
basis for signal subspace at frequency fi. 
The signal subspace is contained in the 
range of A(fi ).The orthogonal 
complement to the signal subspace is 
called the noise subspace   and is 
defined   by the basis En(fi) of M-ήi 
eigenvectors that are associated with 
smallest eigenvalue  σn 2 of Rxx(fi). In 
practice ,  Rxx(fi) is estimated from N≥≥ 
M snapshots. The SCM estimate 
Rxx(fi)must be consistent and 
asymptotically unbiased.[2] 
 
3.3   Wideband   WSF Criterion 
and Weighted Average of   Signal 
Subspaces (WAVES) 
 
The classical  CSSM spatially 
transforms both signals and noise .The 
narrowband Weighted subspace 
fitting(WSF) algorithm uses only signal 
subspace eigenvectors  to get 
asymptotically efficient DOA estimates 
Θ̃

WSF  . Extension of WSF criterion to the 
wideband case is straightforward since 
the global and concentrated Gaussian 
log-likelihood is simply the sum of log-
likelihoods of narrowband components 
if snapshots can be considered 
independent among different frequency 
bins. 
                             J 
Θ̃

WSF=argΘ   min {Σ|A(fi , Θ)C ̃
i
  –  

                             i=1 
E ̃

s(fi)P(fi)|2F}.                                     (17) 
 
E ̃

S is the estimated signal subspace at 
frequency fi . For Gaussian signals and 
noise perfectly calibrated array, optimal 
ήi × ήi weighting matrices P(fi) are 
diagonal with elements proportional to , 
 

P(fi)[k,k] =(λk(fi)–σn 2 )/(λk(fi)σn
2)1/2     (18) 

 
Each D × ήi   matrix Ci in (17) satisfies 
the relation C̃

i =  P(fi) Ẽ
s(fi )A†(fi, Θ). 

Optimality is preserved even if 
consistent estimates of weights are 
substituted in place of true values. In 
case of Weighted Average of Signal 
Subspaces(WAVES) , the diagonal 
shape of the optimal P(fi) in (18) means 
that sample signal subspace  
eigenvectors work like independent 
observations, at least for Gaussian 
signals. This property can be exploited 
to develop a new global statistic, which 
can replace USCM. Solution of  (17) 
does not change if single terms of 
summation are premultiplied by unitary    
M× M matrices T(fi) that satisfy the 
perfect focusing condition ,hence 
equation (17) becomes 
                               J 
Θ̃

WSF  = arg Θ  min {Σ  |B( f0 , Θ)C ̃
i
  –  

                               i=1 
T(fi)E ̃

s(fi)P(fi)|2F}.                              (19)  
 
Equation (19) suggests the introduction 
of the matrix   
 
          J 
Z ̃  =(Σηi)–1/2.[ T(f1)Ẽ

s(f1)P(f1),………….. 
         i=1 
……………., T(fJ)Ẽ

s(fJ)P(fJ)] 
  
=η–1/2[Z ̃

1,…..,ZJ̃].                               (20) 
 
The next two theorems state that the d ≤ 
D principal left singular vectors  of Z̃  
asymptotically  furnish an estimate of  
the universal signal subspace. 
 
Theorem 1   :  The sample matrix Z ̃ 
converges with probability 1  to a fixed 
matrix Z under the following 
assumptions. 
1) Each sample subspace E ̃

s(fi) 
converges w.p. 1 to true Es(fi) as N→∞. 
2)  Matrices T(fi) and  P(fi) have full 
rank and finite L2 norm. 
3)  SCM eigenvectors are made unique 
by a proper scaling. 
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Theorem 2   :  If ,in addition to 
assumptions of Theorem 1,focusing 
matrices satisfy equation (21), all 
columns of Z lie in the range of B( f0 ). 
The only tenable conclusion is equation 
(22). 
 
B(f0)=T(fi)A(fi)=[b(f0,θ1)…,b(f0,θD)](21) 
 
Z = η–1/2 B(f0)[C1,….., CJ] =B(f0 )C   (22) 
 
Theorem 2 indicates that the d-
dimensional subspace spanned by 
columns of Z defines a basis for the 
universal signal sub-space. Since this 
subspace can be interpreted as   the 
average of weighted Es(fi)s, therefore it 
is referred to as WAVES. 
 

  3.4 Direction finding using     
 WAVES. 

 
The sample matrix Z ̃ is always full rank 
because of presence of   finite focusing 
and sample errors. Z ̃ can  be considered 
to be pseudodata  matrix, built with 
sample SCM eigenvectors, instead of 
raw array snapshots. Therefore, from  
Theorem1 and  Theorem2, it is quiet 
natural to estimate a basis for the 
WAVES from the d principal left 
singular vectors U ̃

S of the following 
reduced-size SVD (R-SVD) of  Z ̃  
 
                                          
Z ̃  = [U ̃

S  U ̃
N ] [ Σ̃S   0] [ W ̃

S   W ̃
N ]H. (23)   

                      └0  Σ̃N ┘ 
 
This algorithm can be regarded  as a 
total least squares (TLS) approximation 
step attempting to “restore” the original 
rank-d  property of Z. US asymptotically 
converges to WAVES. The basis U ̃

S and 
its orthogonal complement Ũ

N can 
replace the corresponding   CSSM 
universal subspaces E ̃

S and Ẽ
N in any 

subspace based algorithm for direction 
finding. A very basic algorithm 

combining WAVES and MUSIC is 
given below. 
Step 1) For i=1,2,…,J, estimate E ̃

s(fi) 
and ηi from eigen value decomposition 
(EVD)of the sample SCM, 
 

                            N–1   
       R̃

xx(fj) = 1/N ∑    Xi(nT) Xi(nT)H .          
                            n=0 
        
       Step2)For i =1,2…,J,Compute T(fi )and  
P(fi)             according to some available 
criterion.  
       Step 3) Form the matrix Z ̃ according to 
(20). 
Step 4) Estimate the number of sources D ̃, 
the WAVES Ũ

S and  Ũ
N from R-SVD of Z ̃ 

from (23) 
 
Step 5) Estimate angles using the MUSIC 
criterion with Ũ

N  in place of   Ẽ
N. 

 
 
 
An important issue for the consistency of 
DOA  estimators based on Z̃ is that the 
number of free parameters of matrix C 
remains finite ,regardless of the number of 
snapshots used to form each SCM. In this 
case , WAVES spans exactly the range of  
B(f0). Fast iterative algorithms to compute 
the EVD of    R ̃

xx(fj) and the R-SVD as 
given by equation (23) can be calculated.[2]  
 
3.5 Error Analysis of WAVES. 
 
A rigourous error analysis of WAVES 
appears mathematically intractable. An 
approach based on standard first-order 
perturbative expansions of sample signal 
subspaces and WAVES worked 
satisfactorily under the hypothesis of 
sufficiently small estimation errors .This 
analysis shed light on the asymptotical 
performance of WAVES and allowed the 
synthesis of algorithms resistant to large 
errors .  This analysis is divided into three 
parts .[2] 
 

WSEAS TRANSACTIONS on SIGNAL PROCESSING Sandeep Santosh, O. P. Sahu, Monika Aggarwal

ISSN: 1790-5052 16 Issue 1, Volume 5, January 2009



1) Sensitivity of the sample signal 
subspaces. 

2) TLS estimation  of   WAVES. 
3) Asymptotical properties of   DOA 

estimates.   
 
The various Sample Subspace Errors are 
Finite Sample Errors, Calibration   and 
Focusing Errors and other Error   Sources. 
 
3.6 Robust Estimation of WAVES. 
 
Signal subspace misalignment essentially 
produces a leakage in error subspace, which 
can mask weak signal components and 
generate “ghost” sources .These effects 
resemble those induced by the presence of 
the outliers in multichannel   data matrices. 
Most of the theory developed for robust 
covariance estimation cannot be directly 
extended to the problem  at hand since 
fundamental probabilistic concepts, like 
“distribution,” “contamination”, and 
“robustness” itself become intrinsically 
vague when applied to matrix  Z̃ ̃.. A robust 
WAVES estimator should combat 
mismodeling.  
 
The mathematical tools developed in robust 
statistics can be extremely effective as 
heuristic optimization procedures if linked 
to WAVES concept. It is likely that some 
corrupted eigenvectors exist and “blow up” 
the WAVES estimate obtained by the SVD. 
Since transformed eigenvectors can be 
considered to be nearly  independent 
observations of the array response in 
frequency and space ,hence their  impact on  
WAVES can be effectively controlled by 
adaptively scaling each column  of  Z . This 
operation is equivalent to optimizing 
diagonal matrices P(fi) and ensures that the 
WAVES matrices is invariant with respect 
to unitary column transformations of  Z  just 
as the sample Gaussian ML SCM and the 
USCM. If most eigenvector weights remain  
nonzero, Theorem 2 still guarantees the 
asymptotical convergence of WAVES. The 
robust estimation of WAVES has following 
steps i.e, Algorithm Initialization , Weight 

Optimization , Choice of s(x), Eigenvector 
Selection ̃,Eigenvector Whitening and 
Enhanced Synthesis of focusing matrices.[2] 
 
 
4 Test of Orthogonality of 
Projected Subspaces 
 
4.1   Introduction 
 
This new technique estimates DOAs by 
measuring the orthogonal relation between 
signal and noise subspaces of  multiple 
frequency components of the sources. TOPS 
can be used with arbitrary shaped one-
dimensional or two-dimensional arrays. 
Unlike other coherent wideband methods 
such as CSSM and WAVES, the new 
method does not require any preprocessing 
for initial values. This new technique  
performs better than others in mid signal-to-
noise ratio  (SNR) ranges ,while coherent 
methods work best in low SNR and 
incoherent methods work best in high SNR. 
Unlike coherent methods that must align the 
signal and noise subspaces to form a viable 
general covariance matrix, TOPS determines 
whether or not  a DOA dependent 
transformation is able to achieve the 
alignment. Although, TOPS does not cohere 
the subspaces over frequency to achieve the 
processing gain , the multiple alignment test 
over frequency bins leads to a more robust 
estimator at lower SNR than incoherent 
methods.  
The advantages of TOPS are        1) It does 
not require focusing angles or beamforming 
matrix, 2) It does not suffer from bias at 
large SNR and 3) at low SNR , it better 
integrates frequency bins than incoherent 
methods.      Thus, TOPS fills a gap between 
coherent and incoherent methods. Similar to 
previous wideband methods, TOPS uses the 
DFT of sensor outputs given by equation 
(24) 
 
X(ωi)=A(ωi,θ)S(ωi)+N(ωi),i= 0,1,..,K−1.(24)   
 
We consider linear arrays with arbitrary 
sensor locations along with additional 
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constraint that the array manifolds of 
different DOAs should be independent. Like 
CSSM and WAVES, TOPS also uses a 
transformation matrix to exploit multiple 
frequency components. TOPS does not use 
the transformation matrix  to generate the 
general correlation matrix  Rgen. TOPS can 
provide perfect measurements for infinite 
SNR. Like Steered Covariance method 
(STCM), TOPS uses the Rotational Signal 
Subspace (RSS) focusing matrix designed 
for a single DOA. But, TOPS uses the 
transformation matrix at each hypothesized 
DOA to perform an orthogonality test 
between the transformed signal subspace 
and the noise subspace. If the hypothesized 
DOA corresponds to a true DOA  , then 
orthogonality is preserved otherwise not. 
TOPS uses a diagonal unitary 
transformation matrix, similar to STCM 
given by equation (25). 
 
Ti = diag{e j(ω

i 
− ω

0
)  v

0
si n(θ

f
) ,.., e j(ω

i 
− ω

0
)  v

M−1
si 

n(θ
f
)}                                                          (25)   

 
The kth term on the diagonal of the 
transformation matrix Φ(ωi ,θi ) is given as, 
 
[Φ(ωi,θi)](k,k)=exp(−jωi vk sinθi).               (26) 
 
The transformation matrix has been able to 
preserve the array manifold as shown in the 
lemma below. 
 
Lemma 1  : Given a linear array manifold 
ai(θi), and a matrix Φ(ωj ,θj ),the product is a 
new array manifold 
 
  ak(θk)=Φ(ωj,θj)ai(θi)                               (27) 
 
where the relations between frequencies and 
DOAs  are, 
 
ωk=ωi+ωj                                                  (28) 
 
sinθk =(ωi ⁄ ωk ).sinθi +(ωj ⁄ωk). sinθj                (29) 
 
Lemma 2   : Let Δω = ωj − ωi. Then the 
following two range spaces are identical : 
 
R{Φ(Δω ,Φ )Fi}=R{A(ωj,θ^

 )                  (30) 

 
Where the new angles  θ^ depend on Φ in 
the following manner, 
 
[θ^]i = arcsin{(ωi ⁄ ωj ). sinθi +(Δω ⁄ ωj). sinΦ}                        
                (31) 
 
Theorem   : Assume that 2P ≤ M and K ≥ 
P+1. .Let’s  define the M * P matrices Ui(Φ) 
as, 
 
Ui(Φ) =Φ(Δωi,Φ)F0,i = 1,2,…., K−1.      (32) 
 
Where  Δωi = ωi – ω0 , and Φ is a 
hypothesized azimuth angle. Define a P * 
(K−1)(M −P) matrix D(Φ) as, 
 
D(Φ)=[U1

H W1| U2
H W2|….|UK–1

H W K–1 ].   
                (33)  
 
Then the following applies: 
a) If Φ = θl for some l ,  D(Φ) loses its rank 
and becomes rank deficient. 
b) If   D(Φ) is full rank matrix  Φ ≠ θl for all 
l. 
 
This theorem holds as long as the source 
signals are not fully correlated. TOPS works 
when the dimension of Fi is same as that of 
signal subspace for all i. However, when 
some of the sources are fully correlated, the 
dimensionality of signal subspace decreases 
and like the performance of most DOA 
estimators, the performance of TOPS 
degrades. In order to derive TOPS to work 
with arbitrary arrays, the following two 
conditions should hold. 

a) There always exists a transformation 
matrix such as Φ(ω ,Φ) in (27). 

b) The D(Φ) matrix should be full rank 
unless Φ is equal to one of the 
DOAs.[3] 

 
 
 
 
4.2   Signal Subspace Projection 

 
In practise, the correlation matrices are 
unavailable so estimated correlation 
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matrices are used in place of true 
correlation. In order to estimate the 
correlation matrix, the sensor outputs are 
divided into j blocks ,with the number of 
samples in one block  being equal to the 
number of DFT points. If we let xj,I  be the 
sensor DFT output at ω = ωi for the jth block 
,then the estimated correlation matrix is, 
           
          J–1 
R^

i=1/J∑xj,Ixj,I
H                                          (34) 

            j=0 
 
From   R^

i, we can find the signal and noise 
subspaces F^

i and  W^
i. .The DOA estimation 

performance depends on the quality of 
estimated correlation matrix which in turn is 
determined by number of snapshots and the 
SNR, which are not usually under the 
control of the processor. By subspace 
projection it is possible to reduce some error 
terms in the TOPS matrix Dˆ(Φ). If we 
define a projection matrix Pi(θ) on to the 
null space of ai(Φ),then we have, 
 
Pi(Ф) = I –(ai

H (Ф)ai(Ф))–1ai(Ф)ai
H(Ф )   (35) 

 
Hence , we can form a  modified D(Ф) 
matrix where Ui(Ф) is replaced by , 
 
Ui

̉’(Ф)=Pi(Φ)Ui(Φ).                                 (36) 
 
This projection reduces the signal subspace 
component leakage   in the estimated noise 
subspace. Estimates   from this modified 
D(Φ) matrix exhibit less mean square error. 
This projection method is used only when 
the distance between sensors is less than half 
the wavelength of the highest frequency 
used in processing and not the center 
frequency otherwise aliasing occurs.[3] 
 
4.3   Algorithm 
                                                     
Since both the signal subspace and noise 
subspace are estimated, it is unlikely that D 
would ever become rank deficient. We can 
find how close a matrix is to being rank-
deficient by looking at the condition number 
or the minimum singular value of the matrix. 
The smallest singular value is a better choice 

because we are looking for the case where D 
becomes rank deficient when one of its row 
vectors become zero vector. The following 
steps summarize the TOPS method of 
finding DOAs of wideband sources for 1-D 
arrays.  

1) Divide the sensor output into J 
identical sized blocks . 

2) Compute the temporal DFT of the J 
blocks. 

3) For the jth block, select xj,k at 
preselected  ωk, where k= 0,1,….,K–
1 and j=0,1,…J–1. 

4) Compute the signal subspace F1
ˆ and 

the noise subspace WK
ˆ for k = 1, 

…,K–1 by SVD of estimated 
covariance matrices Rˆ

k. 
5) Generate Dˆ(Φ) using (36) and (33) 

for each hypothesized DOA Φ. 
6) Estimate θˆ by, 
       θˆ = arg maxΦ 1/σmin(Φ)   where 
σmin(Φ)                         is the smallest 
singular value of  Dˆ(Φ).The estimation 
is now to find P local maxima by doing 
a one-dimensional search.[3] 

 
4.4   Computational Complexity  
 
It is not easy to calculate the exact 
computational cost for TOPS. The number 
of computations for an M* M  SVD is 
O(M3).The minimum nonzero singular 
values  of the D matrix can be found via an 
SVD  of a P*P matrix ,so O(P3) 
computations have to be done for each 
hypothesized Φ. For CSSM and WAVES , 
once they have formed the coherent 
correlation matrix, only a single SVD is 
required to use a typical narrowband signal 
subspace method. These methods require 
fewer computations than TOPS . But the 
process of finding the RSS focusing 
matrices requires an SVD of a M*M(M › 
2P) matrix for each frequency bin. Thus, if 
we consider the computational cost for 
preprocessing and the performance results, 
TOPS is still a viable alternative choice for 
wideband DOA estimation.[3]   
 
4.5 Concept of Focusing Angles 
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For the coherent methods, the focusing 
angles are one of the most important factors 
that impact the estimator’s  performance . 
Two different kinds of focusing are used in 
the simulation. First, we use perturbations of 
true DOAs by adding Gaussian random 
noise, so  we have  
 
ΘF    N( θ,σ2 

f  I)                                       (37) 
 
as focusing angles .Various values of  σf  
were used in the simulations. The errors in 
focusing angles are usually coupled, so it is 
little bit unrealistic to use independent errors 
between focusing angles. The simulations 
with those perturbed focusing angles can 
give some idea of how much error is 
tolerable. The second type of focusing 
angles is much more realistic. i.e 1) Find 
approximate  DOAs   μi   using low- 
resolution   algorithms and 2) use    μi  , μi + 
0.25BW and μi  - 0.25BW as focusing angles 
where BW denotes the beamwidth. Unlike 
the focusing angles which are fixed earlier, 
we use variable μi’s that are estimated  
during each run. This seems more natural 
since the μi’s  are also random variables. 
Capon’s method is employed as low-
resolution  algorithm to obtain the estimates  
μi . DOA estimates of multiple frequency 
bins by Capon are averaged and used in 
coherent methods .[3]           
 
 
 
5      Incoherent Methods 
 
If  Multiple Signal classification (MUSIC)is 
used as a narrowband method , the wideband 
DOA estimate is  
                 
                    K−1  
θ^ = arg minθ ∑ai

H(θ) WiWi
H ai (θ )         (38) 

                      i=0    
 
where Wi  is the noise subspace at  
frequency ωi . The noise subspace matrix Wi 
is estimated from spatial correlation matrix 
Ri. Since the final estimates are averages of 

magnitude squared functions from different 
signal subspaces, ISSM is called an 
incoherent subspace method.[3] 
 
 
6 Applications in parameter 
estimation  and detection   
 
Some of the main areas of  parameter 
estimation and detection  in array signal 
processing are 1) Personal Communications 
2) Radar and Sonar Communications       
3)Industrial Applications and 4)Future 
Directions. 
 
1)Personal Communications: Receiving 
arrays and related estimation/detection 
techniques have long  been used in High 
Frequency communications . These 
applications have emerged recently and 
received significant attention of the 
researchers for numerous problems in 
personal communications .One of the most 
important problems in multiuser 
asynchronous environment is the inter-user 
interference  which can degrade the 
performance quite severely. This is also the 
case in practical Code-Division Multiple 
Access(CDMA)systems because the varying 
delays of different users induce non-
orthogonal codes. The base stations in 
mobile communication systems are using 
spatial diversity for combating fading due to 
severe multipath . But using an antenna  
array of several elements introduces 
additional degrees of freedom  which is used 
to obtain higher selectivity . An adaptive 
receiving array  is steered in the direction of 
one user at a time while simultaneously 
nulling  interference from other users in the 
same manner as Beamforming  
technique.[4],[5] 
 
2)Radar and Sonar Communications: The 
classical application of  array signal 
processing is in Radar and Sonar , and 
modern model based techniques have also 
found their ways in these areas. The antenna 
array is used for source localization , 
interference cancellation and ground clutter 
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suppression . In Radar ,the mode of 
operation is active. This is because of the 
role of the antenna array based system 
which radiates pulses of electro-magnetic 
energy and listens for return .The parameter 
space of interest may vary according to the 
geometry and sophistication of the antenna 
array. The Radar returns enables estimation 
of parameters such as velocity(Doppler 
frequency), range and Direction of Arrivals 
(DOA) of Targets of interest.. Using passive 
far-field listening arrays only the DOAs  can 
be estimated. 
 
 But in case of  Sonar ,the signal energy is 
usually acoustic, and measured only using 
an array of hydrophones .The Sonar can 
operate in active as well as passive mode .In 
a passive mode the receiving array has the 
capability of detecting and locating distant 
sources. Deformable array models are often 
used in Sonar as the receiving antenna is 
typically towed under water . In an active 
mode, a sonar system emits acoustic 
(electro-magnetic arrays are also  used under 
water)energy and monitors and retrieves any 
existing echo .This can again be used for 
parameter estimation such as bearings and 
velocity using the delay of the echo. Inspite 
of its limitations due to bending speed-of-
propagation profiles and the high 
propagation losses, Sonar remains a reliable 
tool for range, bearing estimation  and other 
imaging tasks in underwater applications 
The difficult propagation conditions 
underwater may call for more complex 
signal modeling such as in matched field 
processing . 
 
3) Industrial Applications: Sensor array 
signal processing techniques have dsrawn 
much interest from industrial application 
such as manufacturing and  medical 
applications. In medical imaging and 
hyperthermia treatment , circular arrays are 
commonly  used as a means to focus energy  
in  both an injection   mode as well as 
reception mode .It has also being used in 
treatment of tumors. In Electrocardiograms, 
planar arrays are used to  track the evolution 
of wavefronts which in turn provide 

information about condition of a patient’s. 
Array Processing methods are also used to 
localize brain activity using bio-magnetic 
sensor arrays .Signals emanating from a 
womb is of  are of more interest than those 
of the mother. Other applications in industry 
are automatic monitoring and  faul 
detection/localization. In engines, sensors 
are placed  in a judicious and convenient 
manner to detect and potentially localize 
faults such as knocks and boken gears. It is 
also used in object shape-characracter 
ization in Tomography.[6]  
 
4) Future Directions: We will be witnessing  
an explosive development of  array 
processing algorithms. We look forward for 
more model based  array signal processing 
in various imaging problems . The examples 
are Synthetic Aperture Radar(SAR) and 
underwater acoustic imaging .The interest in 
remote sensing and imaging is expected to 
grow  due to its applications in the 
environmental studies. Incoherent and 
Coherent Wideband array processing 
techniques are used for   aeroacoustic  
detection and tracking of ground vehicles. 
Target identification using battlefield 
acoustic sensor arrays is an important for the 
army. In applications such as medical 
imaging or nondestructive evaluation active 
sensor array are used. Active sensor arrays 
not only receive but also transmit a signal.  
Seismic sensor  arrays are used for buried 
landmine detection .In seismic array   
system , multiple transmitters and multiple 
receivers are used. Each transmitter sends an 
acoustic pulse into the medium and all the 
receivers record the reflection at the same 
time . The time-domain duration of the 
transmitted pulse should be as short as 
possible in order to increase the range 
resolution so its frequency bandwidth is 
wide .TOPS can be tested with seismic 
sensor data.[7] 
 
6      Conclusion 
 
 IMUSIC works best at high SNR. Coherent 
methods work best in low SNR. The 
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performance of TOPS lies between coherent 
and incoherent methods in the whole SNR 
range. This method is different from   
coherent methods that form a general 
coherent correlation matrix using focusing 
angles. It is different from usual incoherent 
methods since it takes advantage of  
subspaces from multiple frequencies 
simultaneously. TOPS   represents a new 
way of processing multiple subspaces and 
would be able to improve DOA estimates 
not only for wideband sources but also for 
acoustic sources having multiple harmonics. 
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