
Modular Design and Implementation of FPGA-based
Tap-selective Maximum-likelihood Channel Estimator

JENG-KUANG HWANG *, YUAN-PING LI
* Department of Communication Engineering

Department of Electrical Engineering
Yuan-Ze University

135, Yuan-Tung Rd., Chungli City 32026
TAIWAN

eejhwang@saturn.yzu.edu.tw; s909107@mail.yzu.edu.tw

Abstract: - The modular design of the optimal tap-selective maximum-likelihood (TSML) channel estimator
based on field-programmable gate array (FPGA) technology is studied. A novel range reduction algorithm is
included in the natural logarithmic function (NLF) emulator based on the coordinate rotation digital computer
(CORDIC) methodology and is integrated into the TSML channel estimator system. The low-complexity
TSML algorithm, which is employed for sparse multipath channel estimation, is proposed for long-range
broadband block transmission systems. Furthermore, the proposed range reduction algorithm aims to solve the
limited interval problem in the CORDIC algorithm base on Xilinx’s SG platforms. The modular approach
facilitates the reuse of modules.

Key-Words: - Coordinate rotation digital computer (CORDIC), FPGA design, Maximum-likelihood channel
estimation, Range reduction, Logarithm function, Parallel sorting

1 Introduction
Recently, researches on cyclic-prefix (CP) assisted
block transmission systems, particularly orthogonal
frequency-division multiplexing (OFDM) and
single-carrier with frequency-domain equalization
(SC-FDE), have attracted considerable attention.
Both these systems are targeted for broadband
applications and have been adopted as IEEE
802.16d PHY standards for long-range fixed
wireless transmission through multipath fading
channels [1]. However, in order to entirely achieve
these performance benefits, accurate channel
estimation is crucial.

The optimal tap-selective maximum-likelihood
(TSML) channel estimator [2], which is based on
the maximum-likelihood (ML) and minimum
description length (MDL) criteria [4], is proposed
for long-range broadband block transmission
systems over sparse multipath channels. The TSML
estimator can reduce the noise effect and improve
the estimation performance, and furthermore
dynamically adapt to the instantaneous channel
sparsity and asymptotically achieve the optimal
performance. For the purpose, the channel estimator
can be used in many high-speed, long-range outdoor
wireless transmission applications such as WiMax
[1], DVB-T [5], and HDTV [6] systems.

Hence, for the above-mentioned applications, a
hardware implementation is required. An FPGA-
based prototyping approach for the implementation
of the channel estimation scheme is presented in [3].
Recent developments in field-programmable gate
array (FPGA) technology have changed the
conventional methods of hardware implementation.
FPGAs have become an alternative solution for the
realization of digital systems. They provide a good
combination of high-speed implementation features
with the flexibility of a digital platform. A
considerable amount of research has been conducted
on the implementation of reconfigurable algorithms
based on FPGAs. An FPGA is a regular structure of
logic cells or modules and interconnects, which are
entirely under the designer’s control. For designing
digital signal processing (DSP) systems and digital
communication applications, a large number of
choices are available to us for implementing our
solutions. The choice of using FPGA technology to
implement DSP systems as a digital communication
solution is approved because of the higher degree of
concurrency offered by the gate arrays to a DSP
designer. For instance, the Xilinx Virtex-4
XC4VSX35 FPGA [7], which is used to obtain our
results, possesses 15,360 slices (34,560 logic cells).

In this paper, a case study is presented in which a
modular FPGA-based design approach is applied to

WSEAS TRANSACTIONS on SIGNAL PROCESSING Jeng-Kuang Hwang, Yuan-Ping Li

ISSN: 1790-5052 667 Issue 12, Volume 4, December 2008

design a TSML channel estimator. However, two
different design methods are employed: (i) Matlab
software for modeling the system and (ii) hardware
description language (HDL) for performing
hardware implementation on the FPGA. For the
above applications, we employ a system generator
(SG) [8] to model the DSP projects. There are two
important reasons for selecting a system generator
[9]: (i) modeling of the complete DSP system and (ii)
transforming the theoretical design into a finite
precision fixed-point system. This fast system
prototyping tool allows designers to observe the
effects of their decisions during the design stage.

Furthermore, the complete system is
implemented by dividing the system functions into
reconfigurable modules. By using reusable and
reconfigurable modules, the designer’s task in
developing DSP systems can be considerably
simplified by importing the design into a familiar
platform. As a result, the development time required
for designing an efficient algorithm is significantly
reduced. In addition, the issue on natural
logarithmic function (NLF) emulation is discussed.
In general, the quick and accurate functioning of the
computing logarithm function is a major goal in
computer arithmetic and hardware design.

This paper is organized as follows: In Section 2,
an overview of a TSML channel estimator algorithm
is presented. In Section 3, the design of the
components of the FPGA-based modules by using
the SG platform is discussed. Section 4 a novel
range reduction algorithm and the reconstruction of
the NLF is presented. In Section 5, the result of our
implementation is reported. The conclusions are
presented in Section 6.

Notation: We use a bold uppercase (lowercase)
font to denote matrices (column vectors). F denotes
the N × N DFT matrix whose (m,n)th element is
[] 2 /j mn N

mn
e π−≡F ; IN, the N × N identity matrix;

, , , ()* ⋅ () 1 −⋅ () T⋅ () H⋅ , ⋅ , ⋅ , ()log ⋅ , and
, the complex conjugate, inverse, transpose,

conjugate transpose, absolute value, norm of vector,
natural logarithm, and vector pair-wise
multiplication operations, respectively;

:

{ }E ⋅ , the

expectation operator; and , a diagonal
matrix with the elements of a on the diagonal.

{ }diag a

2 Overview of the TSML channel
estimator algorithm
For fixed wireless applications [1], the composite
baseband channel can be modeled as a linear time-

invariant system within a small segment of time and
is characterized by its impulse response [10]

Fig. 1. Frame structure of the CP-based single-
carrier block transmission.

() () ()
1

0
exp

pL

i i
i

h j p iτ α θ τ
−

=

= ∑ τ− , (1)

where ()p τ denotes the composite transmit/receive
pulse shaping, and Lp denotes the number of
propagation paths within the parameters { }, , i i iα θ τ

()

,
which denote the attenuation, phase shift, and delay
of the ith path, respectively. For a discrete-time
equivalent channel model, sampling h τ at symbol
rate 1/Ts provides the channel response vector

[](0), , (1)L h h L=h " T−], where [max / sL is the
channel length for a maximum delay spread

Tτ=

maxτ .
Furthermore, since we concentrate on broadband
and high-speed applications, Lh is assumed to be a
sparse channel. This means that only some channel
taps in Lh are significant, while the other channel
taps have nominal values of zero.

We consider the channel estimation problem
with regard to the SC-FDE block transmission
system. As shown in Fig. 1, the transmission frame
comprises one preamble block and P data payload
blocks, where L, N, and D denote the lengths in
symbols for the CP, training sequence, and a single
data payload block, respectively.

We begin by formulating a channel estimation
problem for the CP-based single-carrier system. Let
the time-domain N-point training sequence

[](0), (1), , (1) Tt t t N=t " − be appended by L-point
CP; this results in a total preamble duration of
() sL N T+ . Assume that the signal is passed through
an unknown discrete-time channel Lh , where the
maximum channel length is less than the CP length
L. At the receiver, after removing the CP and
computing the N-point FFT, the received frequency-
domain signal block [](0), (1), , (1) Tr r r Nr
can be expressed as

" = −

WSEAS TRANSACTIONS on SIGNAL PROCESSING Jeng-Kuang Hwang, Yuan-Ping Li

ISSN: 1790-5052 668 Issue 12, Volume 4, December 2008

/N*τ

Lĥ

r
x Lĥ K̂

ˆ
L,TS-MLh

Ln̂

Fig. 2. Block diagram of the TSML channel estimator with the MDL criterion for sparse channel order
detection.

N L Lr TFh Fv TF h Fv= + = + , (2)

where []0 1 1 NF f f f" −= is the N × N Fourier
matrix for representing the N-point FFT;

, the channel vector
of length N with (N–L) appended zeros;

[](0), , (1),0, ,0L h h L= −h " " T

[]0 1 1= LF f f f" −L , the N × L submatrix of F;

T= { }diag τ = []{ }diag (0), , (-1)Nτ τ" T

τ Ft=

2σ

, a

diagonal matrix formed by , i.e., the FFT of t;
and v, an N × 1 complex white Gaussian noise
vector with covariance . NI

In order to facilitate the estimation of channel
response Lh , we consider the Chu-sequence [11] as
the training sequence to satisfy the constant
modulus property in both the time and frequency
domains, i.e., () = 1t n and ()kτ = N

}
 for

. By performing a pairwise
multiplication of

, n k ∈ {0,1, , 1N −"
(2) with * / Nτ , we obtain an

equivalent received data vector for the channel
estimation:

x= ()* Nr τ: 1 H

N
T r= L LF h w= + , (3)

where the new Gaussian noise vector /H Nw T Fv=
has the same covariance matrix, C , as v.
Thus, the transformed data vector x is itself a raw
estimate of the N-point channel frequency response
vector . Since

() 1 1ˆ
H

H H H L
L L L L L LN N

−
= = = +

F wh F F F x F x h , (4)

which is simply obtained from the first L points of
the N-point inverse fast Fourier transform (IFFT) of
the data vector x.

However, for a sparse channel, the original
estimation problem should be formulated as a
combined detection-estimation problem [12,13].
Hence, the so-called TSML channel estimator is
derived in order to solve the above combined
detection-estimation problem. The derivation is
based on the separation of parameters, and an
efficient TSML algorithm is also obtained. Under a
sparse channel situation, we show that the proposed
estimator can be employed with significant
improvement in the estimation accuracy. The block
diagram of the overall TSML channel estimator is
shown in Fig. 2, and the proposed algorithm is
summarized in Table 1.

The TSML channel estimator algorithm can
reduce the estimation error in MSE by an
improvement factor of L/K. If some taps have small
values, the tap-selective process will automatically
reduce the channel order such that the noise effect is
alleviated. Hence, we also regard the TSML
estimator as an adaptive and robust channel
estimation method.

3 Design of FPGA-based modules for
the TSML channel estimator

2σ I=

F h
ˆ ˆ ˆˆ T "= −

Nw

L L (3) is a linear model, the ML

channel estimate h of
the time-domain response vector h coincides with
the least squares (LS) solution:

[(0) (1) (1)]L h h h L
L

With regard to the previously mentioned advantages
of the proposed estimator, a study of the hardware
implementations for high-speed, long-range outdoor
wireless transmission applications such as, WiMAX,
DVB-T, and HDTV systems is significant. In this
paper, the modular design of the optimal TSML

WSEAS TRANSACTIONS on SIGNAL PROCESSING Jeng-Kuang Hwang, Yuan-Ping Li

ISSN: 1790-5052 669 Issue 12, Volume 4, December 2008

channel estimator based on FPGA technology is
implemented by focusing on the computation of the
IFFT, magnitude of the complex signal, sorting data,
and NLF emulation. Each module in the channel
estimator block diagram is shown according to the

Table 1. TSML channel estimator algorithm.

1 From the received training block r, compute the pairwise multiplication of r and * Nτ :

x= *()Nr τ: , where . τ Ft=
2 Determine the IFFT of x, and take the first L points of the result as h . ˆ

L = ˆ ˆ ˆ[(0) (1) (1)]Th h h L " −
3 Sort every element of the ML estimate h in the descending order of power, i.e., ˆ

L

ˆ
Lh = 1 2

ˆ ˆ ˆˆ ˆ ˆ() () ()
T

Lh n h n h n"⎡ ⎤
⎢ ⎥⎣ ⎦ , where () () ()

2 2

1 2
ˆ ˆ ˆˆ ˆ ˆLh n h n h n"≥ ≥ ≥

2
=, and n̂L []1 2ˆ ˆ ˆ, , , T

Ln n n"

denotes the sorted position vector.

4 For the kth sparse channel model, we have ()MDL k =
2

2 ˆlog kN Nx h
⎛ ⎞⎟⎜ − ⎟⎜ ⎟⎜⎝ ⎠

3 log
2
k N+ , for

. The calculation of MDL(k) can be performed recursively by 1, 2 ,k "= , L
2ˆ

kh = ()
2 2

1
ˆ ˆ ˆk kh nh − +

with the initial condition
2

0
ˆ 0h = , where ˆ

kh = () () ()1 2
ˆ ˆ ˆˆ ˆ ˆ

T

kh n h n h n"⎡ ⎤
⎢ ⎥⎣ ⎦ , ˆ kn = []1 2ˆ ˆ ˆ, , , T

kn n n" ,

and k denote the values of the first k significant elements of the non-sparse ML estimate h . ˆ
L

5 The number of significant channel taps is determined as K̂ =
()

()
1,2, ,

arg min
k L

MDL k
"∈

.

6 We can directly construct the TS-ML estimate h by using , for

. If all the identified channel order and tap positions are correct, the MSE becomes

ˆ
L, TS -ML

ˆ ()L, TS -MLh n = ˆ

ˆ

ˆ ˆ(),
ˆ0,

K

K

h n n

n

 n

 n

⎧⎪ ∈⎪⎪⎨⎪ ∉⎪⎪⎩

n= 0,1, 1L" − ,

TS MLMSE − { }2,
ˆ

L TS ML LE h h−= −
2K

N
σ=

Lĥ
r

x

fwd_inv0

x

∑
()

2ˆ ˆkh n

×
N

∑+

+

−

+

2 .

2 .

() ⋅log ×
N

∑+

+

3 log
2
k N

K̂()MDL k

Ln̂

Fig. 3. Architecture of the modules for the TSML channel estimator.

WSEAS TRANSACTIONS on SIGNAL PROCESSING Jeng-Kuang Hwang, Yuan-Ping Li

ISSN: 1790-5052 670 Issue 12, Volume 4, December 2008

TSML algorithm, which determines the organization
of the course contents in the six modules. Each
block corresponds to a module, as shown in Fig. 3.
In the following implementation, we set the CP
length as L = 16 and use the shortest preamble with
N = 32. The sparse channel order is set as K = 3.

The TSML channel estimator employs IFFT to
obtain the time domain components of the signal;
thus, the first module covers the implementation
issues of the IFFT algorithm. The difference in the
fwd_inv port of the input interface is set to zero,
while the inverse transform is selected for the SG’s
FFT block; furthermore, the pipelined, streaming
input/output implementation mode is employed for
allowing continuous data processing. Finally, the
Xilinx FFT Core [14] parameters are enumerated,
and the use of the SG’s FFT core is described. The
channel estimator for this module must satisfy two
essential conditions:
(i) The FFT core configuration according to the

real-time TSML channel estimator’s
specifications.

(ii) The generation of the enable signal for the FFT
block (required to adapt the processing
frequency).

In order to compute the magnitude of the
complex signals and x, the second module
employs the coordinate rotation digital computer
(CORDIC) algorithm [15–18], which is introduced

as an iterative algorithm that requires only adder-
subtractors and shifters. The functioning of this
module typically consists of three steps:

ˆ
Lh

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2n̂

3n̂

4n̂

13n̂

14n̂

13n̂

16n̂

ˆ Ln

1n̂

Fig. 4. Parallel sorting architecture.

(a)
Fig. 5. (a) Comparator block of the upper parallel
sorting block and (b) Comparator block of the lower
parallel sorting block.

(i) A CORDIC algorithm is used for rectangular
to polar conversion of the transformed values.
In other words, for a given complex input, the
magnitude and the angle are computed.
Furthermore, the magnitude scale factor is not
compensated in the processor, i.e., the
magnitude output should be scaled by this gain
factor with a constant coefficient multiplier.

(ii) In the module, the power of the magnitudes
must be generated by a multiplier. The product
of the data is computed on the two connected
input ports of the multiplier and the power
result is obtained on its output port.

(iii) On the other hand, according to steps (i) and
(ii), the power of magnitudes is generated in
the same manner for data x before the SG’s
FFT block.

The third module focuses on the implementation
of the sorting data for the non-sparse ML estimate

 in the descending order of power. A direct
hardware implementation of quick sort-type
algorithms would require sophisticated control units.
In order to tackle this problem, simpler sorting
algorithms are used. For the purpose, we employ a
parallel sorting architecture such as [19]. The
parallel architecture, which is based on comparators
of dotted lines, indicates that all the comparisons
and swaps are performed. Thus, in this manner, for
an array of L data, the number of steps required for
a sorting stage is

ˆ
Lh

1L − . In this study, we employ 16
data in order to explain the manner in which parallel
sorting operates. Figure 4 shows an example of an
array of 16 data and 15 stages. Two parallel sorting
structures have been presented:
(i) The comparator block of the upper parallel

sorting block is shown in Fig. 5a. The inputs of
this block are (1) datum a; (2) datum b. The

WSEAS TRANSACTIONS on SIGNAL PROCESSING Jeng-Kuang Hwang, Yuan-Ping Li

ISSN: 1790-5052 671 Issue 12, Volume 4, December 2008

outputs of this block are (1) a swp flag signal
that indicates if swapping was performed, (2)
datum A, and (3) datum B with the
corresponding value that indicates whether or
not swapping occurred. In addition, the equal
data will remain unchanged.

(ii) Another comparator block of the lower parallel
sorting block is shown in Fig. 5b. This block
contains two multiplexers. The inputs of this
block are (1) a swp flag signal that indicates if
swapping was performed, (2) datum c, and (3)
datum d. The outputs of this block are (1)
datum C and (2) datum D. These outputs will
be swapped depending on the status of the swp
flag signal. The datum c and datum d inputs
are connected with two fixed constants in
order to record the original tap orders for the
TSML algorithm.

The sorting is completed when all swp flags are
set to zero, i.e., swapping was not performed in the
all the levels of the comparators.

The fourth module works with the recursive
relation updated equation, which is introduced by
using an adder-based accumulator architecture, as a
method of generating recursion in the input path.

We compute
2ˆ

kh under the initial condition

2

0
ˆ 0h = . Furthermore, the completed

2ˆ
kh must

be multiplied by N, where N = 32. Multiplication by
 (32 =) corresponds to a 5-bit left shift. For

example, consider a decimal-to-binary equivalence
of = , and the result when
multiplied by 32 will be = .

Finally, subtract

52 52

103.390625 211.011001

10108.5 21101100.1
2ˆ

kN h⋅ from 2x of the second

module.
Because the TSML channel estimator employs

the MDL criterion, two parts of the equation can be
simplified; this includes the natural logarithm of the
recursive relation updated equation (the fourth
module) and the constant term. The main equation
for MDL is illustrated in step 4 of Table 1. In the
fifth module, the natural logarithm is computed,
which is represented in Section 4.

The last module comprises three components—a
constant coefficient multiplier, an adder based
accumulator, and a parallel sorting block. Because N
=32, we can replace the constant coefficient
multiplier with a 5-bit left shift. Moreover,
() ()3 log 2 3 2 log32k N× × = × × k , where k

 and . Hence, the recursive relation
can be realized by an adder-based accumulator.

Because of the condition

=
1, 2 , L" , 16L =

K̂
()

()
1,2, ,

arg min
k L

MDL k
"∈

= ,

a parallel sorting is required; for example, the upper
parallel sorting block of the third module. Finally,
we can directly obtain and construct the TSML
estimate .

K̂
ˆ

L, TS -MLh

4 A novel natural logarithmic
function emulator implementation
based on the FPGA module
The NLF is extensively employed in digital signal
processing, communication systems, control
systems, etc. In general, computing the function
efficiently and accurately is a major target in
computer arithmetic and hardware design. Software
implementations are often too slow for numerically
intensive or real-time applications. Hence, the
hardware implementation of an efficient emulation
is required.

For this purpose, a NLF evaluator typically
comprises range reduction and the actual function
approximation over a small interval. Range
reduction [17,20,21] is crucial because function
approximation is rather limited without it and
numerous applications have a large dynamic range.
However, sufficient attention has not been provided
for the hardware implementation of function
approximation with range reduction for different
ranges, precisions, and approximation methods. This
is the first study that deals with this important issue.
We define the sign bit and the integer bits to
indicate the range and the fractional bits to indicate
the precision for the input range. The fixed-point bit
format representation for the designs is used in this
study and shown in Fig. 6.

Figure 7 shows the overall block diagram of the
NLF evaluator based on the FPGA module. The
design of a more suitable NLF evaluation for the
TSML channel estimator includes automating the
selection of range reduction and the design of the
logarithm function evaluation method. When
implementing hardware designs, any bit-width can
be selected for the range and the precision of the
fixed-point number. As a result, a NLF evaluation
obtains the range and precision of the input and this
information can be used to obtain a more suitable
NLF evaluation unit for the TSML channel
estimator. Thus, based on the input range and
precision, the following three procedures are
performed:
(i) Approximation method selection.
(ii) Applicability of range reduction.
(iii) Evaluation method.

WSEAS TRANSACTIONS on SIGNAL PROCESSING Jeng-Kuang Hwang, Yuan-Ping Li

ISSN: 1790-5052 672 Issue 12, Volume 4, December 2008

4.1 Approximation method selection
There are many possible function evaluation
methods. Each method has its strengths and
weaknesses. However, direct table lookups are
impractical for precisions higher than a few bits
since table size increases exponentially with the
input. We employ the CORDIC algorithm for
designing the function evaluation due to its
popularity in research topics and because it involves
only shift-and-add operations.

The low-complexity TSML algorithm is applied
in high-speed, long-range outdoor wireless
transmission applications. The CORDIC algorithm
is more suitable for the channel estimator to obtain
the natural logarithm. Because the CORDIC
algorithm is a collection of iterative shift-and-add
algorithms, which provide an extremely efficient
means of computing the logarithmic function. In
addition, the approximation error analysis with the
logarithm function based on the CORDIC algorithm
is presented in [18,22].

However, for natural logarithms, the range of the
valid input with a CORDIC processor is limited in a
domain of convergence for a fixed-point format, for
example, [)0.5, 1 for SG [8] platforms based on
Xilinx FPGAs. Hence, there has been a lack of
attention on the hardware implementation of the
CORDIC approximation method for a large
dynamic range. Therefore, an equation can be used

to assist the computation according to the
fundamental property of a logarithmic function. It is
known that

Fig. 6. Binary fixed-point representation used in
this study.

u′ +

×
()log 2

()log u′ ()log u

()log 2m⋅

Fig. 7. Block diagram of the NLF evaluator based
on the FPGA module.

()log u = () ()log log 2u m′ + ⋅ , (5)

where 2mu u′= ⋅ . By using this equation, the natural
logarithm can be computed by using a CORDIC
algorithm and adding an additional multiplier
constant. As a result, we can design the applicability
of range reduction.

4.2 Range reduction
In order to design the automation of the selection of
the range reduction for a large dynamic input range,
consider the function from (5), where u has

a given range
()log u

[), s e . The function approximation

processor has a valid input range [), a b . The NLF
estimator typically comprises three steps [21]:
(i) Range reduction: reducing input u over the

interval [), a b to a more convenient output u′

in an interval [), a b′ ′ smaller than [), a b .
(ii) Function approximation emulator on the

reduced interval based on the CORDIC method.
(iii) Range reconstruction: expansion of the result

back to the original result range.
The multiplicative range reduction for the natural

logarithm occurs mainly as follows: u is equal to
2mu′ ⋅ , where integer m is defined by the m-bit left

shift or right shift. The range reduction follows the
concept presented in [20]. For a power of two,
multiplication by 2 corresponds to an m-bit left
shift, and multiplication by 2 corresponds to an
m-bit right shift. The input and output
transformations can exploit the bit-shift for simple
multiplication. The range reconstruction follows the
concept presented in [17].

m

m−

As an example to illustrate our approach,
consider a given range [), u s e= and 12 inputs
assigned to a 1-output multiplexer. Table 2 shows
the range reduction algorithm for the domain. The
inputs for this algorithm are a numerical function

()log u and a domain [), s e for u. The given

domain [), s e is partitioned into twelve segments

[)0 0, s e , [)1 1, s e ,…, [)11 11, s e . The interval of every
segment is defined in Table 3 based on the valid
input range [)0.5, 1 for of the CORDIC
algorithm base on Xilinx’s SG platforms; the

[), a b

WSEAS TRANSACTIONS on SIGNAL PROCESSING Jeng-Kuang Hwang, Yuan-Ping Li

ISSN: 1790-5052 673 Issue 12, Volume 4, December 2008

combination of the bit-shift segments in parallel is
shown in Fig. 8.

Table 3 shows the segment index encoder. A
corresponding input value u is converted into a
multiplexer select index (sel) and a bit-shift index
for the interval of the corresponding segment, and

the same input value is computed into a correction
index (m) from the sel index for the same interval.

Table 2. Range reduction algorithm for the domain.

Input: Numerical function lo . Domain ()

In Fig. 9, in order to illustrate the segment index
encoder, the values of { }0 1 11 s , s , , s… (left-closed

interval) and { }0 1 11 e ,e , ,e… (right-open interval) are
restricted to values that can be produced by a simple
combination of twelve comparators in parallel. A
more detailed comparator block is shown in Fig. 10.
The appropriate taps are obtained from the parallel
comparators depending on the choice of the
segments and are added to compute the sel index
and m index for an added constant . The obtained
sel index can be assigned for the selection of the
multiplexer inputs. Furthermore, using the m index
can compensate the calculated

4−

()log u′ by the
CORDIC algorithm for reconstructing the NLF
according to (5).

4.3 Evaluation method
The central contribution of this section lies in
designing and automating the selection of range
reduction for a large dynamic input range and
solving a limited interval of the logarithmic function
approximation for the CORDIC algorithm based on
SG platforms using Xilinx FPGAs.

g u
[,)s e for u.

Output: A more convenient u in an interval
 smaller than , where

 is a small, natural evaluation
interval based on CORDIC.

′
[,)a b′ ′ [,)a b
[,)a b

Process: This is range reduction procedure.
1 Let u be an input in parallel.
2 Partition the given domain [), s e into

twelve segments [)0 0, s e , [)1 1, s e ,…,

[)11 11, s e .
3 Let us input the combination of twelve

bit-shift segments into a 12-input to 1-
output multiplexer in parallel.

4 The multiplexer will select a correct
interval for the 12 inputs in parallel via
a sel index of segment index encoder
output.

5 The output of the multiplexer will be
modified to a more convenient u′ over
a smaller interval.

+

[)0 0, s e

[)1 1, s e

[)11 11, s e

Fig. 9. Architecture of the segment index encoder.

{ }0 1 11, , , e e e"Input values
for partitioned right-open

interval

{ }0 1 11, , , s s s"Input values
for partitioned left-closed

interval
"Input constants 0,1, , 11

for sel index

Fig. 10. Comparator block.

4-bit left-shifter

3-bit left-shifter

7-bit rightt-shifter

u

42u ×

32u ×

-72u ×

Segment
index encoder

[)Output 0.5, 1 u' ∈

0

1

4

11

Input u

sel

Combination of parallel
bit-shifted inputs

12 to 1 Mux

Fig. 8. Architecture of the combination of the bit-
shift segments in parallel.

WSEAS TRANSACTIONS on SIGNAL PROCESSING Jeng-Kuang Hwang, Yuan-Ping Li

ISSN: 1790-5052 674 Issue 12, Volume 4, December 2008

5 Result of our implementation
The hardware platform used for implementing the
channel emulator is Xilinx XtremsDSP DK4 board
[23], which hosts a Virtex-4 XC4VSX35 FPGA [7].
We used the top-down design flow based on the
Simulink and SG software tools for fast
cosimulation. The resource utilization report for this
implementation is presented in Table 4.

6 Conclusion
In this paper, an FPGA-based channel estimation
system using an optimal TSML algorithm was
presented. On the other hand, a novel method for the
range reduction and reconstruction and subsequent
logarithm function based on the CORDIC method
using Xilinx’s SG platforms, solution of a limited
interval, and integration into the TSML channel
estimator was also presented. Based on the module

scheme of the dividing system functions, the
proposed TSML channel estimator reduces the
complexity of the FPGA design. In addition, due to
the flexibility of the module in the FPGA, this
FPGA-based TSML channel estimator can be easily
extended to incorporate other algorithms such as
equalizer or adaptive schemes.

Table 3. Segment index encoder.

Interval Bit-shift index Mux select
index (sel)

Correction
index (m)

[))
[))

4 4
0 0 0 0

3 3
1 1 1 1

 , 2 , 2 4-bit left shift

 , 2 , 2 3-bit left shift

s u e s e a b

s u e s e a b

− −

− −

⎡≤ < = ⋅ ⋅⎣
⎡≤ < = ⋅ ⋅⎣

#

[) [)

[))

4 4 4 4

7 7
11 11 11 11

 , , do not modify

 , 2 , 2

s u e s e a b

s u e s e a b

≤ < =

⎡≤ < = ⋅ ⋅⎣

#

#

7-bit right shift

0

1

4

11

#

#

4

3

0

7

−

−

#

#

Note: [is assigned by a valid interval based on CORDIC to equal), a b [)0.5, 1 .

The entire system was designed using a modular
approach and integrated and downloaded into Xilinx
FPGA chips. The modules are reusable and
reconfigurable, which can be ported into
Matlab/Simulink as Simulink blocks for
hardware/software cosimulation and can be utilized
in other applications. In future, we will continue to
optimize these components such as the sorting data
and NLF modules for integration into the TSML
channel estimator. More components will be
developed if necessary.

Table 4. Resource utilization report.

Device Selected XC4VSX35

Features Used Avail Utilization
(%)

Slices 8228 15360 53.6
Flip Flops 6322 30720 20.6
LUTs with 4 input 13899 30720 45.2
Bonded IOBs 22 448 4.9
BUFGs 1 32 3.1
RAMB16s 10 192 5.2
DSP48s 6 192 3.1
Max. path delay:

57.8 ns Max. Clock Freq.: 17.3 MHz

References:
[1] IEEE standard for local and metropolitan area

networks Part 16: Air interface for fixed
broadband wireless access systems, IEEE Std.
802.16 -2004, Oct. 2004, pp. 1–857.TM

[2] J.K. Hwang, R.L. Chung, Low-complexity
algorithm for tap-selective maximum
likelihood estimation over sparse multipath
channels, Proc. 50th GLOBECOM, 26–30 Nov.
2007, pp. 2857–2862.

[3] J.K. Hwang, Y.P. Li, Modular design and
implementation of FPGA-based tap-selective
maximum-likelihood channel estimator, Proc.
IEEE ICCSC 2008, May 26–28, 2008, pp.
658–662.

[4] M. Wax, T. Kailath, Detection of signals by
information theoretic criteria, IEEE Trans.

WSEAS TRANSACTIONS on SIGNAL PROCESSING Jeng-Kuang Hwang, Yuan-Ping Li

ISSN: 1790-5052 675 Issue 12, Volume 4, December 2008

Acoustics, Speech, and Signal Processing, Vol.
33, Apr. 1985, pp. 387–389.

[5] Digital video broadcasting (DVB); Framing
structure, channel coding and modulation for
terrestrial television, European Standard (EN)
300 744 V1.5.1, European Telecomm.
Standards Institute (ETSI), Nov. 2004.

[6] W.F. Schreiber, Advanced television systems
for terrestrial broadcasting: Some problems
and proposed solutions, Proc. IEEE, Vol. 83,
June 1995, pp. 958–981.

[7] Virtex-4 Family Overview, Xilinx Inc., 2004,
http://www.xilinx.com.

[8] Xilinx System Generator for DSP, v 8.1 User’s
Guide, Xilinx, Inc., San Jose, CA.

[9] D. Turney, et al., Modeling and
Implementation of DSP FPGA Solutions,
White Paper, 2000. Available at:
http://www.xilinx.com.

[10] T.S. Rappaport, Wireless Communications:
Principles and Practice, second ed., Prentice
Hall, New Jersey, 2002.

[11] D.C. Chu, Polyphase codes with good periodic
correlation properties, IEEE Trans. Inform.
Theory, Vol. IT-18, July 1972, pp. 531–532.

[12] J.K. Hwang, Y.C. Chen, A combined
detection-estimation algorithm for harmonic-
retrieval problem, Signal Processing, Vol. 30,
Jan. 1993, pp. 177–197.

[13] J.K. Hwang, Y.C. Chen, Superresolution
frequency estimation by alternating notch
periodogram, IEEE Trans. Signal Processing,
Vol. 41, Feb. 1993, pp. 727–741.

[14] Fast Fourier Transform v3.1 Xilinx Core.
DS260 Nov. 2004, Xilinx Product
Specifications [Online]. Available at:
http://www.xilinx.com.

[15] R. Andraka, A survey of CORDIC algorithms
for FPGA-based computers, Proc.
ACM/SIGDA Int. Symp. Field-Program. Gate
Arrays, 1998, pp. 191–200.

[16] Y.H. Hu, CORDIC-based VLSI architectures
for digital signal processing, IEEE Signal
Processing Magazine, July 1992, pp. 17–34.

[17] W. Ligon, G. Monn, D. F.
K. D.

Stanzione, Stivers,
Underwood, Implementation and

analysis of numerical components for
reconfigurable computing, Proc. IEEE Aero.
Conf., Vol. 2, 6-13, Mar. 1999, pp. 325–335.

[18] A. Boudabous, F. Ghozzi, M.W. Kharrat, N.
Masmoudi, Implementation of hyperbolic
functions using CORDIC algorithm, Proc.
ICM 16th Int. Conf. Microelectronics, 6-8,
Dec. 2004, pp. 738–741.

[19] J. Martinez, R. Cumplido, C. Feregrino, An
FPGA-based parallel sorting architecture for
the Burrows Wheeler transform, Proc. IEEE
Int. Conf. Reconfigurable Computing and
FPGAs, 28-30 Sept. 2005, pp. 7.

[20] M.J. Schulte, E.E. Swartzlander Jr., Hardware
designs for exactly rounded elementary
functions, IEEE Trans. Computers, Vol. 43,
No. 8, 1994, pp. 964–973.

[21] D. Lee, A.A. Gaffar, O. Mencer, W. Luk,
Optimizing hardware function evaluation,
IEEE Trans. Computers, Vol. 43, No. 8, Aug.
1994, pp. 964–973.

[22] X. Hu, R.G. Harber, S.C. Bass, Expanding the
range of convergence of the CORDIC
algorithm, IEEE Trans. Computers, Vol. 40,
No. 1, 1991, pp. 13–21.

[23] XtremeDSP Development Kit-IV User Guide,
Xilinx Inc., Issue 2, 2005. Available at:
http://www.xilinx.com.

WSEAS TRANSACTIONS on SIGNAL PROCESSING Jeng-Kuang Hwang, Yuan-Ping Li

ISSN: 1790-5052 676 Issue 12, Volume 4, December 2008

http://www.xilinx.com/
http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(%20monn%20%20g.%3cIN%3eau)&valnm=+Monn%2C+G.&reqloc%20=others&history=yes
http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(%20stanzione%20%20d.%3cIN%3eau)&valnm=+Stanzione%2C+D.&reqloc%20=others&history=yes
http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(%20stivers%20%20f.%3cIN%3eau)&valnm=+Stivers%2C+F.&reqloc%20=others&history=yes
http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(%20underwood%20%20k.%20d.%3cIN%3eau)&valnm=+Underwood%2C+K.D.&reqloc%20=others&history=yes
http://www.xilinx.com/support/documentation/boards_and_kits/

