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Abstract: - The modular design of the optimal tap-selective maximum-likelihood (TSML) channel estimator 
based on field-programmable gate array (FPGA) technology is studied. A novel range reduction algorithm is 
included in the natural logarithmic function (NLF) emulator based on the coordinate rotation digital computer 
(CORDIC) methodology and is integrated into the TSML channel estimator system. The low-complexity 
TSML algorithm, which is employed for sparse multipath channel estimation, is proposed for long-range 
broadband block transmission systems. Furthermore, the proposed range reduction algorithm aims to solve the 
limited interval problem in the CORDIC algorithm base on Xilinx’s SG platforms. The modular approach 
facilitates the reuse of modules. 
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1 Introduction 
Recently, researches on cyclic-prefix (CP) assisted 
block transmission systems, particularly orthogonal 
frequency-division multiplexing (OFDM) and 
single-carrier with frequency-domain equalization 
(SC-FDE), have attracted considerable attention. 
Both these systems are targeted for broadband 
applications and have been adopted as IEEE 
802.16d PHY standards for long-range fixed 
wireless transmission through multipath fading 
channels [1]. However, in order to entirely achieve 
these performance benefits, accurate channel 
estimation is crucial. 

The optimal tap-selective maximum-likelihood 
(TSML) channel estimator [2], which is based on 
the maximum-likelihood (ML) and minimum 
description length (MDL) criteria [4], is proposed 
for long-range broadband block transmission 
systems over sparse multipath channels. The TSML 
estimator can reduce the noise effect and improve 
the estimation performance, and furthermore 
dynamically adapt to the instantaneous channel 
sparsity and asymptotically achieve the optimal 
performance. For the purpose, the channel estimator 
can be used in many high-speed, long-range outdoor 
wireless transmission applications such as WiMax 
[1], DVB-T [5], and HDTV [6] systems. 

Hence, for the above-mentioned applications, a 
hardware implementation is required. An FPGA-
based prototyping approach for the implementation 
of the channel estimation scheme is presented in [3]. 
Recent developments in field-programmable gate 
array (FPGA) technology have changed the 
conventional methods of hardware implementation. 
FPGAs have become an alternative solution for the 
realization of digital systems. They provide a good 
combination of high-speed implementation features 
with the flexibility of a digital platform. A 
considerable amount of research has been conducted 
on the implementation of reconfigurable algorithms 
based on FPGAs. An FPGA is a regular structure of 
logic cells or modules and interconnects, which are 
entirely under the designer’s control. For designing 
digital signal processing (DSP) systems and digital 
communication applications, a large number of 
choices are available to us for implementing our 
solutions. The choice of using FPGA technology to 
implement DSP systems as a digital communication 
solution is approved because of the higher degree of 
concurrency offered by the gate arrays to a DSP 
designer. For instance, the Xilinx Virtex-4 
XC4VSX35 FPGA [7], which is used to obtain our 
results, possesses 15,360 slices (34,560 logic cells). 

In this paper, a case study is presented in which a 
modular FPGA-based design approach is applied to 
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design a TSML channel estimator. However, two 
different design methods are employed: (i) Matlab 
software for modeling the system and (ii) hardware 
description language (HDL) for performing 
hardware implementation on the FPGA. For the 
above applications, we employ a system generator 
(SG) [8] to model the DSP projects. There are two 
important reasons for selecting a system generator 
[9]: (i) modeling of the complete DSP system and (ii) 
transforming the theoretical design into a finite 
precision fixed-point system. This fast system 
prototyping tool allows designers to observe the 
effects of their decisions during the design stage. 

Furthermore, the complete system is 
implemented by dividing the system functions into 
reconfigurable modules. By using reusable and 
reconfigurable modules, the designer’s task in 
developing DSP systems can be considerably 
simplified by importing the design into a familiar 
platform. As a result, the development time required 
for designing an efficient algorithm is significantly 
reduced. In addition, the issue on natural 
logarithmic function (NLF) emulation is discussed. 
In general, the quick and accurate functioning of the 
computing logarithm function is a major goal in 
computer arithmetic and hardware design. 

This paper is organized as follows: In Section 2, 
an overview of a TSML channel estimator algorithm 
is presented. In Section 3, the design of the 
components of the FPGA-based modules by using 
the SG platform is discussed. Section 4 a novel 
range reduction algorithm and the reconstruction of 
the NLF is presented. In Section 5, the result of our 
implementation is reported. The conclusions are 
presented in Section 6. 

Notation:  We use a bold uppercase (lowercase) 
font to denote matrices (column vectors). F denotes 
the N × N DFT matrix whose (m,n)th element is 
[ ] 2 /j mn N

mn
e π−≡F ; IN, the N × N identity matrix; 

, , , ( )*  ⋅ ( ) 1  −⋅ ( )  T⋅ ( )  H⋅ ,  ⋅ ,   ⋅ , ( )log   ⋅ , and 
, the complex conjugate, inverse, transpose, 

conjugate transpose, absolute value, norm of vector, 
natural logarithm, and vector pair-wise 
multiplication operations, respectively; 

:

{ }E   ⋅ , the 

expectation operator; and , a diagonal 
matrix with the elements of a on the diagonal. 

{ }diag a

 
 
2 Overview of the TSML channel 
estimator algorithm 
For fixed wireless applications [1], the composite 
baseband channel can be modeled as a linear time-

invariant system within a small segment of time and 
is characterized by its impulse response [10] 

 
Fig. 1. Frame structure of the CP-based single-
carrier block transmission. 

( ) ( ) ( )
1

0
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pL
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h j p iτ α θ τ
−

=

= ∑ τ− , (1) 

where ( )p τ  denotes the composite transmit/receive 
pulse shaping, and Lp denotes the number of 
propagation paths within the parameters { }, , i i iα θ τ

( )

, 
which denote the attenuation, phase shift, and delay 
of the ith path, respectively. For a discrete-time 
equivalent channel model, sampling h τ  at symbol 
rate 1/Ts provides the channel response vector 

[ ](0), , ( 1)L h h L=h " T− ], where [ max / sL  is the 
channel length for a maximum delay spread 

Tτ=

maxτ . 
Furthermore, since we concentrate on broadband 
and high-speed applications, Lh  is assumed to be a 
sparse channel. This means that only some channel 
taps in Lh  are significant, while the other channel 
taps have nominal values of zero. 

We consider the channel estimation problem 
with regard to the SC-FDE block transmission 
system. As shown in Fig. 1, the transmission frame 
comprises one preamble block and P data payload 
blocks, where L, N, and D denote the lengths in 
symbols for the CP, training sequence, and a single 
data payload block, respectively. 

We begin by formulating a channel estimation 
problem for the CP-based single-carrier system. Let 
the time-domain N-point training sequence 

[ ](0), (1), , ( 1) Tt t t N=t " −  be appended by L-point 
CP; this results in a total preamble duration of 
( ) sL N T+ . Assume that the signal is passed through 
an unknown discrete-time channel Lh , where the 
maximum channel length is less than the CP length 
L. At the receiver, after removing the CP and 
computing the N-point FFT, the received frequency-
domain signal block [ ](0), (1), , ( 1) Tr r r Nr  
can be expressed as 

"  = −
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/N*τ

Lĥ

r
x Lĥ K̂  

ˆ
L,TS-MLh

Ln̂

 

Fig. 2. Block diagram of the TSML channel estimator with the MDL criterion for sparse channel order 
detection. 

N L Lr TFh Fv TF h Fv= + = + , (2) 

where [ ]0 1 1   NF f f f" −=  is the N × N Fourier 
matrix for representing the N-point FFT; 

, the channel vector 
of length N with (N–L) appended zeros; 

[ ](0), , ( 1),0, ,0L h h L= −h " " T

[ ]0 1 1=    LF f f f" −L , the N × L submatrix of F; 

T= { }diag τ = [ ]{ }diag (0),  , ( -1)Nτ τ" T

τ Ft=

2σ

, a 

diagonal matrix formed by , i.e., the FFT of t; 
and v, an N × 1 complex white Gaussian noise 
vector with covariance . NI

In order to facilitate the estimation of channel 
response Lh , we consider the Chu-sequence [11] as 
the training sequence to satisfy the constant 
modulus property in both the time and frequency 
domains, i.e., ( )  = 1t n  and ( )kτ = N

}
 for 

. By performing a pairwise 
multiplication of 

, n k ∈ {0,1, , 1N −"
(2) with * / Nτ , we obtain an 

equivalent received data vector for the channel 
estimation: 

x= ( )* Nr τ: 1 H

N
T r= L LF h w= + , (3) 

where the new Gaussian noise vector /H Nw T Fv=  
has the same covariance matrix, C , as v. 
Thus, the transformed data vector x is itself a raw 
estimate of the N-point channel frequency response 
vector . Since 

( ) 1 1ˆ
H

H H H L
L L L L L LN N

−
= = = +

F wh F F F x F x h , (4) 

which is simply obtained from the first L points of 
the N-point inverse fast Fourier transform (IFFT) of 
the data vector x. 

However, for a sparse channel, the original 
estimation problem should be formulated as a 
combined detection-estimation problem [12,13]. 
Hence, the so-called TSML channel estimator is 
derived in order to solve the above combined 
detection-estimation problem. The derivation is 
based on the separation of parameters, and an 
efficient TSML algorithm is also obtained. Under a 
sparse channel situation, we show that the proposed 
estimator can be employed with significant 
improvement in the estimation accuracy. The block 
diagram of the overall TSML channel estimator is 
shown in Fig. 2, and the proposed algorithm is 
summarized in Table 1. 

The TSML channel estimator algorithm can 
reduce the estimation error in MSE by an 
improvement factor of L/K. If some taps have small 
values, the tap-selective process will automatically 
reduce the channel order such that the noise effect is 
alleviated. Hence, we also regard the TSML 
estimator as an adaptive and robust channel 
estimation method. 
 
 
3 Design of FPGA-based modules for 
the TSML channel estimator 

2σ I=

F h
ˆ ˆ ˆˆ T "= −

Nw

L L (3) is a linear model, the ML 

channel estimate h    of 
the time-domain response vector h  coincides with 
the least squares (LS) solution: 

[ (0) (1) ( 1)]L h h h L
L

With regard to the previously mentioned advantages 
of the proposed estimator, a study of the hardware 
implementations for high-speed, long-range outdoor 
wireless transmission applications such as, WiMAX, 
DVB-T, and HDTV systems is significant. In this 
paper, the modular design of the optimal TSML 
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channel estimator based on FPGA technology is 
implemented by focusing on the computation of the  
IFFT, magnitude of the complex signal, sorting data, 
and NLF emulation. Each module in the channel 
estimator block diagram is shown according to the 

 
 

Table 1. TSML channel estimator algorithm. 
 

 
1 From the received training block r, compute the pairwise multiplication of r and * Nτ : 

x= *( )Nr τ: , where . τ Ft=
2 Determine the IFFT of x, and take the first L points of the result as h . ˆ

L = ˆ ˆ ˆ[ (0) (1) ( 1)]Th h h L   " −
3 Sort every element of the ML estimate h  in the descending order of power, i.e., ˆ

L

ˆ
Lh = 1 2

ˆ ˆ ˆˆ ˆ ˆ( ) ( )  ( )
T

Lh n h n h n"⎡ ⎤
⎢ ⎥⎣ ⎦ , where ( ) ( ) ( )

2 2

1 2
ˆ ˆ ˆˆ ˆ ˆLh n h n h n"≥ ≥ ≥

2
=, and n̂L [ ]1 2ˆ ˆ ˆ, , , T

Ln n n"  

denotes the sorted position vector. 

4 For the kth sparse channel model, we have ( )MDL k =
2

2 ˆlog kN Nx h
⎛ ⎞⎟⎜ − ⎟⎜ ⎟⎜⎝ ⎠

3 log
2
k N+ , for 

. The calculation of MDL(k) can be performed recursively by 1, 2 ,k "=  ,  L
2ˆ

kh = ( )
2 2

1
ˆ ˆ ˆk kh nh − +  

with the initial condition 
2

0
ˆ 0h = , where ˆ

kh = ( ) ( ) ( )1 2
ˆ ˆ ˆˆ ˆ ˆ

T

kh n h n h n"⎡ ⎤
⎢ ⎥⎣ ⎦ , ˆ kn = [ ]1 2ˆ ˆ ˆ, , , T

kn n n" , 

and k denote the values of the first k significant elements of the non-sparse ML estimate h . ˆ
L

5 The number of significant channel taps is determined as K̂ =
( )

( )
1,2, ,

arg min
k L

MDL k
"∈

. 

6 We can directly construct the TS-ML estimate h  by using , for 

. If all the identified channel order and tap positions are correct, the MSE becomes 

ˆ
L, TS -ML

ˆ ( )L, TS -MLh n = ˆ

ˆ

ˆ ˆ( ),
ˆ0,

K

K

h n n

n

 n

     n

⎧⎪ ∈⎪⎪⎨⎪ ∉⎪⎪⎩   

n= 0,1, 1L" −  , 

TS MLMSE − { }2,
ˆ

L TS ML LE h h−= −
2K

N
σ=  

 

 

Lĥ
r

x

fwd_inv0

x

∑
( )

2ˆ ˆkh n

×
N

∑+

+

−

+

2 . 

2 . 

( ) ⋅log ×
N

∑+

+

3 log
2
k N

K̂( )MDL k

Ln̂

 

Fig. 3. Architecture of the modules for the TSML channel estimator. 
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TSML algorithm, which determines the organization 
of the course contents in the six modules. Each 
block corresponds to a module, as shown in Fig. 3. 
In the following implementation, we set the CP 
length as L = 16 and use the shortest preamble with 
N = 32. The sparse channel order is set as K = 3. 

The TSML channel estimator employs IFFT to 
obtain the time domain components of the signal; 
thus, the first module covers the implementation 
issues of the IFFT algorithm. The difference in the 
fwd_inv port of the input interface is set to zero, 
while the inverse transform is selected for the SG’s 
FFT block;  furthermore, the pipelined, streaming 
input/output implementation mode is employed for 
allowing continuous data processing. Finally, the 
Xilinx FFT Core [14] parameters are enumerated, 
and the use of the SG’s FFT core is described. The 
channel estimator for this module must satisfy two 
essential conditions: 
(i) The FFT core configuration according to the 

real-time TSML channel estimator’s 
specifications. 

(ii) The generation of the enable signal for the FFT 
block (required to adapt the processing 
frequency). 

In order to compute the magnitude of the 
complex signals  and x, the second module 
employs the coordinate rotation digital computer 
(CORDIC) algorithm [15–18], which is introduced 

as an iterative algorithm that requires only adder-
subtractors and shifters. The functioning of this 
module typically consists of three steps: 

ˆ
Lh

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2n̂

3n̂

4n̂

13n̂

14n̂

13n̂

16n̂

ˆ Ln

1n̂

 
Fig. 4. Parallel sorting architecture. 

(a)    
Fig. 5. (a) Comparator block of the upper parallel 
sorting block and (b) Comparator block of the lower 
parallel sorting block. 

(i) A CORDIC algorithm is used for rectangular 
to polar conversion of the transformed values. 
In other words, for a given complex input, the 
magnitude and the angle are computed. 
Furthermore, the magnitude scale factor is not 
compensated in the processor, i.e., the 
magnitude output should be scaled by this gain 
factor with a constant coefficient multiplier. 

(ii) In the module, the power of the magnitudes 
must be generated by a multiplier. The product 
of the data is computed on the two connected 
input ports of the multiplier and the power 
result is obtained on its output port. 

(iii) On the other hand, according to steps (i) and 
(ii), the power of magnitudes is generated in 
the same manner for data x before the SG’s 
FFT block. 

The third module focuses on the implementation 
of the sorting data for the non-sparse ML estimate 

 in the descending order of power. A direct 
hardware implementation of quick sort-type 
algorithms would require sophisticated control units. 
In order to tackle this problem, simpler sorting 
algorithms are used. For the purpose, we employ a 
parallel sorting architecture such as [19]. The 
parallel architecture, which is based on comparators 
of dotted lines, indicates that all the comparisons 
and swaps are performed. Thus, in this manner, for 
an array of L data, the number of steps required for 
a sorting stage is 

ˆ
Lh

1L − . In this study, we employ 16 
data in order to explain the manner in which parallel 
sorting operates. Figure 4 shows an example of an 
array of 16 data and 15 stages. Two parallel sorting 
structures have been presented: 
(i) The comparator block of the upper parallel 

sorting block is shown in Fig. 5a. The inputs of 
this block are (1) datum a; (2) datum b. The 
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outputs of this block are (1) a swp flag signal 
that indicates if swapping was performed, (2) 
datum A, and (3) datum B with the 
corresponding value that indicates whether or 
not swapping occurred. In addition, the equal 
data will remain unchanged. 

(ii) Another comparator block of the lower parallel 
sorting block is shown in Fig. 5b. This block 
contains two multiplexers. The inputs of this 
block are (1) a swp flag signal that indicates if 
swapping was performed, (2) datum c, and (3) 
datum d. The outputs of this block are (1) 
datum C and (2) datum D. These outputs will 
be swapped depending on the status of the swp 
flag signal. The datum c and datum d inputs 
are connected with two fixed constants in 
order to record the original tap orders for the 
TSML algorithm. 

The sorting is completed when all swp flags are 
set to zero, i.e., swapping was not performed in the 
all the levels of the comparators. 

The fourth module works with the recursive 
relation updated equation, which is introduced by 
using an adder-based accumulator architecture, as a 
method of generating recursion in the input path. 

We compute 
2ˆ

kh  under the initial condition 

2

0
ˆ 0h = . Furthermore, the completed 

2ˆ
kh  must 

be multiplied by N, where N = 32. Multiplication by 
 (32 = ) corresponds to a 5-bit left shift. For 

example, consider a decimal-to-binary equivalence 
of = , and the result when 
multiplied by 32 will be = . 

Finally, subtract 

52 52

103.390625 211.011001

10108.5 21101100.1
2ˆ

kN h⋅ from 2x  of the second 

module. 
Because the TSML channel estimator employs 

the MDL criterion, two parts of the equation can be 
simplified; this includes the natural logarithm of the 
recursive relation updated equation (the fourth 
module) and the constant term. The main equation 
for MDL is illustrated in step 4 of Table 1. In the 
fifth module, the natural logarithm is computed, 
which is represented in Section 4. 

The last module comprises three components—a 
constant coefficient multiplier, an adder based 
accumulator, and a parallel sorting block. Because N 
=32, we can replace the constant coefficient 
multiplier with a 5-bit left shift. Moreover, 
( ) ( )3 log 2 3 2 log32k N× × = × × k , where k  

 and . Hence, the recursive relation 
can be realized by an adder-based accumulator. 

Because of the condition 

=
1, 2 , L" ,  16L =

K̂
( )

( )
1,2, ,

arg min
k L

MDL k
"∈

= , 

a parallel sorting is required; for example, the upper 
parallel sorting block of the third module. Finally, 
we can directly obtain  and construct the TSML 
estimate . 

K̂
ˆ

L, TS -MLh
 
 
4 A novel natural logarithmic 
function emulator implementation 
based on the FPGA module 
The NLF is extensively employed in digital signal 
processing, communication systems, control 
systems, etc. In general, computing the function 
efficiently and accurately is a major target in 
computer arithmetic and hardware design. Software 
implementations are often too slow for numerically 
intensive or real-time applications. Hence, the 
hardware implementation of an efficient emulation 
is required. 

For this purpose, a NLF evaluator typically 
comprises range reduction and the actual function 
approximation over a small interval. Range 
reduction [17,20,21] is crucial because function 
approximation is rather limited without it and 
numerous applications have a large dynamic range. 
However, sufficient attention has not been provided 
for the hardware implementation of function 
approximation with range reduction for different 
ranges, precisions, and approximation methods. This 
is the first study that deals with this important issue. 
We define the sign bit and the integer bits to 
indicate the range and the fractional bits to indicate 
the precision for the input range. The fixed-point bit 
format representation for the designs is used in this 
study and shown in Fig. 6. 

Figure 7 shows the overall block diagram of the 
NLF evaluator based on the FPGA module. The 
design of a more suitable NLF evaluation for the 
TSML channel estimator includes automating the 
selection of range reduction and the design of the 
logarithm function evaluation method. When 
implementing hardware designs, any bit-width can 
be selected for the range and the precision of the 
fixed-point number. As a result, a NLF evaluation 
obtains the range and precision of the input and this 
information can be used to obtain a more suitable 
NLF evaluation unit for the TSML channel 
estimator. Thus, based on the input range and 
precision, the following three procedures are 
performed: 
(i) Approximation method selection. 
(ii) Applicability of range reduction. 
(iii) Evaluation method. 
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4.1 Approximation method selection 
There are many possible function evaluation 
methods. Each method has its strengths and 
weaknesses. However, direct table lookups are 
impractical for precisions higher than a few bits 
since table size increases exponentially with the 
input. We employ the CORDIC algorithm for 
designing the function evaluation due to its 
popularity in research topics and because it involves 
only shift-and-add operations. 

The low-complexity TSML algorithm is applied 
in high-speed, long-range outdoor wireless 
transmission applications. The CORDIC algorithm 
is more suitable for the channel estimator to obtain 
the natural logarithm. Because the CORDIC 
algorithm is a collection of iterative shift-and-add 
algorithms, which provide an extremely efficient 
means of computing the logarithmic function. In 
addition, the approximation error analysis with the 
logarithm function based on the CORDIC algorithm 
is presented in [18,22]. 

However, for natural logarithms, the range of the 
valid input with a CORDIC processor is limited in a 
domain of convergence for a fixed-point format, for 
example, [ )0.5, 1  for SG [8] platforms based on 
Xilinx FPGAs. Hence, there has been a lack of 
attention on the hardware implementation of the 
CORDIC approximation method for a large 
dynamic range. Therefore, an equation can be used 

to assist the computation according to the 
fundamental property of a logarithmic function. It is 
known that 

 
Fig. 6. Binary fixed-point representation used in 
this study. 

u′ +

×
( )log 2

( )log u′ ( )log u

( )log 2m⋅

 
Fig. 7. Block diagram of the NLF evaluator based 
on the FPGA module. 

( )log u = ( ) ( )log log 2u m′ + ⋅ ,  (5) 

where 2mu u′= ⋅ . By using this equation, the natural 
logarithm can be computed by using a CORDIC 
algorithm and adding an additional multiplier 
constant. As a result, we can design the applicability 
of range reduction. 
 
 
4.2 Range reduction 
In order to design the automation of the selection of 
the range reduction for a large dynamic input range, 
consider the function  from (5), where u has 

a given range 
( )log u

[ ), s e . The function approximation 

processor has a valid input range [ ), a b . The NLF 
estimator typically comprises three steps [21]: 
(i) Range reduction: reducing input u over the 

interval [ ), a b  to a more convenient output u′  

in an interval [ ), a b′ ′  smaller than [ ), a b . 
(ii) Function approximation emulator on the 

reduced interval based on the CORDIC method. 
(iii) Range reconstruction: expansion of the result 

back to the original result range. 
The multiplicative range reduction for the natural 

logarithm occurs mainly as follows: u is equal to 
2mu′ ⋅ , where integer m is defined by the m-bit left 

shift or right shift. The range reduction follows the 
concept presented in [20]. For a power of two, 
multiplication by 2  corresponds to an m-bit left 
shift, and multiplication by 2  corresponds to an 
m-bit right shift. The input and output 
transformations can exploit the bit-shift for simple 
multiplication. The range reconstruction follows the 
concept presented in [17]. 

m

m−

As an example to illustrate our approach, 
consider a given range [ ), u s e=  and 12 inputs 
assigned to a 1-output multiplexer. Table 2 shows 
the range reduction algorithm for the domain. The 
inputs for this algorithm are a numerical function 

( )log u  and a domain [ ), s e  for u. The given 

domain [ ), s e  is partitioned into twelve segments 

[ )0 0, s e , [ )1 1, s e ,…, [ )11 11, s e . The interval of every 
segment is defined in Table 3 based on the valid 
input range [ )0.5, 1  for  of the CORDIC 
algorithm base on Xilinx’s SG platforms; the 

[ ), a b
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combination of the bit-shift segments in parallel is 
shown in Fig. 8. 

Table 3 shows the segment index encoder. A 
corresponding input value u is converted into a 
multiplexer select index (sel) and a bit-shift index 
for the interval of the corresponding segment, and 

the same input value is computed into a correction 
index (m) from the sel index for the same interval. 

Table 2. Range reduction algorithm for the domain. 
 

Input: Numerical function lo . Domain ( )

In Fig. 9, in order to illustrate the segment index 
encoder, the values of { }0 1 11  s , s , , s…  (left-closed 

interval) and { }0 1 11 e ,e , ,e…  (right-open interval) are 
restricted to values that can be produced by a simple 
combination of twelve comparators in parallel. A 
more detailed comparator block is shown in Fig. 10. 
The appropriate taps are obtained from the parallel 
comparators depending on the choice of the 
segments and are added to compute the sel index 
and m index for an added constant . The obtained 
sel index can be assigned for the selection of the 
multiplexer inputs. Furthermore, using the m index 
can compensate the calculated 

4−

( )log u′  by the 
CORDIC algorithm for reconstructing the NLF 
according to (5). 
 
 
4.3 Evaluation method 
The central contribution of this section lies in 
designing and automating the selection of range 
reduction for a large dynamic input range and 
solving a limited interval of the logarithmic function 
approximation for the CORDIC algorithm based on 
SG platforms using Xilinx FPGAs. 
 

g u
[ , )s e  for u. 

Output: A more convenient u  in an interval 
 smaller than , where 

 is a small, natural evaluation 
interval based on CORDIC. 

′
[ , )a b′ ′ [ , )a b
[ , )a b

Process:  This is range reduction procedure. 
1 Let u be an input in parallel. 
2 Partition the given domain [ ), s e  into 

twelve segments [ )0 0, s e , [ )1 1, s e ,…, 

[ )11 11, s e . 
3 Let us input the combination of twelve 

bit-shift segments into a 12-input to 1-
output multiplexer in parallel. 

4 The multiplexer will select a correct 
interval for the 12 inputs in parallel via 
a sel index of segment index encoder 
output. 

5 The output of the multiplexer will be 
modified to a more convenient u′  over 
a smaller interval. 

 

+

[ )0 0, s e

[ )1 1, s e

[ )11 11, s e

 
Fig. 9. Architecture of the segment index encoder. 

{ }0 1 11, , , e e e"Input values 
for partitioned right-open

interval

{ }0 1 11, , , s s s"Input values 
for partitioned left-closed

interval
"Input constants 0,1, , 11

for sel index

Fig. 10. Comparator block. 

4-bit left-shifter

3-bit left-shifter

7-bit rightt-shifter

u

42u ×

32u ×

-72u ×

Segment
index encoder

[ )Output 0.5, 1 u' ∈

0

1

4

11

Input u

sel

Combination of parallel
bit-shifted inputs

12 to 1 Mux

Fig. 8. Architecture of the combination of the bit-
shift segments in parallel. 
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5 Result of our implementation 
The hardware platform used for implementing the 
channel emulator is Xilinx XtremsDSP DK4 board 
[23], which hosts a Virtex-4 XC4VSX35 FPGA [7]. 
We used the top-down design flow based on the 
Simulink and SG software tools for fast 
cosimulation. The resource utilization report for this 
implementation is presented in Table 4. 
 
 
6 Conclusion 
In this paper, an FPGA-based channel estimation 
system using an optimal TSML algorithm was 
presented. On the other hand, a novel method for the 
range reduction and reconstruction and subsequent 
logarithm function based on the CORDIC method 
using Xilinx’s SG platforms, solution of a limited 
interval, and integration into the TSML channel 
estimator was also presented. Based on the module 

scheme of the dividing system functions, the 
proposed TSML channel estimator reduces the 
complexity of the FPGA design. In addition, due to 
the flexibility of the module in the FPGA, this 
FPGA-based TSML channel estimator can be easily 
extended to incorporate other algorithms such as 
equalizer or adaptive schemes. 

Table 3. Segment index encoder. 

Interval Bit-shift index Mux select 
index (sel) 

Correction 
index (m) 

[ ) )
[ ) )

4 4
0 0 0 0

3 3
1 1 1 1

      , 2 , 2             4-bit left shift

       , 2 , 2              3-bit left shift

                                                                        

s u e s e a b

s u e s e a b

− −

− −

⎡≤ < = ⋅ ⋅⎣
⎡≤ < = ⋅ ⋅⎣

# #

[ ) [ )

[ ) )

4 4 4 4

7 7
11 11 11 11

      
      , ,                           do not modify

                                                                                

    , 2 , 2              

s u e s e a b

s u e s e a b

≤ < =

⎡≤ < = ⋅ ⋅⎣

#

# # #

7-bit right shift 

                               

0

1

4

11

#

#

4

3

0

7

−

−

#

#

 
Note: [  is assigned by a valid interval based on CORDIC to equal ), a b [ )0.5, 1 . 

The entire system was designed using a modular 
approach and integrated and downloaded into Xilinx 
FPGA chips. The modules are reusable and 
reconfigurable, which can be ported into 
Matlab/Simulink as Simulink blocks for 
hardware/software cosimulation and can be utilized 
in other applications. In future, we will continue to 
optimize these components such as the sorting data 
and NLF modules for integration into the TSML 
channel estimator. More components will be 
developed if necessary. 

Table 4. Resource utilization report. 
 

Device Selected XC4VSX35 

Features Used Avail Utilization 
(%) 

Slices 8228 15360 53.6 
Flip Flops 6322 30720 20.6 
LUTs with 4 input 13899 30720 45.2 
Bonded IOBs 22 448 4.9 
BUFGs 1 32 3.1 
RAMB16s 10 192 5.2 
DSP48s 6 192 3.1 
Max. path delay: 

57.8 ns Max. Clock Freq.: 17.3 MHz 
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