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Abstract: Automatic sea floor characterization is mainly based on the signal or image processing of the data
acquired using an active acoustic system called sediment sonar. Each processing method suits a specific type of
sonar, such as the monobeam, the multibeam, or the side-scan sonar. Most types of sonar offer a two dimensional
view of the sea floor surface. Therefore, a high resolution image results which can be further analyzed. The
inconvenient is that the sonar cannot view inside of the sea floor for a deeper analysis. Therefore, lower frequency
acoustic systems are used for in-depth sea floor penetration (boomer, sparker, airguns or sub-bottom profilers). In
this case, a mono dimensional signal results. Previous studies on the low-frequency systems are mainly based on
the visual inspection by a geological human expert. To automatize this process, we propose the use of feature sets
based on the transposed expert fuzzy reasoning. Two features are extracted, the first based on the sea floor contour
and the second based on the sub-bottom sediment texture.
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1 Introduction
Sea floor acoustics are based on the emission of a
modulated or a bandwidth low-frequency signal (usu-
ally in the 0.5 - 100 kHz band) followed by the anal-
ysis of the received signal from the sea floor. The
response is influenced by the interaction between the
acoustic wave and the sedimentary structure. Some
authors tried to model these interactions depending
on the particle size and spatial arrangement, the layer
pressure, or the saturation percentage [29, 10, 15].
Unfortunately, these models cannot include all the in-
teractions that occur in the geological structure com-
plexity [14, 6].

Nowadays, most of the monodimensional low-
frequency sub-bottom seismic recordings using a spe-
cialized sonar are interpreted by a human geological
expert by reading from a display or a printed paper
[27]. Therefore, an automatic algorithm was created
with the purpose to eliminate the human expertise by
transposing his fuzzy reasoning into new features.

Following discussions with geological experts,
the two main visual characteristics observed by a data
analyzer are the geometric shape of the sea bottom
(horizons) and the sub-bottom aspect of the sediment
structures. Using this information, two feature sets
can be obtained. The next section presents the visual
characteristics of the main sediment classes based on

human expert fuzzy reasoning. The two proposed fea-
ture sets are explained in the second part of the paper.
The last section contains experimental results, conclu-
sion and further work.

2 Human expert fuzzy reasoning
In the sea, uncountable sedimentary level configura-
tions can be observed. The acoustic response is based
on the interaction between the incident wave and the
sediment geological characteristics (particle shapes
and sizes, layer structure). The response is also clearer
when the difference of impedance between two layers
is bigger.

For sedimentary layers with homogeneous struc-
ture and composition, the acoustic response is also ho-
mogeneous and uniform along the whole layer. Be-
cause of physical and chemical interactions with the
sea (tides, waves, streams, sea plants and animals), as
well as the human intervention, those structures can
be modified [4]. For example, agglomeration caused
by tides or waves leads to parallel superficial layers
with strong contrast (Fig. 1).

Sediment layers composed of various size parti-
cles deposit larger particles towards the bottom, while
smaller particles remain at the layer surface or in sus-
pension. If the stream have a certain orientation, spe-
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Figure 1: Sedimentary structure on multiple layers (sand)

Figure 2: Surface agglomeration (sand) on a hard layer (rock)

Figure 3: Sand dunes and sand depots on rock layer

cific sand dunes shapes can occur (Fig. 3).

The particle size can also determine the sediment
layer shape. Most of the time, the rocks form a rigid
and consolidated structure. This type of structure
is not influenced by natural factors such as tides or

streams. The erosion is small because of the superfi-
cial layers (sand or mud) which lay on the rock struc-
ture. The shape can be in the same time smooth and
rough on portions. When the stream is low, the su-
perficial sediments will consolidate into heavier struc-
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Figure 4: Hyperbolic structures for deeper sea floors (rock)

Figure 5: Mud depot on hard layer (rock)

Figure 6: Fine surface depots on a rough hard structure
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Figure 7: Hard layer (rock) at the sea bottom surface

tures who keep the initial shape (Fig. 2). When rocks
reach the sea bottom surface, the horizon shape be-
comes abrupt. In this case the acoustic response is un-
clear because of the surface irregularities. The signal
cannot penetrate, hence there is no further acoustic re-
sponse from the inside of the structure. Another type
of response is hyperbolic, caused by lateral echoes of
the hard structures. This response is typical for deeper
sea floors (Fig. 4).

Some fine sediments (e.g., the mud or fine sand)
are completely penetrable by the acoustic signal,
which leads to a clear, non-reflexive response. The
only response is caused by the impedance difference
between the water and the sediment. Most of the fine
sediment layers are found at the surface of the sea bot-
tom. Therefore, the second layer is always clearly vis-
ible (Fig. 5).

Other sediments, like the peat, are not penetrative
for the acoustic signal. Therefore, the second layer is
never visible. This kind of response is specific for sed-
imentary layers resulted from rich biological activities
(organic decompositions). A gas source is obtained in
the deeper layers, from volcanic activities inside the
tectonic structure. The resulted responses are known
as ”popmarks”. Their structure is easy recognizable,
as it grows from inside until the surface of the sea bot-
tom, creating small craters.

Sand depots can be found under many shapes be-
cause of their great dynamic and mobility. When the
stream is low, the horizons are clear and smooth. The
acoustic response is proportional with the particles
size and depot structure. The rougher the sand is, the
weaker the acoustic response gets. When the stream
is high enough, the layer has a specific shape which
follows the stream direction.

Salt can also be found in sedimentary structures.
The specific shape has a dune aspect which rises until
the sea bottom surface, with a hyperbolic structure.
The sand layers absorb the acoustic signal. Hence,

the response has small intensity.
The horizon shape determine the shape of all lay-

ers. The most frequent situation is being found for
rocks. A concave rocky structure favor the sediments
with great dynamic (sand, mud). Also, the rocky
structures which form small mountains are causing
lateral sediment depots (Fig. 6). In this late config-
uration, rock and sand can be often confused (Fig. 7).

Based on the previous observations made by hu-
man experts, one can create two fuzzy features that
will serve in an automatic sediment characterization
system. The first feature characterize the horizon
shape and it is extracted as a contour. The second
feature is specific for the acoustic response of the sedi-
ment below the horizon and it is extracted as a texture.

For every important type of sediment there is an
associated configuration of the two fuzzy features,
presented in Table 1. Using these information, quan-
titative features must be extracted from the acoustic
response.

3 Acoustic image analysis
To analyze an acoustic response, pseudo-images are
formed from mono-dimensional echoes. As the sonar
is running at a constant speed and in a straight di-
rection, the echoes are concatenated to form a matrix
which is further used as an acoustic image.

From the resulting acoustic image, two main at-
tributes are considered. The first is represented by the
shape of the sea-bottom (the horizon) and the second
is based on the textural information which is situated
under the horizon (Fig. 9).

3.1 Sediment contour features

Using the shape of the sea bottom horizon, contour-
based features can be extracted. Therefore, the extrac-
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Table 1: Sediment characterization using textural (acoustic response) and geometrical (horizon) fuzzy features
Sediment type Acoustic response Horizon geometry
Mud Very clear, permeable Mostly horizontal, smooth
Fine sand Clear, permeable Mostly horizontal, smooth
Sand Slightly clear Mostly horizontal, smooth
Rock Slightly clear, impermeable All configurations, rough
Grit Slightly clear Mostly horizontal, smooth
Salt Slightly clear, few reflections Hyperbolic, isolated (dunes)
Gas Opaque, no reflections Isolated structures
Peat Opaque, no reflections Mostly horizontal, smooth
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Figure 8: Construction of an acoustic image from echoes. The mono-dimensional responses from the sonar are
concatenated into a matrix which forms the acoustic image (90 degrees rotation left)

tion of the contour from the acoustic images is needed
first. The free-form active contours [5, 7, 13] are used
to obtain an analytic description of the horizons. The
possible use of the contour parameters represents an
advantage.

The free-form active contour is described using
piecewise cubic polynomial segments yi(x) (Fig. 10).
The cubic form offers the possibility of obtaining
complex shapes with a minimum ripple comparing to
higher degree polynomials [9].

yi(x) = aix
3 + bix

2 + cix+ di, (1)

where i is the segment index, and x takes values in the
interval [0, 1].

The active contour convergence is obtained by
minimizing an objective function f(s) which takes
into account the curve variation limits and the acoustic
image intensity.

f(s) = wifi(s) + wcfc(s), (2)

where f(s) is the global objective function, fi(s) is
the image-based local objective function, fc(s) is the
contour-based local objective function, and wi and wc

are the weights associated to the local objective func-
tions, respectively. By varying the two weights, we

can control the importance of each of the local objec-
tive functions.

The image-based objective function fi(s) attracts
the active contour towards the image regions which
contain useful information. In our case, the informa-
tion is represented by the acoustic response high val-
ues corresponding to the first horizon (the sea bottom).
To ensure a faster convergence, a median filtered ver-
sion of the acoustic image is preferred (Fig. 11).

sea bottom (horizon)

second horizon

homogeneous texture regions

Figure 9: Acoustic image regions of interest. Hori-
zons and homogeneous texture regions are considered
for feature extraction
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Figure 10: Free-form active contour. The contour is described using piecewise cubic Hermite polynomials

The acoustic image can be divided into constant
width vertical slices. For each slice, a piecewise poly-
nomial is considered. When two adjacent polynomials
join, the local geometrical parameters must be equal.
Moreover, as the sea floor can be considered as a holo-
morphic function, the piecewise polynomial geomet-
rical parameters cannot exceed certain limits. There-
fore, the terminal tangent angles θ take values in the
± 90 degrees interval.

Before convergence, the solution is initialized us-
ing a local maxima criterion. Every piecewise polyno-
mial segment is based on maxima detected in its cor-
responding acoustic image slice. Therefore, for each
point of the contour, the optimization will consider a
limited vertical variation of k pixels.

The two parameter limits (for tangent angle θ and
point variation k) are included in the contour-based
objective function fc(s).

To ease the contour control during optimization,
the use of Hermite piecewise polynomials is preferred.
A Hermite curve is defined using four parameters: the
begin and the end vertices and their corresponding
tangents. In the optimization process, the importance
of the local objective functions is considered equal.
Hence, wi and wc are identical.

The optimization method is based on genetic al-
gorithms (GA) because of its simplicity and rapid
convergence due to the near-solution initialization.
Therefore, the number of iterations required is small
(the solution is obtained after 150 iterations). The GA
parameters are: population of 100 offsprings, proba-
bility of mutation of 0.1, and probability of crossover
of 0.5. For images of 1000 × 700 pixels and for slices
of 11 pixels width, chromosomes with 90 genes have
been constructed.

The resulting optimized contours are revealing
the small details of the sedimentary structures, consid-
ering the resolution of the acoustic image. The hori-
zontal distance between two consecutive pixels is 1 m,
considering a constant sonar speed of 5 m/s, a signal
emission period of 200 ms, a 3.5 kHz chirp signal, and
a 12 kHz sampling frequency [2].

Figure 11: Objective function initialization. The
acoustic image is first filtered for faster convergence
and each slice contains a maxima-based initial vertex
solution

The extracted contours, such as those in Fig. 12,
can be further used in a classification system.

The features used as inputs can be the contour pa-
rameters or other derived properties such as the local
curvature or roughness [30, 1, 17].

3.2 Sediment textural features

Textures can be classified in two main groups: struc-
tural and statistical [12, 25]. We use two features ex-
tracted with two different methods: the co-occurrence
matrices and the Wavelet transforms. The choice is
justified by the simultaneous statistical and spectral
texture characterization.

The features extracted from the co-occurrence
matrices characterize statistical texture properties,
hence exploiting the size and orientation of the struc-
tural micro-elements.

The Wavelet 2D transforms decompose and ana-
lyze the information in the spectral domain. Hence,
they offer a multi-resolution approach. This is jus-
tified by the fact that the human brain perception of
an image is made by analyzing it at different lev-

WSEAS TRANSACTIONS on SIGNAL PROCESSING
Cristian Molder, Mircea Boscoianu, 
Mihai I. Stanciu, Iulian C. Vizitiu

ISSN: 1790-5052 652 Issue 11, Volume 4, November 2008



sand

rock

mud

Figure 12: Contour extraction results for different types of horizons: slightly smooth (top left), smooth and hori-
zontal (top right), and rough (bottom)

els of resolution and frequencies. Several Wavelet
transforms have been used, such as the Wavelet 2D,
Wavelet Packet 2D and the Over-Sampled Wavelet 2D
transforms [26]. The later offers translation invariant
descriptors and information redundancy.

The two methods are complementary and easy to
implement on dedicated hardware.

The co-occurrence matrix features are used in the
estimation of texture statistics [11]. The textures used
for analysis are usually squared. In this article we pro-
pose the use of irregular texture shapes. This is justi-
fied by the fact that the distance between the sediment
layers is very small. Hence, a rectangular texture with
sufficient information cannot be extracted. Therefore,
we prefer to use irregular shaped regions, cropped be-
tween the layers.

The seven co-occurrence features used are the ho-
mogeneity, the contrast, the entropy, the correlation,
the directivity, the uniformity, and the maximum prob-
ability [11, 3]. The co-occurrence matrices are com-
puted for 0, 45, 90 and 135 degrees. For each texture
28 features results. Therefore, a linear dimensional-
ity reduction is applied using the Principal Compo-
nent Analysis (PCA) [8, 28]. From the latency matrix
associated to the eigenvalues, we retain the two first
components for further consideration (Fig. 13).

Three wavelet features must be extracted from the
transforms coefficients due to their great dimensional-
ity. The features are the energy, the entropy, and the

mean value [26]. Those features are computed for ev-
ery level of the spectral decomposition. A number of
4 decomposition levels was used.

The choice for the mother wavelet is not critical
[16, 22, 20, 21]. Several functions are used (Haar,
Daubechies 3, Biorthogonal 3.3, Symlet 4, and Coiflet
1) for a potentially classification influence. The clas-
sic Wavelet 2D decomposition (W2D) gives a number
of N = L × 4 subimages, while the Wavelet Packet
2D (WP2D) and the Over-Sampled Wavelet 2D de-
compositions (OSW2D) give N =

∑L
l=1 22n. There-

fore, a new linear dimensionality reduction must be
performed. Using the PCA, we observed that the num-
ber of principal components required for the Wavelet
Packet 2D was large enough to discard the further use
of this transform. Hence, we will consider only the
use of the two remaining transforms [23, 24, 18, 19].

As the dimensionality reduction leads to more
that 3 components, a visual inspection for the clus-
tering results is not possible. Therefore, a MLP
classifier was used. The classification results are very
encouraging, and confirm the expectations (Table 2).

4 Conclusions and further work

The main target of this study was to demonstrate the
possibility of transposing the human expert fuzzy rea-
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Table 2: MLP classification testing results based on wavelet textural features
Transform Topology Haar Db 3 Biortho 3.3 Symlet 4 Coiflet 1
W2D 12:15:1 97.4% 97.7% 98.2% 97.8% 97.7%
OSW2D 5:15:1 95.2% 98.9% 98.4% 98.6% 98.0%
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Figure 13: Principal component clustering projection
for textural co-occurence features. The best clusters
are obtained for mud, sand and rock

soning into quantifiable measures. The two main sub-
jective observations made by such an expert are the vi-
sual characterization of the sea bottom using the hori-
zon contour-like shape and the texture structure under
the corresponding horizon. Based on those remarks,
two feature sets are proposed. The first is represented
by the use of a parametric contour that best describes
the sea bottom horizons, and the second is the use of
textural features extracted from the acoustic image re-
gion below the horizon.

The active contour represents a good method for
the extraction of a sub-bottom horizon. The layer can
be described as a holomorphic function. Hence, a cu-
bic piecewise polynomial function is the best choice.
The extracted contours best match the horizon and the
visual inspection of the human expert has confirmed
this a priori supposition.

The texture feature set is composed of two feature
subsets: the co-occurrence matrix feature subset and
the wavelet decomposition feature subset.

The co-occurrence matrix features are used as
structural descriptors and can easily reveal the differ-
ences between the three major sediment classes: the
sand, the mud, and the rock (see Fig. 13). Other sedi-
ment classes may interfere, like the fine sand or other
type of rocks. The proposed method can be easily
adapted to every horizon shape and is more suitable
for small dimension textures.

The use of Wavelet transforms has a large classi-
fication score (see Table 2). Its deficiency related to
the previous feature subset is the large amount of time

required for processing and the large dimensionality
of the resulted features. Therefore, a neural network
is used for classification and reduction purposes. This
approach is widely used by the scientists who classify
sediment-based data [31]. The choice of the mother
wavelet is not critical.

The acoustic image database was constructed
with responses from different sea campaigns. Their
class association was made by the human experts af-
ter a visual inspection. As the expert characterization
cannot be flawless, the results using the proposed fea-
tures are not perfect. Although the classification using
clustering or neural networks search for hard distinct
classes, the human expert characterization is made us-
ing a fuzzy logic. Therefore, an appropriate classifier
must be considered for future studies.

We estimate that the use of the new feature sets
proposed in this article can lead to an automatic sea
floor classification system. The approach is novel and
currently no automatic alternative exist. Further stud-
ies must be carried to integrate the features into a
fuzzy classification. Related to the contour, a new fea-
ture set can be envisaged, which quantify the fuzzy-
ness aspect of the contour.
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sol marin mesurées à l’aide d’un sondeur de
sédiments. Research report 02/RC/A/02.02, EN-
SIETA, Brest, France, 2002.

[20] Cristian Molder. Propriétés acoustiques du sous-
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