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  Abstract: In this paper a novel Modified Simulated Annealing Algorithm (MSAA) is used as global 
optimization technique to find the solution of combinatorial optimization problem which is usually difficult to 
tackle. MSAA combines good methodologies like global minimum converging property of Simulated 
Annealing algorithm and fast convergence rate of Hamming scan algorithm.    Orthogonal Netted Radar System 
(ONRS) and spread spectrum communication system can fundamentally improve the system performance by 
using a group of specially designed orthogonal signals. MSAA is used to synthesize orthogonal eight-phase 
sequence sets with good autocorrelation and cross correlation properties.  Some of the synthesized sequence 
sets are presented, and their properties are better than four-phase sequence sets   known in the literature. The 
synthesized eight-phase sequence sets are promising for practical application to Netted Radar System and 
spread spectrum communication.  The effect of Doppler shift on synthesized sequences set is also investigated 
using ambiguity function. The convergence rate of the algorithm is shown to be good.  
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1 Introduction 
 
     Polyphase signals have been widely used in radar 
and communication. But the synthesis of polyphase 
coded radar signal with good correlation properties is 
a nonlinear multivariable optimization problem, 
which is usually difficult to tackle. The Simulated 
Annealing Algorithm (SAA), introduced by 
Kirkpatrick etal [1, 2]  proved  to be an efficient and 
powerful tool to find optimal or near optimal 
solutions for complex multivariable nonlinear 
functions. The Hamming Scan Algorithm (HSA) is a 
traditional greedy optimization algorithm, which 
searches in the neighborhood of the point in all 
directions to reduce the cost function and has fast 
convergence rate  [3, 4]. The proposed algorithm has 
fast convergence property of HSA and global 
minimum capability of SAA [5, 6]. The suggested 
algorithm preserves the analogy between the search 
for a minimum cost function and physical process by 
which a material changes state while minimizing its 
energy. This algorithm is used to design orthogonal   
eight-phase coded sequence sets that can be used in 
netted   radar systems / multiple radar systems and  
spread spectrum communication. The radar used 
orthogonal signal can be termed as Orthogonal  
 

 
Netted   Radar Systems (ONRS). The several authors 
have worked in the design the coded signal with good  
correlation properties  which are widely used in  
communication and radar. [7-10] 
 
 
2. Orthogonal eight-phase signal design  
 
        Assuming that an orthogonal eight-phase code 
set consists of   L signals with each signal containing  
N subpulses represented by a complex number 
sequence, one can express the signal set as 
follows[11]: 
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where   n)(lφ  is the phase of bit  n of signal l  in the 
signal set and lies between 0 and 2π. If the number of 
the distinct phases available to be chosen for each 
subpulses in a code sequence is M, the phase for a 
sub pulse can only be selected from the  following 
admissible alphabets: 
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For example, if M = 4, then values of 
421 ,.....,, ψψψ will be 0, π/2, π and  3π/2 respectively. 

Considering a eight-phase code set S with code 
length  N, set size L, and distinct phase number M, 
one can concisely represent the phase values of S 
with the following L by N phase matrix:   
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where the phase sequence in row l  (1 ≤  l  ≤ L ) 
is the eight-phase sequence of signal l and all the 
elements in the matrix can only be chosen from the 
phase set in eq (2). The autocorrelation and 
crosscorrelation properties of orthogonal eight-phase 
codes should satisfy or nearly satisfy the following: 
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where k),( lsA  and k),,( qp ssC  are the aperiodic 

autocorrelation function of eight-phase sequence ls  
and the crosscorrelation function of sequences ps and 

qs respectively, the asterisk denotes the complex 
conjugate, and  k is the discrete time index. The 
design of an orthogonal eight-phase code set is 
equivalent to the construction of a eight-phase matrix 
S(L,N,M) in eq (3) with the autocorrelation and 
crosscorrelation constraints in eq (4) and eq (5). It 
seems to be very difficult to algebraically design a set 
of three or more sequences with low crosscorrelation 
between any two sequences in the set. Alternatively, 
a more practical approach to design a eight-phase 

code set with properties in eq (4) and eq (5) is to 
numerically search the best eight-phase sequences by 
minimizing a cost function that measures the degree 
to which a specific result meets the design 
requirements. For the design of orthogonal eight-
phase code sets used in ONRS, the cost function is 
based on the sum of the square of maximum   
autocorrelation sidelobe peaks and the square of 
maximum crosscorrelation peaks. Hence, from eq (4) 
and eq (5), the cost function can be written as 
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where  λ is the weighting coefficient between 
autocorrelation function and crosscorrelation function 
in the cost function. With given values of N, M, and 
L, the minimization of cost function in eq (6) 
generates a group of eight-phase sequences that are 
automatically constrained by eq (4) and eq (5). In 
other words, the objective is that the autocorrelation 
sidelobe peaks and the crosscorrelation peaks for all 
lags of  S must be as small as possible. 
 
 
3. Simulated Annealing Algorithm 
 
         The simulated annealing technique, introduced 
by Kirkpatrick et al [1] proved efficient and powerful 
tool to find optimal or near optimal solutions for 
complex multivariable nonlinear functions  the major 
advantage of the SA algorithm over the traditional 
“greedy” optimization algorithms is the ability to 
avoid becoming trapped in local optima during the 
search process. The algorithm employs a random 
variable search that not only accepts the changes that 
decrease the cost function but some changes that 
increase it with a probability of 
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as well, where is the EΔ  cost change due to a 
random research, and Ti is the control parameter, 
which by analogy is known as the system 
“temperature.” Normally, the temperature Ti slowly 
decreases from a large value to a very small one 
during the annealing process. The SA algorithm can 
find the global optimum of a nonlinear multivariable 
function by carefully controlling the change rate of 
the system temperature [12, 14 ]. As shown in (9), for 
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SA algorithms, the probability for the system state 
change due to the random variable search is 
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Consequently, the system state change probability is 
decided by the subsequent cost value change only, 
and the random system state change at a temperature 
is indeed a Markov chain. 
 
 
4.  Hamming Scan Algorithm 
 
The Hamming scan  algorithm is a  traditional greedy 
optimization algorithm, which searches along the 
directions to reduce the cost function and  has  fast 
convergence rate. The basic difference between 
Genetic algorithm and Hamming scan algorithm is 
that Genetic algorithm uses random but possibly 
multiple mutations. The Mutation is a term 
metaphorically used for a change in an element in the 
sequence.  For example if a phase value of a 
polyphase sequence is ψm (1 ≤ m ≤ M), i.e., one term 
in the phase matrix (3), it is replaced with phase  ψi, i 
= 1,2,…M, i ≠ m,  and the cost for each  ψi change is 
evaluated. If the cost is reduced due to a change in 
phase value, the new phase value is accepted; 
otherwise, the original phase value is retained. The 
same procedure is performed for all phase values of 
all sequences in a set, i.e., every term of the phase 
matrix (3). This process is recursively applied to the 
matrix until no phase changes are made. A single 
mutation in a sequence results in Hamming distance 
of one from the original sequence. The Hamming 
scan algorithm mutates all the elements in a given 
sequence one by one and looks at all the first order-
Hamming neighbors of the given sequence. Thus, 
Hamming scan performs recursively local search 
among all the Hamming-1 neighbors of the sequence 
and selects the one whose objective function value is 
minimum.[3,4] 
 
 
5. MSAA for orthogonal eight-phase 

signal design 
 
The MSAA is a combination of both SA and 
Hamming scan algorithms. It combines the good 
methodologies of the two algorithms like global 
minimum converging property of  SA algorithm and 
fast convergence rate of Hamming scan algorithm.  

The demerit of Hamming scan algorithm is that it 
gets stuck in the local minimum point because it has 
no way to distinguish between local minimum point 
and a global minimum point. Hence it is sub-optimal 
[4, 5]. The drawback in SA is that it has a slow 
convergence rate because even though it may get 
closer to the global minimum point, it may skip it 
because of the methodology it employs, generating 
the sequences randomly and accepting them with 
probability based on annealing schedule. The MSAA 
overcomes these drawbacks. The computational cost 
for searching the best polyphase code set with set size 
L, code length N, and distinct phase number M 
through an exhaustive search, i.e., minimizing eq (6), 
is of the order of   M(L.N) and  grows exponentially 
with the code length and the set size. Therefore, the 
numerical optimization of polyphase codes is an NP-
complete problem for which the global optimization 
methods can be effectively used. Here, the MSAA 
algorithm is used as global optimization methods. 
The flow chart of the algorithm is shown in fig (1). 
Initially, a set of sequences S(L,N,M)  is chosen 
randomly. Here L is taken as 3 and M = 8 and N is 
varied from 40 to 500. One element of S is randomly 
chosen and mutated [Mutation means a particular 
element is replaced with any one of the permissible 
alphabet given in eq (2)]. With each phase 
“mutation”, the cost function before and after the 
phase change are evaluated, and the phase change is 
accepted with a probability exp(-∆E/Ti). More 
specifically, the phase values of a polyphase code set 
S(L,N,M) is “mutated” as follows: First, a polyphase 
sequence set S(L,N,M) as given in eq (3) is randomly 
chosen;  then the selected phase value is replaced 
with a phase value randomly chosen from the  other 
M-1  possible distinct phase values that are from {ψ1, 
ψ2……,ψM}. Now the cost function for the new eight-
phase code set is evaluated according to eq (6). If the 
new cost value is reduced, then accept the new set. 
Otherwise, accept it with  a probability  exp(-∆E/Ti). 
The probability density function for all random 
selections is a uniform function among all possible 
values. The next step of the algorithm is to invoke the 
Hamming scan as shown in the Fig. 1.  The  success 
rate of the algorithm is depends on the starting 
temperature, the decrement rate of temperature, i.e., 
cooling schedule, the determination of equilibrium 
condition at each temperature, and the annealing 
stopping criterion [12, 13]. The starting temperature 
T0 is decided based on the standard deviation σ of the 
initial cost distribution by setting    
 
                 T0 =30 σ.                                       ….(9) 
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From the initial temperature T0, the system 
temperature is systematically reduced according to    
   
         Ti+1 = αTi                                  …..           (10) 
   where α is constant and  chosen to be 0.90 in this 
design. At a temperature Ti (i > 0 ), the phase values 
of the sequence set are constantly “mutated” and 
accepted with a probability according to (8) until the 
cost function distribution reaches equilibrium state. 
Then, the temperature is reduced to Ti+1 according to 
eq. (10), and the code “mutations” are repeated until 
a new equilibrium state is reached at the updated 
temperature.  
         The annealing process is stopped if no 
“mutated” phase is accepted during three consecutive 
temperature reductions or T < ε, where ε is minimum 
stopping temperature. The flowchart of MSAA for 
optimizing the orthogonal polyphase code set is 
shown in Fig.1. 
 
 6     Design results 
 
       A variety of eight-phase code sets are designed 
using the proposed algorithm. The cost function for 
the optimization is based on eq (6), and the value of λ 
in the eq (6) is chosen as 1.  In this work all the 
autocorrelation sidelobe peak       (ASP) values and 
crosscorrelation (CP) values  are normalized with 
respect to sequence length, N and all the design 
examples are single realizations. Some of the 
synthesized results are presented which have better 
correlation properties than four- phase sequences 
available in literature [11]. Tables 1 & 2 show the 
comparison between our results and the results 
reported in the reference [11].  In table1&2, columns 
2 and 3 show maximum ASP and average of the 
ASPs respectively, columns 4 and 5 show maximum 
CP and average of CPs respectively. From table 1, it 
is observed that normalized value of   maximum ASP 
in literature is 0.182 while synthesized value is 0.111 
and maximum CP in literature is 0.212 while 
synthesized value is 0.199, both are better than the 
results reported in literature. Similarly, average of 
ASPs   is also better as indicated. Table 2 shows the 
same correlation properties as table 1 but   for 
different values of L and N. From table 2, it is 
observed that normalized value of   maximum ASP in 
literature is 0.095 while synthesized value is only 
0.073.  Similarly average of ASPs and maximum CP 
are also lower. All the  synthesized results are one-
time optimization results although better designs 
might have been obtained by repeatedly applying 
MSAA.  
The proposed optimization algorithm for  eight-phase 
sequence set design is indeed very effective, 

especially when the code length is large. As expected, 
the autocorrelation sidelobe energy and the 
crosscorrelation energy of the sequence sets are 
nearly uniformly distributed among all possible 
locations. 

The term  max(ASP), min(ASP),  avg(ASP),  
max(CP),  min(CP),  avg(CP) and avg  all are defined 
using  eq.(6) and eq. (7) as, 
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Table 1 Comparison between ref [11] values and 
synthesized values (M = 8, L= 4 & N = 40).  
 
Particulars Max  

(ASP) 
Avg 

(ASP) 
Max 
(CP) 

Avg 
(CP) 

Literature 
values(M= 4) 

0.182 0.152 0.212 0.198 

Synthesized   
Values  

0.111 0.106 0.199 0.189 

 
 
 
Table 2  Comparison between ref [11] values and 
synthesized values (M= 8, L=3 & N=128). 
 
 
Particulars Max 

(ASP)  
Avg 

(ASP)  
Max 
(CP) 

Avg 
(CP) 

Literature 
values (M= 4) 

0.095 0.089 0.118 0.111 

Synthesized  
 Values  

0.073 0.071 0.104 0.103 
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Choose  the number of phase perturbations at 
current temperature Ti

Randomly select  one  element  in  S (L,N,M) , 
and  mutate the phase by repalacing   it with a 

value randomly chosen from the other M -1 phase 
values. Evaluate the change in the cost function , 
ΔE after the  mutation . If ΔE<0, accept the new 

phase value; otherwise, accept it with probability 
of  exp(-ΔE/Ti). Let  S'(L,N,M)  be the matrix 

after mutation .

Generate initial polyphase sequence set  
S(L,N,M) .  Choose the initial 

temperature T0 from the initial cost   
variance ,  set i = 0  and  set minimum 

stopping Temp ε 

Invoke the Hamming Scan algorithm on 
S'(L,N,M)   to find optimum sequence in the 

vicinity of S '(L,N,M)  

No

Yes

Are the variance and mean of 
the cost values stable ?No

Yes

Is
the cost value changed  during 
the last three consecutive temp 

reductions or  Ti >ε

Ti=σTi-1

i = i+1 Yes

Stop

No

Is The cost value changed
during the last two consecutive

Hamming scan iteraions

 
 

                                             Fig 1 Flow chart of Modified Simulated Annealing Algorithm 
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Fig.2 shows the comparison of correlation values of 
synthesized  sequence set  and values  of sequence set 
reported in the literature with L= 4 and N = 40. Fig.3  
shows the comparison of correlation values of 
synthesized  sequence set  and values  of sequence set 
reported in the literature with L = 3 and N = 128.  
Fig. 4 shows the maximum autocorrelation sidelobe 
peak (ASP) and maximum crosscorrelation peak (CP) 
of designed eight-phase sequence sets versus 
sequence length (N), varying from 40 to 500.  Fig. 5 
shows the average of autocorrelation sidelobe peaks 
(ASPs) and average of crosscorrelation peaks (CPs) 
of designed eight-phase sequence sets versus   
sequence length (N), varying from 40 to 500. 
sequence length (N), varying from 40 to 500.  
 
        Fig. 6 shows the autocorrelation functions of 
designed sequence set with sequence length, N=350 
and number of sequences in the set, L = 3. As shown 
in the fig. 6 the autocorrelation functions are like 
impulse in all three cases, which indicate the 
resolution capability of the signal, is good and 
generate very less self-clutters.   Fig. 7 shows the 
crosscorrelation between all possible pairs of 
sequences of S with  the L = 3 and N = 350. As 
shown in the fig. 7 the crosscorrelation functions 
between possible pairs of sequences are very low 
which indicate that designed sequences are 
orthogonal. For conventional radar pulse-
compression signals such as polyphase sequences or 
Frank polyphase sequences, the autocorrelation 
sidelobe peak decreases at the rate of 1/√N.  
Similarly, eight-phase sequence sets designed in this 
work also decrease at the rate of 1/√N.  The design 
sequence sets are practically very useful for ONRS. It 
can be demonstrated by taking one design sequence 
set (i.e., L = 3 and N = 300), these design sequences   
are     applied to an ONRS with three radar stations 
(L = 3) for detection of a target. The processing 
results at the three radar stations using Sequence 1 
(S1), Sequence 2 (S2) and Sequence 3 (S3)  are shown 
in Fig.8(a)–(c), respectively. The simulated results 
are achieved with assumptions that the target radar 
cross section (RCS) is the same for each radar 
station, and the distances from the target to all radar 
stations are identical. The result at each radar station 
includes the autocorrelation function of its own 
transmitted signal and the crosscorrelation functions 
between the matched filter and the waveforms 
transmitted by the other radar stations in the ONRS. 
The target responses are clearly distinguishable from 
interference in the output at each radar station as 
shown in Fig.8 
 

       However, if the numbers of radar stations in an 
ONRS are very large, the interference between the 
radar stations might degrade the target detection, and 
additional processing, such as the CLEAN algorithm, 
may be needed for inference removal [11]. The 
effects of Doppler on the designed ONRS polyphase 
signals are also study. 
 
 
 

Comparison  of correlation values ( L=4, N=40)
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 Fig.2 Comparison of correlation values of 
synthesized  sequence set  and values  of sequence set 
reported in the literature with L= 4 and N = 40. 
 
 
 
 

comparison of correlation values (L= 3, N = 128)
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Fig.3  Comparison of correlation values of 
synthesized  sequence set  and values  of sequence set 
reported in the literature with L = 3 and N = 128. 
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Correlation Properties ( L =3 & M =8)
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Fig 4   Max (ASP) and max (CP) values of 8-phase 
designed sequence sets, with L = 3 and sequence 
length, N varying from 40 to 500. 
 
 
 

Correlation properties (L = 3 , M = 8)
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Fig 5  Avg(ASP) and Avg (CP) values of 8-phase 
designed sequence sets, with L = 3 and sequence 
length, N varying from 40 to 500. 
 

 
Fig.6 Normalized autocorrelation functions of (a) 
sequence 1, (b) sequence 2, and (c) sequence 3 of the 
designed 8-phase sequences of set with L = 3 and  N 
= 350. 
 
 
 
 
 
 
 

WSEAS TRANSACTIONS on SIGNAL PROCESSING S. P. Singh, S. A. Muzeer, K. Subba Rao

ISSN: 1790-5052 101 Issue 3, Volume 5, March 2009



 

 
 
Fig. 7   Normalized crosscorrelation functions of (a) 
sequences 1 & 2 (b) sequences 1 & 3, and (c) 
sequences 2 & 3, of 8-phase designed sequences of 
set L = 3 and N = 350. 

 
 
 
 
 
 
 

 
Fig. 8  Processing results of (a) Radar 1, (b) Radar 2, 
and (c) Radar 3 of a netted radar system that uses 
Sequences 1 to 3 of the designed polyphase 
sequences of  set with L = 3, M = 8 and  N = 300, as 
the signal, respectively.  
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7 - Ambiguity function and ONRS  
 
      The radar signal design is actually based on the 
ambiguity function and cross ambiguity function 
rather than autocorrelation and crosscorrelation 
functions. The ambiguity function of transmit 
waveform specifies the ability of the sensor to resolve 
targets as a function of delay (τ) and Doppler (ν). The 
ideal transmit signal would produce an ambiguity 
function with zero value for all non-zero delay and 
Doppler (i.e., a "thumbtack"), indicating that the 
responses from dissimilar targets are perfectly 
uncorrelated.  It is well known that if the ambiguity 
function is sharply peaked about the origin, then 
simultaneous range and velocity resolution capability 
is good.  
    Ambiguity function ( )ντχ ,  can be defined 
as[19]  

   ∫
∞

∞

∗ −= dt t))exp(j2(tu u(t)),( πντντχ     ..        (17)                                    

   where u(t) is  the transmitted signal. 
  Ambiguity Function has been used to assess the 
properties of the transmitted waveform  of each 
ONRS as regards to its target resolution, 
measurement accuracy, ambiguity, and response to 
clutter and effect of Doppler. 
       If the designed Eight- phase sequence set is 
applied to an ONRS with three radar stations for 
detection of a target, the effect of Doppler on the 
performance of the  ONRS can be  investigated using 
ambiguity function at the three radar stations using 
Sequences 1–3 (i.e, s1-s3) as shown in Fig. 9(a)–(c), 
respectively. Synthesized sequences have thumbtack 
ambiguity diagrams which indicate that simultaneous 
range and velocity resolution capability of the 
sequences are good.  
       The simulated results are achieved with 
assumptions that the target radar cross section (RCS) 
is the same for each radar station, and the distances 
from the target to all radar stations are identical. It is 
assumed that waveform is normalized to get unity 
height ambiguity function. 
       Unlike the Frank codes or the  polyphase 
sequences which are derived from linear frequency 
modulation (LFM) signals ( like P1, P2,  & P3 codes  
etc)[20-22], the numerically designed eight-phase 
sequences have thumbtack ambiguity diagram, and 
thus, the matched filtering results are very sensitive 
to the Doppler frequency (ν  ) in the radar echoes due 
to target movement. It can be seen that the output 
signal amplitude is not significantly reduced (signal 
loss < 3 dB) if the Doppler frequency is less than 
0.5/T, i.e., 
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Figs. 9(a) -(c)  Ambiguity  Function (AF)  of 
Sequence s1, s2, and s3 respectively Sequences s1-s3 
are the designed 8-phase coding sequences for L=3, 
M=8, and N = 500. 
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Figs 10 (a)–(c) Cross Ambiguity Function (CAF) of 
Sequences s1 & s2, s1 & s3, and s2 & s3 respectively  
Sequences s1-s3 are the designed 8-phase coding 
sequences for L = 3, and N = 500. 
 

|ν |T < 0.5                          …..                     (18) 
 
where T is the signal time duration equal to Ntb, 
where  tb   is the duration of sub pulse. Therefore, if  
eq (18) is satisfied, the Doppler effect on the 
processing result is negligible; otherwise, the 
correction processing must be conducted. A simple 
way to minimize the Doppler effect is to select the 
signal time duration such that eq (18) is satisfied for 
all expected target speeds. Another approach for 
overcoming the Doppler Effect is to use a bank of 
Doppler-matched filters for every signal. Each of the 
Doppler-matched filter is designed to match a 
different Doppler-shifted version of the signal. Target 
detection is based on the maximum output from the 
Doppler-matched filter bank. The Doppler shift 
frequencies and the number of the matched filters are 
chosen such that the signal loss is limited to a 
tolerable level (such as 3 dB) for all possible target 
speeds. The effect of Doppler on cross ambiguity 
diagrams   for the eight phase sequences (s1-s3), are 
shown in Fig. 10(a)-(c),  the cross ambiguity function 
of the designed eight-phase sequence set are 
uniformly distributed on the surface of the  ambiguity 
diagram which indicates  cross ambiguity diagram is 
very less sensitive to Doppler frequency shift. 
    
 
8. Conclusions 
 
      An effective MSAA has been developed for the 
design of eight-phase code sets used in radar and 
spread spectrum communication for significantly 
improving performance of the system. This new 
approach includes the SAA and HSA and provides a 
powerful tool for the design of Orthogonal Eight-
phase Sequence Sets for Radar Systems with 
requirements imposed on both autocorrelation and 
crosscorrelation functions. From the design results, it 
is found that for large code lengths, both average 
autocorrelation side lobe peak and average 
crosscorrelation peak approximately decrease at the 
rate of  1/√N with code length N. This property 
conforms to those of other well-known polyphase 
sequences designed through algebraic methods. In 
addition to the applications to ONRS, the orthogonal 
polyphase signal sets can be used by monostatic radar 
to counter the Coherent Repeater Jamming (CRJ) 
interferences [18]. CRJ retransmits a delayed radar 
signal to the radar receiver to interfere with the 
current echoes from the targets.  However, if a radar 
continuously transmits different waveforms from an 
orthogonal polyphase signal set for consecutive 
transmitted pulses, most likely, the received jamming 
signal is the radar signal transmitted for one period or 
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even a few periods earlier that will not correlate with 
the current matched filter. Therefore, the CRJ 
interference generates a near-zero output and will 
have very little effect on target detection. Hence we 
can conclude   that the design results are very useful 
for multiple radar as well as monostatic radar 
systems. The effect of Doppler shift on design 
sequence are also investigated using ambiguity 
function and cross ambiguity functions. The 
synthesized sequence sets have correlation properties 
better than four-phase sequences reported in the 
literature. 
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