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Abstract: - Kalman filtering is a powerful technique for the estimation of the speech signal observed in additive 

background noise. This paper presents a contribution in the enhancement of noisy speech with white and 

colored noise assumption. Some tests were performed with ideal filter parameters, others using the Expectation 

Maximization (EM) algorithm to iteratively estimate the spectral parameters of the speech and noise. 

Simulation results show that the application has the best performance evaluated with objective quality scores, 

observation of the waveforms, as well as informal listening tests in the case of Noizeus database.  
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1 Introduction 
Speech enhancement has been a hot research area in 

recent years with the fast development of mobile 

communications systems and other applications. In 

the presence of additive continuous broadband 

noise, enhancement of speech remains a 

challenging task, especially in moderate to high 

noise levels (SNRs -5 to 10 dB). In many cases, 

background noise can be deemed as stationary 

process, whereas speech is short-time stationary. 

Moreover, real world noise, for instance, vehicle 

engine noise or radio channel noise tend to be 

colored, which yields more challenge to speech 

enhancement than that under the assumption of 

white noise. Here we investigate into both cases. 

 

A speech enhancement algorithm can be viewed as 

successful if it suppresses perceivable background 

noise, and preserves or enhances perceived signal 

quality. This paper focuses on a single microphone 

system and the aim is to minimize the effect of 

noise to improve the speech quality. Many 

approaches have been investigated in that way. 

Many of these methods are based on spectral 

subtraction like power spectral subtraction [1][2], 

parametric spectral subtraction [3], multi-band 

subtraction [4][5].Other methods are based on 

Bayesian approach [6]-[13] like Wiener filtering 

[6], soft-decision estimation [7] and Minimum 

Mean Square Error estimation [8][9]. Moreover, 

other methods have been developed from the state-

space approach in which a state equation models 

the dynamics of the signal generation process and 

an observation equation models the noisy and 

distorted observation signal (Kalman filter theory).  

 

The Kaman Filter is a general estimation technique 

that has been widely used in many areas from 

tracking to speech enhancement.  

 

The use of Kalman filtering for speech 

enhancement was first proposed in [14] and later 

extended to the colored noise case in [15]. The 

Kalman filter is best suitable for reduction of white 

noise to comply with Kalman assumption. In 

deriving Kalman equations it is normally assumed 

that the process noise is uncorrelated and has a 

normal distribution. This assumption leads to 

whiteness character of this noise. There are, 

however, different methods developed to fit the 

Kalman approach to colored noise. 

 

A variety of Kalman filter implementations have 

been proposed for speech enhancement, some 
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concerned with the speech model [15]-[19], some 

with parameters estimation schemes [20]. This 

paper investigates some of theses tools and 

technologies related to Kalman speech 

enhancement. Some of the tests are performed with 

ideal filter parameters of the speech and noise 

models so that we can obtain a more reliable order 

q for the different noises of the database. However, 

for single channel noise suppression these 

parameters are not available and have to be 

estimated from the noisy observations. Therefore, 

additional tests were performed with the EM 

algorithm. 

 

This paper is organized as follows. We present in 

section 2 the noisy speech model and Kalman 

filtering. The section 3 is concerned with the EM 

algorithm for the parameters estimation of linear 

Gaussian state-space models, and the different steps 

of the EM iterative procedure. The section 4 

presents the different objectives measures used in 

the speech quality assessment. In section 5, we 

provide the experiment results in the case of white 

and colored noise. Conclusions are drawn in the last 

section. 

 

 

2 Noisy Speech Model and Kalman 

Filtering 
Let the noisy signal measured by the microphone be 

given by:  

 

 ( ) ( ) ( )nvnsny +=  (1) 

 

Where s(n) represents the sampled speech signal, 

and v(n) represents additive background noise 

uncorrelated with the speech signal. It is assumed 

that speech signal is stationary during each frame, 

that is, the AR model of speech remains the same 

across the segment. In order to apply the Kalman 

filter, we model the speech and noise as 

autoregressive processes of model order p and q 

respectively [14]-[19]: 
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Where u(n) and w(n) are uncorrelated Gaussian 

normalized white noise sequences with (zero means 

and unit variances), ia is the ith AR speech model 

parameter and jb is the jth AR noise model 

parameter. The system of equations (1-3) can be 

represented in a state-space form: 
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 (4) 

 

( ) ( ) ( ) ( ) ( )[ ]Tnvqnvnspnsnx ,...,1,,...,1 +−+−= is the 

(p+q)×1 state vector and ( ) ( ) ( )[ ]Tnwnund ,0,...,0,,0,...,0= .  

 

The explicit expressions for the transition matrix Φ, 

G and observation row vector H are given below: 
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Where sg and vg  are the following p and q 

dimensional vectors: [ ]sT
s gg ,0,...,0= , 

[ ]vT
v gg ,0,...,0=  
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The Kalman algorithm provides a method to 

compute recursively the minimum mean-squared 

error estimate ( )nŝ from the available noisy 

observations, which can be retrieved as the pth 

component of the state-vector estimator ( )nnx /ˆ . 

The covariance matrices Q=G*G’; 

 

 

3 Parameters Estimation 
The Kalman filter is a recursive estimator. This 

means that only the estimated state from the 
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previous time step and the current measurement are 

needed to compute the estimate for the current state. 

The Kalman filter has two distinct phases: Predict 

and Update. The predict phase uses the estimate 

from the previous time step to produce an estimate 

of the current state. In the update phase, 

measurement information from the current time step 

is used to refine this prediction to arrive at a more 

accurate estimate. 

 

Many approaches using Kalman filtering have been 

referenced in the literature [14]-[20]. They usually 

operate in two steps: first, the noise and the signal 

parameters are estimated, and second, the speech 

signal is estimated by using Kalman filtering. These 

approaches differ essentially one from the other by 

the choice of the algorithm used to estimate the 

parameters of such model, the models adopted for 

the speech signal and the additive noise. 

   

There are several methods for extraction of linear 

prediction (LP) model parameters from noisy 

observations [21]. In this work, some of the tests are 

performed with ideal filter parameters so that we 

can assess the potential of Kalman filter for speech 

enhancement without worrying about the extraction 

of theses parameters and the effect of this error on 

the system. However, for single channel noise 

suppression these parameters are not available and 

have to be estimated from the noisy observations. 

Other methods try to calculate the LP model 

parameters first and then use them for denoising the 

speech signal or iteratively estimate and correct 

these values and enhance the speech (EM 

algorithm).  

 

The Expectation Maximization (EM) algorithm is 

used for estimating the parameters of linear dynamic 

system [20][22][23]. Linear time-invariant 

dynamical systems, also known as linear Gaussian 

state-space models, can be described by the 

following two equations: 

 

 
( ) ( ) ( )
( ) ( )




=+=

=+−Φ=

N1,...,n      ),(

N1,...,n ,1

nvnHxny

nwnxnx
 (10) 

 

In this paper, the parameters of the system are 

estimated on a frame by frame basis, reference [22] 

provides the EM iterative procedure   in the case of 

a sequence of N output vectors ( )Nyyy ,...,, 21 . 

 

 

3.1 The Expectation Step 

From the initial estimators ( ) ( ) ( )0,0,0 QΦµ  

and ( )0R calculate ( )Nn
N
n yyxEx ,...,/ 1=  and 

( )Nn
N
n yyxP ,...,/cov 1= , with the following Kalman 

filter forward recursions, for n = 1,…,N: 

 

Predict  
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Predicted estimate covariance 
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Update 

 

Optimal Kalman gain 

 ( ) 111 −−− += n

Tn

n
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Update state estimate 

 ( )11 −− −+= n
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n
n

n
n HxyKxx  (14) 

 

Update estimate covariance 

 11 −− −= n
nn

n
n

n
n HPKPP  (15) 

 

Where we take µ=0
0x and Σ=0

0P .  

 

Since the speech signal is often assumed stationary 

during an analysed frame (20-30 ms), the Kalman 

smoother can be carried out and provides better 

estimates of the state since it is based on a higher 

number of observations.  

In order to calculate N
nx and N

nP one performs the set 

of backward recursions (smoothing) [23]: For n = 

N,N-1,…,1 on the equations  
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We also require the covariance 

( )Nnn
N
nn yyxxP ,...,/,cov 111, −− = which can be obtained 

through the backward recursions.  

 

For n = N,N-1,…,2 
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Which is initialized  
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3.2 The Maximization Step 

Estimate ( ) Nx00 1 =µ and fix the value of Σ at some 

reasonable baseline level. Get ( ) ( ),1,1 QΦ and 

( )1R respectively with the equations: 
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3- Repeat 1 and 2 above until the estimates and the 

log likelihood function are stable. 
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In this case of the extended model and from the 

equations (4) and (10), we can observe that 

( ) )(. ndGnw ≡ and ( ) 0≡nv , so we need to calculate 

only Φ and Q, but R=0. 

 

 

4 Objective Quality Results 
To measure quality of the enhanced signal, we have 

used the segmental SNR, the Log-Likelihood Ratio 

measure (LLR), the Weighted Spectral Slope 

measure (WSS) [24] and the Perceptual Evaluation 

of Speech Quality scores (PESQ, ITU-T P.862) 

[25]. All the measures show high correlation with 

subjective quality.  

 

The WSS measure is based on an auditory model 

and finds a weighted difference between the spectral 

slopes in each band.  The magnitude of each weight 

reflects whether the band is near a spectral peak or 

valley, and whether the peak is the largest in the 

spectrum. A per-frame measure in decibels is found 

as,  
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Where KK ˆ ,  are related to overall sound pressure 

level of the original and enhanced speech, and splK  

is a parameter which can be varied to increase 

overall performance. 

 

The LLR measure is given by: 
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Where φa
r

 and da
r

represent the linear prediction 

(LP) coefficient vectors for the clean and processed 

speech frame respectively, and φR  is the 

autocorrelation matrix of the clean speech signal. 

The LLR is a spectral distance measure which 

mainly models the mismatch between the formants 

of the original and enhanced signals. The mean LLR 

value was obtained by averaging the individual 

frame LLR values across the sentence. 

The highest 5 % of the LLR and WSS measures 

values were discarded, as suggested in [24], to 

exclude unrealistically high spectral distance values. 

The lower the LLR and WSS measures for an 

enhanced speech, the better are its perceived quality.  

 

Segmental SNR is based on the classical SNR and it 

is one of the most widely used methods for testing 

enhancement algorithms. Segmental SNR is more 

correlated to any subjective attribute of speech 

quality than classical SNR. This can be explained 

that speech is time varying and classical SNR 

weights all time domain errors in the speech signal 

equally.  

Segmental SNR is measured over short frames and 

final result is obtained by averaging the value of 

each frame over all the segments. The 

corresponding segmental SNR can be formulated as 

[24], 
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where )(nsφ is the clean speech signal, )(nsd  is the 

enhanced signal after performing noise reduction 

algorithm on noisy speech signal, M is the number 

of segments and N is the segment length. The lower 

and upper thresholds are selected to be -10 dB and 

+35 dB, respectively. 

 

The PESQ (Perceptual Evaluation of Speech 

Quality) algorithm is an objective method to predict 

the results of subjective mean-opinion score (MOS) 

tests, designed purposely for handset telephony 

speech codecs. Although PESQ scores were not 

designed for speech enhancement algorithms 

evaluation, they are still found to provide a 

meaningful indication of performance and they are 

frequently used by researchers for this purpose. 

 

The PESQ algorithm compares the original clean 

speech signal to the output of the enhancement 

algorithm, and penalizes the final score based on 

measures of the distortion. The PESQ is perceptual 

in the sense that the amount of distortion is 

measured in the context of a model for the human 

auditory system. In the P.862 standard, the lowest 

PESQ score is -0.5 and the highest score is 4.5. 

High scores stand for good speech quality.  

 

 

5 Experiment Results  
For the experiment, the Noizeus database [26] was 

used. The noisy database contains 30 IEEE 

sentences [27] produced by three male and three 

female speakers (5 sentences/speaker), and was 

corrupted by eight different real-world noises at 

different SNRs 0dB, 5dB, 10dB and 15dB. The 

sentences were originally sampled at 25 kHz and 

downsampled to 8 kHz.  

Noise signals were taken from the AURORA 

database [28] and included the following recordings 

from different places: babble (crowd of people), car, 

exhibition hall, restaurant, street, airport, train 

station, and train. 

 

To simulate the receiving frequency characteristics 

of telephone handsets, the speech and noise signals 

were filtered by the modified Intermediate 

Reference System (IRS) filters used in ITU-T P.862 

for evaluation of the PESQ measure.  

 

We added computer generated telephone–bandwidth 

white Gaussian noise as an extra noise source, since 

it is not present in the database. The frame size is 20 

ms, with an overlap of 50 %, although small 

changes in the frame size did not degrade the 

performance.  

 

In this section we describe the results of simulations 

of the presented system, with both ideal and 

estimated filter parameters. The overall SNR is 

computed according to ITU P.56 standard [29]. The 

tool we use is MATLAB. The performance 

evaluation is based on objective measures using 

SNR, LLR, WSS and PESQ as well as subjective 

listening. Though the measures have been observed 

over a wide range of SNR 0dB, 5dB, 10dB and 

15dB, only few are tabulated due to limitation of 

space in tables 1 to 9.  

 

The iterative scheme proposed in [22] and presented 

in section 3 was used to estimate the system 

parameters in some results. The algorithm needs 

three iterations or plus to get the highest SNR gain.  

 

 

5.1 Model for Speech with White Noise 
In the case of simple Kalman filter (model for 

speech with white noise), a Matlab code was 

developed, where a simple Kalman filter was 

applied on all 30 files of the Noizeus database.  

 

In this first approach, only the speech signal is 

modeled by an AR model of order P=10. The 10 

AR coefficients were updated for every analysis 

frame of 20 ms duration, using the linear prediction 

analysis method (LPC), which is directly applied to 

the clean signal. The additive measurement noise is 

assumed to be a white noise, even in the case of real 

noises of the database.  

 

The test results of the measures (LLR, SNRseg, 

WSS, PESQ) in this case are presented in table 1. 

The rows (DWT and EWT) of table 1 give the 

measures of the degraded signal in the case of a 

white noise (DWT), and that of the enhanced signal 

(EWT). The following rows (DCR and ECR), 

(DTN and ETN), (DBB and EBB), (DRT and 

ERT), (DSN and ESN), (DAP and EAP), (DEX and 

EEX) and (DSTR and ESTR) corresponds 

respectively to the results in the case of car, train, 

babble, restaurant, station, airport, exhibition and 

street noises.  
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Each value of the table corresponds to an average of 

thirty different measures carried out on the database 

sentences with the same characteristics (the same 

noise, the same SNR). 

 

 

Table 1. Objective Quality Scores under White 

Noise 

 0 dB 5 dB 

 LLR SNR WSS PESQ LLR SNR WSS PESQ 

DWT 1.80 -5.08 82.69 1.539 1.54 -2.33 69.97 1.79 

EWT 0.70 3.17 68.79 2.345 0.58 4.86 57.47 2.625 

DCR 1.01 -4.96 66.94 1.634 0.79 -2.17 54.08 1.891 

ECR 0.88 1.96 67.24 2 .073 0.75 3.62 54.39 2 .350 

DTN 1.18 -4.50 60.25 1.60 0.99 -1.69 48.12 1.859 

ETN 0.74 2.45 61.49 2.20 0.61 4.36 48.39 2 .515 

DBB 0.89 -4.63 70.35 1.705 0.71 -1.78 56.02 2.006 

EBB 1.03 1.58 69.57 2 .068 0.86 3.34 55.45 2 .352 

DRT 0.84 -4.19 66.42 1.754 0.68 -1.39 53.60 2.001 

ERT 1.01 1.86 65.96 2.093 0.84 3.62 52.64 2.354 

DSN 0.94 -4.71 69.05 1.665 0.73 -1.89 54.67 1.958 

ESN 0.98 1.86 67.94 2.062 0.84 3.47 54.19 2.366 

DAP 0.86 -4.41 71.52 1.726 0.69 -1.67 56.05 2.021 

EAP 1.06 1.85 69.09 2.051 0.89 3.52 54.73 2.338 

DEX 1.20 -4.67 63.52 1.585 0.94 -1.84 51.93 1.882 

EEX 0.84 2.61 62.75 2.194 0.71 4.34 50.72 2.463 

DSTR 0.99 -4.26 63.34 1.563 0.80 -1.58 50.04 1.904 

ESTR 0.90 2.54 62.07 2.194 0.73 4.06 49.77 2.448 

 

 

According to the results of table 1, we note an 

improvement in terms of (LLR, SNRseg, WSS, 

PESQ) measures for the two values of signal to 

noise ratio SNR = 0dB and SNR = 5dB. The 

listening tests and waveforms obtained for each 

sentence confirm that there is a better quality of the 

enhanced speech, a low level of residual noise while 

preserving intelligibility and natural sound. Besides, 

the obtained measurements in the case of white 

noise are significantly higher than those obtained in 

the case of real noises, because Kalman filter design 

is based on the assumption that the additive noise is 

white noise. For real colored noise, in addition to 

speech modeling, noise modeling is more than 

necessary. 

 

As an example, Fig.1 shows the plots of the clean 

speech, the noisy speech with a white Gaussian noise 

at SNR equal to 5 dB and the enhanced speech using 

the above model. 
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Fig.1 Clean, noisy and enhanced speech waveforms 

in the case of white noise. 

 

  

5.2 Model for Speech with Colored Noise 
With noise model, test results (LLR, SNRseg, WSS, 

PESQ) are presented in the following tables, in the 

case of a car noise (Table 2), train noise (Table 3), 

station noise (Table 4), street noise (Table 5), airport 

noise (Table 6), restaurant noise (Table 7), 

exhibition noise (Table 8) and babble noise (Table 

9). In this case, all these results are obtained with a 

speech signal modelling with order P = 10, an 

analysis frame of 20 ms duration and real noise 

modeling with a variable order q = 2, 4, 6, 8, 10.  

 

 

Table 2. Objective Quality Scores under Car Noise 

 0dB 5dB 

 LLR SNR WSS PESQ LLR SNR WSS PESQ 

D e g 1.01 -4.96 66.94 1.634 0.79 -2.17 54.08 1.891 

2 0.61 2.26 66.60 2.130 0.51 3.88 53.80 2.398 

4 0.56 2.35 65.03 2.162 0.47 3.99 52.71 2.435 

6 0.55 2.34 64.39 2.154 0.46 3.99 52.06 2.431 

8 0.53 2.30 64.01 2.149 0.45 3.96 51.59 2.430 

10 0.53 2.28 64.36 2.146 0.44 3.93 51.78 2.425 
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Table 3. Objective Quality Scores under Train Noise 

 0 dB 5 dB 

 LLR SNR WSS PESQ LLR SNR WSS PESQ 

Deg 1.18 -4.50 60.25 1.605 0.99 -1.69 48.12 1.859 

2 0.62 2.14 61.92 2.194 0.52 4.34 48.64 2.502 

4 0.54 2.60 61.15 2.229 0.45 4.48 48.32 2.534 

6 0.54 2.66 59.73 2.209 0.46 4.53 47.29 2.517 

8 0.53 2.67 58.85 2.205 0.45 4.54 46.45 2.517 

10 0.53 2.67 58.70 2.201 0.44 4.53 46.24 2.514 

 

 

Table 4. Objective Quality Scores under Station 

Noise 

 0dB 5dB 

 LLR SNR WSS PESQ LLR SNR WSS PESQ 

Deg 0.94 -4.71 69.05 1.665 0.73 -1.89 54.67 1.958 

2 0.56 2.34 65.90 2.166 0.46 3.98 53.01 2.437 

4 0.54 2.35 65.06 2.174 0.44 4.01 52.23 2.453 

6 0.54 2.35 64.78 2.170 0.44 4.01 51.74 2.443 

8 0.53 2.34 64.03 2.169 0.43 3.99 51.17 2.438 

10 0.52 2.32 63.84 2.165 0.43 3.97 51.11 2.437 

 

 

Table 5. Objective Quality Scores under Street 

Noise 

 0dB 5dB 

 LLR SNR WSS PESQ LLR SNR WSS PESQ 

Deg 0.99 -4.26 63.34 1.563 0.80 -1.58 50.04 1.904 

2 0.57 2.81 60.96 2.220 0.46 4.36 49.19 2.483 

4 0.54 2.86 59.54 2.242 0.45 4.38 48.61 2.493 

6 0.54 2.85 59.63 2.239 0.45 4.36 48.47 2.485 

8 0.52 2.84 58.83 2.237 0.44 4.34 47.73 2.482 

10 0.51 2.83 58.56 2.235 0.44 4.32 47.72 2.478 

 

The two measures that are more correlated with 

subjective tests and listening tests are PESQ and 

SNRseg. From the tables 2 to 5, we note that the 

different noises (car, train, station and street) can be 

well modeled by an AR model of order q = 4. With 

this order value the best results are obtained. In this 

case, the slowly time-varying short-term spectrum 

can be modeled adequately by an AR process of 

order q = 4.  

 

 

Table 6. Objective Quality Scores under Airport 

Noise 

 0dB 5dB 

 LLR SNR WSS PESQ LLR SNR WSS PESQ 

Deg 0.86 -4.41 71.52 1.726 0.69 -1.67 56.05 2.021 

2 0.57 2.58 65.25 2.177 0.46 4.19 52.49 2.457 

4 0.52 2.63 63.84 2.196 0.44 4.26 51.35 2.473 

6 0.52 2.64 63.24 2.195 0.43 4.27 50.62 2.472 

8 0.51 2.63 62.63 2.196 0.42 4.26 50.09 2.469 

10 0.49 2.63 62.14 2.197 0.41 4 .25 49.89 2.471 

 

 

According to Table 6 an order q = 6 gives the best 

results in the case of airport noise. 

 

 

Table 7. Objective Quality Scores under Restaurant 

Noise 

 0dB 5dB 

 LLR SNR WSS PESQ LLR SNR WSS PESQ 

Deg 0.84 -4.19 66.42 1.754 0.68 -1.39 53.60 2 .001 

2 0.56 2.55 63.62 2.197 0.47 4.31 51.05 2.471 

4 0.54 2.63 62.31 2.222 0.45 4.38 50.11 2.488 

6 0.53 2.69 60.72 2.229 0.44 4.44 48.89 2.494 

8 0.52 2.70 59.83 2.238 0.43 4.45 48.25 2.496 

10 0.51 2.69 59.51 2.235 0.43 4.44 48.04 2.491 

 

 

Table 8. Objective Quality Scores under Exhibition 

Noise 

 0dB 5dB 

 LLR SNR WSS PESQ LLR SNR WSS PESQ 

Deg 1.20 -4.67 63.52 1.585 0.94 -1.84 51.93 1.882 

2 0.60 2.65 62.05 2.208 0.51 4.41 50.19 2.479 

4 0.56 2.75 60.68 2.245 0.48 4.52 49.05 2.512 

6 0.56 2.82 59.67 2.252 0.47 4.59 48.14 2.522 

8 0.54 2.87 58.04 2.262 0.46 4.62 46.63 2.530 

10 0.53 2.88 57.73 2.262 0.45 4.62 46.45 2.528 
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Table 9. Objective Quality Scores under Babble 

Noise 

 0dB 5dB 

 LLR SNR WSS PESQ LLR SNR WSS PESQ 

Deg 0.89 -4.63 70.35 1.705 0.72 -1.78 56.02 2.006 

2 0.58 2.17 67.16 2.150 0.47 3.90 54.15 2.432 

4 0.57 2.24 65.77 2.164 0.45 3.98 52.91 2.449 

6 0.56 2.30 64.58 2.165 0.44 4.04 51.66 2.457 

8 0.54 2.31 63.43 2.166 0.44 4.04 50.98 2.460 

10 0.53 2.29 63.47 2.164 0.43 4.02 50.79 2.455 

 

For restaurant noise, exhibition noise and babble 

noise (Tables 7 to 9), a higher order for modeling 

(q=8), with respect to the other noises is justified by 

the fact that this noise has nearly the same 

waveform of the speech signal.  

 

As seen in the results of Table 2 to Table 9, the 

noise modeling for real colored noise in addition to 

speech modeling, provides better performance than 

the standard assumption (Table 1). 

 

An example of the considered model in the case of 

babble noise with SNR = 5 dB and parameter q=8 is 

presented in Fig.2. The comparison of noisy and 

enhanced speech waveforms reveals dramatic noise 

suppression with negligible residual noise and only 

slight speech distortion in the output signal.  
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Fig.2 Clean, noisy and enhanced speech waveforms 

in the case of babble noise. 

 

 

5.3 Results of the EM Algorithm 
Further tests were conducted on the database speech 

files, directly using the EM algorithm for the AR 

parameters estimation from the noisy speech files. 

Table 10 shows the results of the measures (LLR, 

SNRseg, WSS, PESQ) of a single sentence in the 

case of a white noise with an SNR = 5 dB. We 

remark that three iterations can achieve acceptable 

results. 

 

 

TABLE 10. Test results of the EM algorithm in the 

case of White Noise 

 LLR SNR WSS PESQ 

Degraded 1.6019 -1.3279 33.9343 1.6872 

Iteration 1 0.8118 2.8780 33.4534 2.1588 

Iteration 2 0.8211 3.7545 33.7064 2.3100 

Iteration 3 0.8146 4.1097 35.3840 2.3135 

Iteration 4 0.8793 4.1062 38.9420 2.3552 

 

7 Conclusions 
We have presented in this paper a contribution to 

the use of the Kalman filter in the speech 

enhancement in the case of white and real colored 

noises. The performance evaluation based on 

objective quality measures, observation of the 

waveforms, as well as informal listening tests, show 

clearly that the Kalman filter provides a lower signal 

distortion and a higher noise reduction in the two 

cases.  

Furthermore, for real colored noise, in addition to 

speech modeling, noise modeling with q=4 (car, 

train, station, street), q=6 (airport) and q=8 

(restaurant, exhibition, babble) provides better 

performance.  

Finally, an EM Kalman approach with Kalman 

smoother was applied to iteratively estimate the 

speech and noise parameters directly from the noisy 

observation. Simulation results have shown that the 

idea leads to very promising results.  
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