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Abstract: Forecasting is an important issue for many different applications. In this paper, a new efficient forecasting technique 
is presented. Such technique is designed by using fast neural networks (FNNs). The new idea relies on performing 
cross correlation in the frequency domain between the input data and the input weights of neural networks. It is 
proved mathematically and practically that the number of computation steps required for the proposed fast 
forecasting technique is less than that needed by conventional neural-based forecasting. Simulation results using 
MATLAB confirm the theoretical computations. The proposed fast forecasting technique increases the 
prediction speed and at the same time does not affect the predication accuracy. It is applied professionally for 
erythemal ultraviolet irradiance prediction.  
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I. Introduction 
Improving the speed of forecasting is very important 
and necessary for real time applications. In this paper, 
we concentrate on increasing the speed of forecasting 
during the prediction phase. This improvement is 
achieved by applying cross correlation in the 
frequency domain. The cross correlation is preformed 
between the whole input data and the weights of 
neural networks. This new idea increases the speed of 
the prediction process compared to normal 
implementation of forecasting in time domain.  

It was proved that performing cross correlation in the 
frequency domain is faster than time domain [56]. By 
the words “fast cross correlation”, it is meant that 
cross correlation is performed in the frequency 
domain. A general fast pattern detection model using 
fast cross correlation was presented in [32-54]. Fast 
cross correlation was applied successfully for many 
different applications. Fast sub-image detection was 
achieved using fast cross correlation. A fast searching 
algorithm for face/object detection using neural 
networks and fast cross correlation was presented in 
[36,38,42,44]. Very fast iris detection using fast cross 
correlation was described in [43]. A faster algorithm 
for pattern detection using fast cross correlation and 
image decomposition was presented in [42,46,47,49]. 
The fastest pattern detection was achieved by using 
fast cross correlation, image decomposition and 
parallel processors. Furthermore, real time fast code 
detection for communication applications using fast 
cross correlation was introduced in [35,40,41]. In 
addition, a new time delay artificial neural network 
was invented using fast cross correlation as presented 
in [50,52]. As well as, an interesting mathematical 
application by using fast cross correlation was 

introduced [32,48]. Moreover, an Internet application 
for fast searching on web pages using fast cross 
correlation was presented in [54]. Finally, high speed 
data processing using fast cross correlation was 
introduced in [53]. 

A marked increase in the incidence of skin cancers has 
been observed in fair-skinned populations worldwide 
since the early 1970s [8]. This is strongly associated with 
personal habits in relation to sun exposure. Overexposure 
to ultraviolet radiation is the primary environmental risk 
factor in the development of ultraviolet -related adverse 
health effects, which include diseases of the eye (e.g., 
cataract, lens capsule deformation, ocular melanoma, 
etc.), skin wrinkles, delayed tanning, sunburn, carcinoma 
and also molecular changes within the cells [3,24]. As a 
result, it is of great interest to assess the changes in the level of 
ultraviolet radiation reaching the Earth’s surface. Because of 
the observed ultraviolet series are not sufficiently long 
and do not allow to determine appropriate statistical 
characteristics with desirable accuracy, many efforts have 
been carried out in inferring this information from other 
available data sets [5]. One of them has been the use of 
empirical and statistical models [1,6,9,10,11,19,22,23,60]. 
One of the limitations imposed by these correlations is that 
they show a latitude dependency. Radiative transfer models 
have been also used to estimate ultraviolet levels at locations 
where measurements are not available [2,21,23,28,30]. Results 
from these studies suggest that model calculations in most 
cases can reproduce ultraviolet irradiance with 
uncertainties comparable to those of the measurements 
[20].  

Contrary to the mathematical routines mentioned above, 
artificial intelligence may provide a suitable technique to 
improve the accuracy of this prediction. In this research, 
the validity of two different neural methodologies to solve a 
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particular kind of inverse problem is discussed. Erythemal 
ultraviolet  irradiance and a few number of sources are 
considered. The first methodology refers to the long-
utilized multi-layer perceptron (MLP) neural networks 
whose performances are well known. The second 
methodology refers to the relatively new approach based on 
the bootstrap aggregating training algorithm. Results have 
been compared with the existing relevant data from three 
Egyptian sites in order to verify the validity of the 
methods. The atmosphere of Cairo (30° 05′ N, 32° 17′ E, 36 
m) was chosen for the polluted case. On the other hand, 
Aswan (23°58′ N, 32° 47′ E, 192 m) and Mersa-Matruh 
(31°20′ N, 27°13′ E, 38 m) were chosen for the clarity of 
the atmosphere. Assessing of Erythemal Ultraviolet 
Irradiance is discussed in section II. Forecasting by 
using neural networks is described in section III. A 
new proposed forecasting algorithm by using fast 
neural networks is presented in section IV. 
 

II. Assessing the Erythemal Ultraviolet 
Irradiance  

Because of the apparent lack of long-term ultraviolet 
measurements, alternative methods for assessing the 
ultraviolet levels of the past have to be considered. 
Satellite retrieved ultraviolet is an important contributor 
in this area [13,31]. A global monitoring of surface 
ultraviolet can be done by using satellite measurements as 
from the total ozone mapping spectrometer (TOMS). Taking 
advantage of the TOMS satellite data availability, the 
required data for the models were obtained from 
NASA’s website [58]. The TOMS’ data have a daily 
global coverage over 1°x1.25° (latitude by longitude) 
grids. The total relative uncertainty in the radiance 
calibration is estimated to be 63% (though somewhat 
higher at high latitudes). For more detailed 
descriptions of the different sources of uncertainty the 
reader is referred to [8,59]. The collected data include 
the local noon erythemal Ultraviolet, reflectivity, ozone 
content, solar zenith angle, and aerosol and SO2 indices. 
This research was developed using 6-years data 
archive (1997–2002). This data was divided into two 
subsets: the training subset (comprising three complete 
years cover the period 1997-1999) and the performance 
subset (comprising the existing relevant data from 2000 to 
2002). The models were built with the former data 
subset and they were, subsequently, verified with the 
latter data subset (i.e., the testing set was not included as a 
part of the training set). As a result, the high accuracy 
obtained demonstrated the ability of these techniques to 
produce accurate estimates. The monitoring sites have 
been chosen to cover the coastal and interior areas of 
Egypt. 

 
III. Forecasting using Neural Networks 

Artificial neural network (ANN) is a mathematical 
model, which can be set one or more layered and 
occurred from many artificial neural cells [16] Jang et al., 
1997). The wide usage of the ANN may be due to the three 
basic properties: (1) the ability of the ANN as a parallel 

processing of the problems, for which if any of the 
neurons violate the constraints would not affect the 
overall output of the problem; (2) the ability of the ANN to 
extrapolate from historical data to generate forecasts; and (3) 
the successful application of the ANN to solve non-linear 
problems (Sazi, 2006). The history and theory of the ANN 
have been described in a large number of published 
literatures and will not be covered in this paper except 
for a very brief overview of how neural networks 
operate. 

The ANN computation can be divided into two phases: 
learning phase and testing phase. The learning phase forms 
an iterative updating of the synoptic weights based upon the 
error back propagation algorithm. Back propagation 
algorithm is generalized of least mean square learning rule, 
which is an approximation of steepest descent technique. To 
find the best approximation, multi-layer feed forward neural 
network architecture with back propagation learning rule 
is used. A schematic diagram of typical multi-layer feed-
forward neural network architecture is shown in Fig. 1. 
The network has five inputs and one output neuron in its 
linear output layer. The number of neurons in the hidden 
layer is varied to give the network enough power to solve the 
problem. Each neuron computes a weighted sum of the 
individual inputs (I1, I2, …, Ij) it receives and adding it with a 
bias (b) to form the net input (x). The bias is included in the 
neurons to allow the activation function to be offset 
from zero.  

bIwIwIwsum jj ++++= ...... ,122,111,1
      (1) 

Where, wji is the connection weight between neuron j and 
neuron i. The net input (sum) is then passed to the 
subsequent layer through a non linear sigmoid 
function to form its own ou put (yj). t

( )sum
j ey −+= 11                      (2) 

Afterward, the output yj was compared with the target 
output tj using an error funct on o  the form: i f

( ) ( )jjjjk yyyt −−= 1δ                     (3)  
For the neuron in the hidden layer, the error term is 
given by the following equati n: o

( ) k
k

kjjj wyy ∑−= δδ 1                   (4) 

where δk is the error term of the output layer, and wk is 
the weight between the hidden layer and output layer. 
The error was then propagated backward from the 
output layer to the input layer to update the weight of 
each connection at iteration (t + 1) as follows: 

( ) ( )
( ) ( )( )1

1

−−+

+=+

twtw

ytwtw

jiji

jjjiji

α

δη              (5) 

Choosing a small learning rate η leads to slow rate of 
convergence, and too large η leads to oscillation. The term α 
is called momentum factor and determines the effect of past 
weight changes on the current direction of movement. Both 
of these constant terms are specified at the start of the 
training cycle and determine the speed and stability of the 
network [18]. The process was repeated for each input 
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pattern until the error was reduced to a threshold 
value.  

The most challenging part of designing a predictive model is to 
come up with the best set of classifiers. The quest of selecting 
the best classifier is often difficult. Experimental results 
showed that the sets of misclassified samples from 
different classifiers don’t usually overlap [12]. This 
observation motivated the idea of using multiple sets of 
classifiers to solve the problem of identification in the presence 
of noisy data [17]. A combination of different types of 
classifiers promises to lead to improved models compared to 
selecting one of the competitors [14]. Combining the 
decision of different classifiers means to fuse among the 
various outputs into a single decision as shown in Fig. 3. 
In this research, the bootstrap aggregating (bagging) 
classifier is used. The principle idea of bagging as 
originally described by [4] is to generate multiple 
independent classifiers by exploiting instability of classifier 
learning under changes to the learning set. In addition, one 
can exploit instability under different internal 
parameterization of the classifier [27]. In other world we 
can eliminate variance due to a particular choice of training 
set. The following pseudo-code describes the bagging 
technique introduced by Breiman [4]. 
 
Bagging (prediction algorithm A, dataset D, iterations 
T) 

1) model generation 
                  for i = 1 to T: 
           generate a bootstrap sample D(i) from D 
         let M(i) be result of training A on D(i) 
2) prediction for a given test instance x  
  for i = 1 to T: 

let C(i) = output of M(i) 
( )∑

=

=
T

1i T
iM

 on x           (6) 

3) return class that appears most often among 
C(1)...C(T) 

Given a standard training set D, we generate a bootstrap 
sample D (i). The T models are fitted using the above T 
bootstrap samples and combined by averaging the 
output. Thereafter, the predictions of bagging classifier 
are used as additional predictors for a multi-layer perceptron 
(MLP) network. An advantage of the MLP based 
bagging is its relative ease of interpretation, which can 
help the user to understand and improve the classification 
rules. After trying a number of different configurations, it 
was found that 10 neurons in the hidden layer with η = 
0.02 and α = 0.8 yield the best results. The performance 
is then evaluated by the overall prediction accuracy. 

In order to check the performance of the combination of 
bagging algorithm with MLP network several error 
measures, averaged over the period of record, were 
computed for each site. Mean absolute errors (MAE), 
mean absolute percentage errors (MAPE), mean bias errors 
(MBE), standard errors (SE) and root mean square errors 
(RMSE) were computed. Additional estimator namely 
correlation coefficient, r, was used to test the linear relation 

between estimated and observed values (see appendix “A”). 
The frequency distributions of the difference between 
estimated and observed values were also introduced.  

As can be seen in Figures 4, 5 and 6, the combination of 
bagging algorithm with MLP network has minimum error 
rates. It can be seen that, the MLP overall prediction 
accuracy is only 80.9%. When bagging algorithm is 
used, the accuracy reaches 94.8%; an improvement of 
about 13.9% was achieved. To be more precise, the 
prediction accuracies derived by MLP networks 
adjusted for Cairo, Aswan and Mersa-Matruh were 
found to be 70.9%, 88.4% and 83.3%, respectively 
which corresponds to 89.2%, 96.4% and 98.9% in the case 
of MLP based bagging algorithm. The relatively large error 
rates observed at Cairo may be attributed to air pollution 
which can prejudice its predictive accuracy. The ambient 
air in this area contains more UV absorbing materials 
such as aerosols, CO, SO2, NO2 and O3 than would be 
found at a site with pristine air conditions [7]. 

An analysis of the entries in Figures  4, 5 and 6 shows that 
the MBE is positive in some cases and negative in others 
suggesting that none of the two models over or under-
estimates erythemal ultraviolet  irradiance consistently. 
The tendency for overestimation was found only in the 
MLP application at Cairo site. As can be seen, the 
combination of MLP with bagging algorithm exhibited 
low MBE rates, implying that it has a good long-term 
representation of the physical problem. For instance, the 
range of MBE derived by the MLP network at Cairo site, 
was 13.5% to -0.8%, while the range of MBE for the 
MLP based bagging algorithm was 2.14% to -2.9%. 
The other two sites follow with relatively lower 
values. 

Plots of the difference between predicted and observed 
values, given in Fig. 7, illustrate these biases. Inspecting the 
entries in Fig. 7, it may be observed that the distribution of 
MLP based bagging is quite different from the distribution 
of the MLP. In general, the distribution of MLP based 
bagging is symmetric at 0 while, the distribution of MLP is 
slightly skewed to the left. It has been found that 79.1% of 
the MLP based bagging dataset was estimated within a 
deviation of less than ±10 mW/m2 and 13.9% of these 
deviations lay within the range of 15 to 50 mW/m2. In 
the case of MLP, these values are about 65.6% and 
26.8%, respectively. This finding indicate that the 
results obtained by MLP based bagging are generally 
satisfactory compared to the results of MLP. 

It is also evident that, the RMSE obtained at Cairo 
was large, but remain in a domain of errors for which 
this approach can be applied with good accuracy. Over 
the entire period, the RMSE of the MLP network was 
found to be 29.1%; corresponding to 10.9% in the 
case of MLP based bagging algorithm. It can be 
observed that for all cities, the error rates are low in 
summer and then increased in the winter. It is not 
wholly obvious as to the reason for the higher error 
rates in winter, but it may have been the result of 
restricted air flows and low mixing depth, thus 
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resulting in ineffective air pollution dispersion and 
dilution. At Aswan and Mersa-Matruh, the RMSE 
rates are 3.6% and 1.1%, respectively, which shows 
the good prediction ability of the MLP network even 
when bagging algorithm is presented. 

To further test the performance of the two models SE, 
MAE, and MAPE were computed. Although the results 
are mixed meaning that, for most cases, the MLP yields 
the minimum SE rates, while on others the reverse is true, 
the overall SE of the MLP is about 10%, while that of the 
MLP based bagging is about 8.7%. The obtained results 
also show that the overall MAE rates reduce from 9% 
to 8% when bagging was used. In the application of 
MAPE, the overall rate derived by MLP was 6.5% 
compared with 4.7% for the combination of MLP with 
bagging algorithm. As a final point, the generalization of 
the models was tested by the correlation coefficient, r. In 
general, the two models provide a tighter fit for all sites, 
although the r appears to be lowest in Cairo and Aswan. 
Figures 6 and 7 shows this detail well. It can be easily seen 
from Figures 4 and 5 that, the r for Cairo and Aswan does 
not perform so well as that for Mersa-Matruh site; its mean 
value is 0.8 compared with 0.9 for Mersa-Matruh. These 
results show that at least 80% of the variation in the 
erythemal ultraviolet  irradiance can be explained by the 
input parameters. Further investigation of this indicator 
indicated that, for both models, r is barely significant (r ≅ 
0.66) in summer. Strong emissions of trace gases by 
vehicles traveling on the cities’ narrow roads and 
suspended soil dust are responsible for the low value 
observed for r at all sites. In [26] the authors reported that the 
reduction in the received UV radiation due to dust ranged 
between 33% and 59%. It’s worthy noted here that, trace 
gases and suspended particles are not included in the 
training set. The main criterion was the availability of 
these factors regarding the period covered. From the 
relatively reasonable magnitude of errors, it can therefore be 
concluded that the combination of MLP with bagging 
algorithm can be recommended to predict the 
noontime erythemal ultraviolet irradiance in daily 
scale for all sites. 
 

IV. A New Proposed Forecasting 
Algorithm by using FNNs 

FNNs are shown in Fig. 2. Computing the resulted 
output; for a certain pattern of information; in the 
incoming serial data, is a prediction problem. First 
neural networks are trained to predict the erythemal 
ultraviolet  irradiance  and this is done in time domain. 
In pattern detection phase, each position in the 
incoming matrix is processed to predict the erythemal 
ultraviolet  irradiance by using neural networks. At each 
position in the input one dimensional matrix, each 
sub-matrix is multiplied by a window of weights, 
which has the same size as the sub-matrix. The 
outputs of neurons in the hidden layer are multiplied 
by the weights of the output layer. Thus, we may 
conclude that the whole problem is a cross correlation 

between the incoming serial data and the weights of 
neurons in the hidden layer.   

The convolution theorem in mathematical analysis 
says that a convolution of f with h is identical to the 
result of the following steps: let F and H be the results 
of the Fourier Transformation of f and h in the 
frequency domain. Multiply F and H* in the 
frequency domain point by point and then transform 
this product into the spatial domain via the inverse 
Fourier Transform. As a result, these cross 
correlations can be represented by a product in the 
frequency domain. Thus, by using cross correlation in 
the frequency domain, speed up in an order of 
magnitude can be achieved during the prediction 
process [32-54]. Assume that the size of the input data 
is 1xn.  In the prediction phase, a sub matrix I of size 
1xn (sliding window) is extracted from the tested 
matrix, which has a size of 1xN. Such sub matrix, 
which contains the input pattern, is fed to the neural 
network. Let Wi be the matrix of weights between the 
input sub-matrix and the hidden layer. This vector has 
a size of 1xn and can be represented as 1xn matrix. 
The output of hidden neurons h(i) can be calculated as 
follows:  

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+∑

=
= ib(k)I(k)

n

1k iWgih                     (7) 

where g is the activation function and b(i) is the bias 
of each hidden neuron (i). Equation 7 represents the 
output of each hidden neuron for a particular sub-
matrix I. It can be obtained to the whole input matrix 
Z as follows: 

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
∑
−=

++=
n/2

n/2k i bk)   Z(uk)(iWg(u)ih              (8) 

Equation 8 represents a cross correlation operation. 
Given any two functions f and d, their cross 
correlation can be obtained by [56]: 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
∑
∞

∞−=
+=⊗

n
n)d(n)f(xf(x)d(x)                  (9) 

Therefore, Eq. 8 may be written as follows [32-54]: 
 

( )ibZiWgih +⊗=                         (10) 

where hi is the output of the hidden neuron (i) and hi 
(u) is the activity of the hidden unit (i) when the 
sliding window is located at position (u) and (u) ∈ [N-
n+1].  
Now, the above cross correlation can be expressed in 
terms of one dimensional Fast Fourier Transform as 
follows [32-54]: 

( ) ( )( )iW*FZF1FZiW •−=⊗             (11) 

Hence, by evaluating this cross correlation, a speed up 
ratio can be obtained comparable to conventional 
neural networks. Also, the final output of the neural 
network can be evaluated as follows:  
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⎝

⎛
∑
=
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q
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ob)u(ih (i)oWgO(u)        (12) 

where q is the number of neurons in the hidden layer. 
O(u) is the output of the neural network when the 
sliding window located at the position (u) in the input 
matrix Z. Wo is the weight matrix between hidden and 
output layer. 
The complexity of cross correlation in the frequency 
domain can be analyzed as follows: 
1-  For a processed matrix of 1xN elements, the 1D-
FFT requires a number equal to Nlog2N of complex 
computation steps [55]. Also, the same number of 
complex computation steps is required for computing 
the 1D-FFT of the weight matrix at each neuron in the 
hidden layer.  
2-  At each neuron in the hidden layer, the inverse 1D-
FFT is computed. Therefore, q backward and (1+q) 
forward transforms have to be computed. Therefore, 
for a given matrix under test, the total number of 
operations required to compute the 1D-FFT is 
(2q+1)Nlog2N. 
3- The number of computation steps required by 
FNNs is complex and must be converted into a real 
version. It is known that, the one dimensional Fast 
Fourier Transform requires (N/2)log2N complex 
multiplications and Nlog2N complex additions [55]. 
Every complex multiplication is realized by six real 
floating point operations and every complex addition 
is implemented by two real floating point operations. 
Therefore, the total number of computation steps 
required to obtain the 1D-FFT of a 1xN matrix is: 

ρ=6((N/2)log2N) + 2(Nlog2N)                (13)                                            

                                                          

which may be simplified to: 

ρ=5Nlog2N                            (14)     

4- Both the input and the weight matrices should be 
dot multiplied in the frequency domain. Thus, a 
number of complex computation steps equal to qN 
should be considered. This means 6qN real operations 
will be added to the number of computation steps 
required by FNNs.  
5- In order to perform cross correlation in the 
frequency domain, the weight matrix must be 
extended to have the same size as the input matrix. So, 
a number of zeros = (N-n) must be added to the 
weight matrix. This requires a total real number of 
computation steps = q(N-n) for all neurons. Moreover, 
after computing the FFT for the weight matrix, the 
conjugate of this matrix must be obtained. As a result, 
a real number of computation steps = qN should be 
added in order to obtain the conjugate of the weight 
matrix for all neurons.  Also, a number of real 
computation steps equal to N is required to create 
butterflies complex numbers (e-jk(2Πn/N)), where 
0<K<L. These (N/2) complex numbers are multiplied 
by the elements of the input matrix or by previous 
complex numbers during the computation of FFT. To 
create a complex number requires two real floating 

point operations. Thus, the total number of 
computation steps required for FNNs becomes: 

σ=(2q+1)(5Nlog2N) +6qN+q(N-n)+qN+N    (15) 

which can be reformulated as: 
σ=(2q+1)(5Nlog2N)+q(8N-n)+N              (16) 

6- Using sliding window of size 1xn for the same 
matrix of 1xN pixels, q(2n-1)(N-n+1) computation 
steps are required when using conventional neural 
networks (CNNs) for certain pattern detection or 
processing (n) input data. The theoretical speed up 
factor η can be evaluated as follows: 

   N n)-q(8N N) 1)(5Nlog(2q
 1)n-1)(N-q(2n

2 +++
+

=η            (17) 

 
Neural networks accept serial input data with fixed 
size (n). Therefore, the number of input neurons 
equals to (n). Instead of treating (n) inputs, our new 
approach is to collect all the input data together in a 
long vector (for example 100xn). Then the input data 
is tested by neural networks as a single pattern with 
length L (L=100xn). Such a test is performed in the 
frequency domain. Complex-valued neural networks 
mean that the inputs, weights, thresholds and the 
activation function have complex values [57]. In this 
section, formulas for the speed up ratio with different 
types of inputs will be presented. The special case of 
only real input values (i.e. imaginary part=0) will be 
considered. Also, the speed up ratio in the case of a 
one and two dimensional input matrix will be 
concluded. The operation of FNNs depends on 
computing the Fast Fourier Transform for both the 
input and weight matrices and obtaining the resulting 
two matrices. After performing dot multiplication for 
the resulting two matrices in the frequency domain, 
the Inverse Fast Fourier Transform is calculated for 
the final matrix. Here, there is an excellent advantage 
with FNNs that should be mentioned. The Fast Fourier 
Transform is already dealing with complex numbers, 
so there is no change in the number of computation 
steps required for FNNs. Therefore, the speed up ratio 
in the case of complex-valued neural networks can be 
evaluated as follows: 

1) In case of real inputs  

A) For a one dimensional input matrix 
Multiplication of (n) complex-valued weights by (n) 
real inputs requires (2n) real operations. This produces 
(n) real numbers and (n) imaginary numbers. The 
addition of these numbers requires (2n-2) real 
operations. Therefore, the number of computation 
steps required by conventional neural networks can be 
calculated as: 

θ=q(2n-1)(N-n+1)                  (18) 
The speed up ratio in this case can be computed as 
follows: 
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   N n)-q(8N N) 1)(5Nlog(2q

 1)n-1)(N-2q(2n

2 +++
+

=η          (19) 

The theoretical speed up ratio for searching short 
successive (n) data in a long input vector (L) using 
complex-valued neural networks is shown in Figures 
8, 9, and 10. Also, the practical speed up ratio for 
manipulating matrices of different sizes (L) and 
different sized weight matrices (n) using a 700 MHz 
processor and MATLAB is shown in Fig. 11.  

B) For a two dimensional input matrix 
Multiplication of (n2) complex-valued weights by (n2) 
real inputs requires (2n2) real operations. This 
produces (n2) real numbers and (n2) imaginary 
numbers. The addition of these numbers requires (2n2-
2) real operations. Therefore, the number of 
computation steps required by conventional neural 
networks can be calculated as: 

θ=2q(2n2-1)(N-n+1) 2                (20)  

The speed up ratio in this case can be computed as 
follows: 

 
   N )n-q(8N )N log1)(5N(2q

 1)n-1)(N-2q(2n
222

2
2

22

+++
+

=η      (21) 

The theoretical speed up ratio for detecting (nxn) real 
valued submatrix in a large real valued matrix (NxN) 
using complex-valued neural networks is shown in 
Figures 12, 13, and 14. Also, the practical speed up 
ratio for manipulating matrices of different sizes 
(NxN) and different sized weight matrices (n) using a 
700 MHz processor and MATLAB is shown in Fig. 
15.  

2) In case of complex inputs  

A) For a one dimensional input matrix 
Multiplication of (n) complex-valued weights by (n) 
complex inputs requires (6n) real operations. This 
produces (n) real numbers and (n) imaginary numbers. 
The addition of these numbers requires (2n-2) real 
operations. Therefore, the number of computation 
steps required by conventional neural networks can be 
calculated as: 

θ=2q(4n-1)(N-n+1)                    (22)  

The speed up ratio in this case can be computed as 
follows: 

 
   N n)-q(8N N) 1)(5Nlog(2q

 1)n-1)(N-2q(4n

2 +++
+

=η         (23) 

The theoretical speed up ratio for searching short 
complex successive (n) data in a long complex-valued 
input vector (L) using complex-valued neural 
networks is shown in Figures 16, 17, and 18. Also, the 
practical speed up ratio for manipulating matrices of 
different sizes (L) and different sized weight matrices 
(n) using a 700 MHz processor and MATLAB is 
shown in Figure 19.  

B) For a two dimensional input matrix 
Multiplication of (n2) complex-valued weights by (n2) 
real inputs requires (6n2) real operations. This 
produces (n2) real numbers and (n2) imaginary 
numbers. The addition of these numbers requires (2n2-
2) real operations. Therefore, the number of 
computation steps required by conventional neural 
networks can be calculated as: 

θ=2q(4n2-1)(N-n+1)2                     (24)  

The speed up ratio in this case can be computed as 
follows: 

   N )n-q(8N )N log1)(5N(2q
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The theoretical speed up ratio for detecting (nxn) 
complex-valued submatrix in a large complex-valued 
matrix (NxN) using complex-valued neural networks 
is shown in Figures 20, 21, and 22. Also, the practical 
speed up ratio for manipulating matrices of different 
sizes (NxN) and different sized weight matrices (n) 
using a 700 MHz processor and MATLAB is shown 
in Fig. 23.  
In practical implementation, the multiplication process 
consumes more time than the addition one. The effect 
of the number of multiplications required for 
conventional neural networks in the speed up ratio  is 
more than the number of multiplication steps required 
by the faster neural networks. Also, the  variations in 
Pc clock have an effect on practical computations. 
For a one dimensional matrix, from Figures 
8,9,10,11,16,17,18 and 19, we can conclude that the 
response time for vectors with short lengths are faster 
than those which have longer lengths. For example, 
the speed up ratio for the vector of length 10000 is 
faster that of length 1000000. The number of 
computation steps required for a vector of length 
10000 is much less than that required for a vector of 
length 40000. So, if the vector of length 40000 is 
divided into 4 shorter vectors of length 10000, the 
number of computation steps will be less than that 
required for the vector of length 40000. Therefore, for 
each application, it is useful at the first to calculate the 
optimum length of the input vector. The same 
conclusion can be drawn in case of processing the two 
dimensional input matrix as shown in Figures 
12,13,14,15,20,21,22, and 23. From these Figures, it is 
clear that the maximum speed up ratio is achieved at 
image size (N=200) when n=20, then at image size 
(N=300) when n=25, and at image size (N=400) when 
n=30. This confirms the previous results presented in 
[42] on fast subimage detection based on neural 
networks and image decomposition. Using this 
technique, it was proved that the speed up ratio of 
neural networks becomes faster when the input image 
is divided into many subimages and each subimage is 
processed in the frequency domain separately using a 
single fast neural processor. Another point of interest 
should be noted. In CNNs, if the whole input data (N) 
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is available, then there is a waiting time for each group 
of (n) input data so that conventional neural networks 
can release their output for the previous group of (n) 
data. In contrast, FNNS can process the total N data 
directly with zero waiting time. For example, if the 
total (N) input data is appeared at the input neurons, 
then: 

1- CNNs can process only data of size (n) as the 
number of input neurons = (n). 
2- The first group of (n) data is processed by CNNs.   
3- The second group of (n) data must wait for a 
waiting time = τ, where τ is the response time 
consumed by CNNs for treating each group of (n) 
input data. 
4- The third group of (n) data must wait for a waiting 
time   = 2τ corresponding to the total waiting time 
required by CNNs for treating the previous two 
groups. 
5- The fourth (n) data must wait for a waiting time = 
3τ. 
6- The last group of (n) data must wait for a waiting 
time     = (N-n)τ. 

As a result, the wasted waiting time in the case of 
CNNs is (N-n)τ. In the case of FNNS, there is no 
waiting time as the whole input data (Z) of length (N) 
will be processed directly and the time consumed is 
the only time required by FNNs themselves to produce 
their output. 
 

V. Conclusion 
A new fast neural-based forecasting technique has 
been presented. Theoretical computations have shown 
that the proposed fast forecasting technique require 
fewer computation steps than conventional one. This 
has been achieved by applying cross correlation in the 
frequency domain between the input data and the 
input weights of neural networks. Simulation results 
have confirmed this proof by using MATLAB. This 
algorithm can be successfully applied to any 
application that uses time delay neural networks. In 
addition, the bagging algorithm has been used to improve 
the prediction accuracy reported by the MLP network.  It 
has been found that, the daily errors associated with MLP 
based bagging algorithm are consistently smaller and 
less variable than those obtained by using the MLP 
network. These results have demonstrated the efficiency of 
the bagging algorithm together with FNNs to estimate the 
erythemal ultraviolet irradiance.  

Appendix “A” 
One of the most common indicators used in error analysis is 
the mean absolute error. This term is used similar to 
variance. The MAE of an estimator yj with respect to the 
estimated parameter xj is defined as: 

∑
=
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j
jj xy
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where, n is the number of data points. The MAPE is 
measure of accuracy in a fitted time series. 
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We used the MBE to describe how much the predictor 
underestimates or overestimates the situation. The MBE was 
determined using the following equation: 
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The SE is the standard deviation of the sampling distribution 

and may be estimated by the formula 
n
σ

 where σ is the 

standard deviation of the population distribution. The mean 
squared error (MSE) of an estimator is the square of the 
amount by which the estimator differs from the quantity to be 
estimated. The difference occurs because the estimator 
doesn't account for information that could produce a 
more accurate estimate. The RMSE which gives an idea of 
the magnitude of the non-systematic error is then simply 
defined as the square root of the MSE. The mathematical 
formula of the RMSE is given by: 
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In general, correlation coefficient, r, indicates the 
strength and direction of a linear relationship between 
two random variables. The correlation is 1 in the case of an 
increasing linear relationship, -1 in the case of a decreasing 
linear relationship, and some value in between in all other 
cases, indicating the degree of linear dependence 
between the variables. 
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Where,  is the observed mean value and  is the 
predicted mean value. 
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Fig.2. Fast neural networks. 
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Fig. 3. Information Fusion by using combined classifiers. 
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Fig. 4. Error values associated with erythemal ultraviolet  irradiance estimates from MLP based bagging and MLP models at Cairo site. 
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Fig. 5. Error values associated with erythemal ultraviolet  irradiance estimates from MLP based bagging and MLP models at Aswan site. 
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Fig. 6. Error values associated with erythemal ultraviolet  irradiance estimates from MLP based bagging and MLP models at Mersa-Matruh site. 
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Fig. 7. The frequency distribution of the differences between predicted and observed values. 
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Fig. 8. A comparison between the number of computation steps required by FNNS and CNNs in case of real-valued one 

dimensional input matrix and complex-valued weight matrix (n=400). 
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Fig. 9. A comparison between the number of computation steps required by FNNS and CNNs in the case of real-valued one 

dimensional input matrix and complex-valued weight matrix (n=625). 
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Fig. 10. A comparison between the number of computation steps required by FNNS and CNNs in the case of real-valued one 

dimensional input matrix and complex-valued weight matrix (n=900). 
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Fig. 11.  Practical speed up ratio for FNNs in case of one dimensional real-valued input matrix and complex-valued weights. 
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Fig. 12. A comparison between the number of computation steps required by FNNS and CNNs in the case of real-valued two 

dimensional input matrix and complex-valued weight matrix (n=20). 
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Fig. 13. A comparison between the number of computation steps required by FNNS and CNNs in the case of real-valued two 

dimensional input matrix and complex-valued weight matrix (n=25). 
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Fig. 14. A comparison between the number of computation steps required by FNNS and CNNs in the case of real-valued two 

dimensional input matrix and complex-valued weight matrix (n=30). 
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Fig. 15. Practical speed up ratio for FNNs in case of two dimensional real-valued input matrix and complex-valued weights. 

 
 

 

 

 

 

 

 

 

 

WSEAS TRANSACTIONS on SIGNAL PROCESSING Hazem M. El-Bakry, Nikos Mastorakis

ISSN: 1790-5052 591 Issue 10, Volume 4, October 2008



 

 

 

 

0
5E+10
1E+11

1.5E+11
2E+11

2.5E+11
3E+11

3.5E+11
4E+11

4.5E+11

10000 2E+05 5E+05 1E+06 2E+06 3E+06 4E+06

Length of one dimensional input matrix 

N
um

be
r o

f C
om

pu
ta

tio
n 

St
ep

s

Number of Computation Steps Required
by Conventional Neural Networks
Number of Computation Steps Required
by Fast Neural Networks

 
Fig. 16. A comparison between the number of computation steps required by FNNS and CNNs in the case of complex-valued 

one dimensional input matrix and complex-valued weight matrix (n=400). 
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Fig. 17. A comparison between the number of computation steps required by FNNS and CNNs in the case of complex-valued 

one dimensional input matrix and complex-valued weight matrix (n=625). 
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Fig. 18. A comparison between the number of computation steps required by FNNS and CNNs in the case of complex-valued 

one dimensional input matrix and complex-valued weight matrix (n=900). 
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Fig. 19.  Practical speed up ratio for FNNs in case of one dimensional complex-valued input matrix and complex-valued 

weights. 
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Fig. 20. A comparison between the number of computation steps required by FNNS and CNNs in the case of complex-valued 

two dimensional input matrix and complex-valued weight matrix (n=20). 
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Fig. 21. A comparison between the number of computation steps required by FNNS and CNNs in the case of complex-valued 

two dimensional input matrix and complex-valued weight matrix (n=25). 
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Fig. 22. A comparison between the number of computation steps required by FNNS and CNNs in the case of complex-valued 

two dimensional input matrix and complex-valued weight matrix (n=30). 
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Fig. 23. Practical speed up ratio for FNNs in case of two dimensional complex-valued input matrix in and complex-valued 

weights. 
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