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Abstract: - An important practical problem in the area of the higher-order statistical signal processing is to 
estimate the cumulants and polyspectra of the analyzed signal when a finite sequence of time samples is 
available. We cannot use the theoretical formula because they are based on the assumption that an infinite 
sequence of time samples is available, but this is not true in practice. In order to obtain a better estimate for 
bispectrum of the signal, different types of 2D window functions are used. Also, these windows are 
investigated in terms of the resolution and leakage effect of the indirect bispectrum estimate. 
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1 Introduction 
It is known that high order statistics is a new useful 
tool in the signal processing area. The cumulants and 
polispectra have some interesting properties that 
allow in certain situations to obtain more information 
about the analyzed signals, [3], [4], [5], [9]. These 
properties also make them very powerful in many 
other applications. If the second order statistics 
(autocorrelation function and power spectrum) are 
not capable to resolve a particular problem (e.g., 
detection of quadratic phase coupling), then 
sometime it is possible to apply successfully high 
order statistics, [1]. 
 An important problem in practice is to estimate 
the cumulants and polyspectra of the analyzed signal 
using a finite number of runs (realisations) and 
respectively, a finite number of samples for each run. 
The definitions of high order statistics for random 
signals are based on the assumption that an infinite 
sequence of time samples is available. Whereby this 
approach is not true in practice, a direct theoretical 
formula cannot be used for computing the values of 
high order statistics.  
 According to this idea, the indirect calculus 
procedure is one of the most used conventional 
methods for bispectrum estimation. The estimated 
cumulant is multiplied by a suitable 2D window 
function in order to obtain an improved estimation 
for the bispectrum of the signal. Using this approach, 
the variance of the estimate decreases and the 
estimate will become consistent. 

 The 2D window functions should satisfy some 
important conditions, [4], [5], [6]. Thus, they must 
have the same symmetry properties like 
bicorrelation. A lot of 2D window functions are 
described in the high order statistics literature, [5], 
[6], but most of these are derived from 1D standard 
windows, e.g., Daniell, Hamming, Parzen, Priestley 
or Sasaki (minimum bispectrum bias supremum) 
windows. Another important 2D window is mean-
squared error (MSE) optimal window derived by 
Rao and Gabr theory, [5]. The advantages of these 
windows are analyzed in terms of variance and bias 
of bispectrum estimate and respectively, in terms of 
MSE between the true value and estimated 
bispectrum. 
 The aim of this paper is to study the influences of 
the different types of 2D window functions on the 
indirect bispectrum estimate. Consequently, this 
study is done using the bispectral resolution and 
leakage effect as points of view. Therefore, in the 
first part of the paper, the definitions and some 
properties of cumulants and polyspectra are 
presented. Also, the indirect method for bispectrum 
estimation is shown. In the second part of the paper, 
the 2D windows used in the indirect bispectral 
estimation are presented and their 2D Fourier 
transforms are analyzed. Thus, some sections 
through main lobe and side lobes and their 
interpretation are presented. In the last part of the 
paper, the experimental results that confirm the 
broached theoretical aspects from beginning are 
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shown. Finally, some conclusions and future 
research directions in this action field are included. 
 
2 Cumulants and polyspectra of a 
stationary random process 
If ( )x n , 0, 1, 2,n = ± ± K  is a zero-mean stationary 
random process, then the second-order cumulant 
(autocorelation), third-order cumulant (bicorelation) 
and the fourth-order cumulant (tricorelation) are 
given by equations, [2], [5]: 
 

( ) ( ) ( ){ }2, ,xc k l E x n x n k= + ,  (1) 

( ) ( ) ( ) ( ){ }3, ,xc k l E x n x n k x n l= + + , (2) 

( )
( ) ( ) ( ) ( ){ }

( ) ( ) ( ) ( )
( ) ( )

4,

2, 2, 2, 2,

2, 2,

, ,x

x x x x

x x

c k l m

E x n x n k x n l x n m

c k c l m c l c m k

c m c k l

=

= + + + −

− − − − −

− −  ,

(3) 

 
where 0, 1,k = ± K , 0, 1,l = ± K , 0, 1,m = ± K  . 
 Assuming that the above cumulants are 
absolutely summable, then the second-order 
polyspectrum (power spectrum), third-order 
polyspectrum (bispectrum) and the fourth-order 
polyspectrum (trispectrum) for the same process 

( )x n , are given by equations, [3]: 
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where 1ω π≤ , 2ω π≤ , 3ω π≤ , 1 2ω ω π+ ≤ , 

1 2 3ω ω ω π+ + ≤ . 
 The main property which differentiates higher-
order cumulants from correlation is that cumulants 
and polyspectra of order greater than two are 
identically zero for gaussian signals. Accordingly, 
the signal-to-noise ratio will become higher in the 
cumulants or polyspectra space when higher-order 
statistics based methods are applied to non-gaussian 
signals processing and the signals are corrupted by 
gaussian noises, [3]. 
 It is well known that the autocorrelation function 
and the power spectrum contain only the amplitude 
information about a process, and they are phase 

blind, whereas cumulants and polyspectra reveal 
amplitude and phase information. Therefore, it isn’t 
possible to reconstruct the correct phase of a non-
minimum phase system from its output data using 
some algorithms based on the second-order statistics, 
[3]. 
 The higher-order statistics can be also used to 
detect and characterize the type of nonlinearity in the 
time series and to identify nonlinear systems, [3], 
[5]. 
 
3 The indirect method for bispectrum 
estimation 
In practice, we cannot use the theoretical formula (5) 
to determine the real value of bispectrum because we 
don’t know all the values of the signal. We know 
only a finite set of observation measurements. 
Therefore, the third-order polyspectrum must be 
estimated from available data. 
 According to special literature, two of the most 
conventional methods used for the higher-order 
statistics estimation are the direct and indirect 
methods. In fact, these are the natural extensions of 
the power spectrum estimators. 
 In the direct method, the estimate is known as the 
higher-order periodogram and it is based on the 
calculus of the discrete time Fourier transform of the 
observed data.  
 In the indirect method, the estimate is based on 
the computing of the multidimensional discrete time 
Fourier transform of the data estimated cumulant 
samples. We assume that N  samples of a strictly 
stationary random process ( )x n , 0, 1n N= −  are 
known. In the third-order case, first of all, the 
bicorrelation ( )3,ˆ ,xc k l , k L≤ , l L≤ , L N≤  must 
be estimated. Note that L  determines the region 
support of the estimated cumulant. At last, using the 
above cumulant samples, the indirect bispectrum 
estimate ( )3, 1 2

ˆ ,xS ω ω  is given by equation, [5], [6]: 
 

( ) ( ) ( ) ( )1 2
3, 1 2 3,

ˆ ˆ, , ,
L L

j k l
x x

k L l L
S w k l c k l e ω ωω ω − +

=− =−

= ⋅ ⋅∑ ∑ ,(7) 

 
where ( ),w k l  is a proper 2D window function. 
 As it can be seen in the above relation, in order to 
obtain a decreasing of the bispectrum variance the 
estimated bicorrelation is multiplied by an 
appropriate 2D window function. Another technique 
used to reduce this variance is to segment the data 
into many records. It was shown that this estimate is 
asymptotically unbiased and consistent, [4], [5]. 
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 In the equation (7), the unbiased ( )3,ˆ ,u
xc k l  or the 

asymptotically unbiased ( )3,ˆ ,a
xc k l  estimates of the 

third-order cumulant can be used: 
 

( ) ( ) ( ) ( )
2

1

3,
1ˆ ,

N
u

x
n N

c k l x n x n k x n l
C =

= + +∑ ,  (8) 

( ) ( ) ( ) ( )
2

1

3,
1ˆ ,

N
a

x
n N

c k l x n x n k x n l
N =

= + +∑ , (9) 

 
where ( )1 1 max 0, ,N k l= + − − , ( )2 1 max 0, ,N k l= −  
and ( ) ( )max 0, , max 0, ,C N k l k l= − − − − . 
 
4 Two-dimensional window functions 
for bispectrum estimation 
According to [4], [5] and [6], the 2D window 
functions used for bispectrum estimation must have 
the following important properties: 
a) They should satisfy the symmetry properties of the 
third-order cumulants: 
 

( ) ( ) ( ) ( ), , , ,w k l w l k w k l k w k l l= = − − = − − ; (10) 
 

b) They should be zero outside the region of support 
of the estimated third-order cumulant: 
 

( ), 0w k l = ,   (11) 
 

for k L> , l L> ; 
c) They should be equal to one at the origin 
(normalizing condition): 
 

( )0,0 1w = ;   (12) 
 

d) They should have a real positive two-dimensional 
Fourier transforms: 
 

( )1 2, 0W ω ω ≥ ,   (13) 
 

for 1ω π≤ , 2ω π≤ . Also, they should have a finite 
energy. 
 The 2D window functions satisfying the above 
properties can be derived from 1D windows as 
follows, [2], [4], [6]: 
 

( ) ( ) ( ) ( ),w k l f k f l f l k= − , (14) 
 

where the 1D window ( )f k  satisfies the following 
properties: 

( ) ( )f k f k= − ,   (15) 
 

( ) 0 for f k k L=  > ,  (16) 
 

( )0 1f = ,   (17) 
 

( ) 0 for F ω ω π≥  ≤ .  (18) 
 

 The function ( )F ω  is the time discrete Fourier 
transform of the window ( )f k . 
 Note that not all 1D windows used in classical 
power spectrum estimation satisfy the last condition 
(18) for all ω , [2], [4], [6]. 
 The standard 1D windows used to generate 2D 
windows for bispectrum estimation are: 
a) Daniell window: 
 

( )
( )sin

, 1

0, 1

p
p

f p p
p

π
π


 ≤= 

              >

;  (19) 

 
b) Hamming window: 
 

( ) ( )0.54 0.46cos , 1
0, 1

p p
f p

p
 +  ≤=                                  >

π
; (20) 

 
c) Parzen window: 
 

( ) ( )

32

3

1 6 6 , 0.5

2 1 , 0.5 1

0, 1

p p p

f p p p

p

 − +  ≤
= −         ≤ ≤
                        >

; (21) 

 
d) Priestley window: 
 

( ) ( )
( ) ( )2

sin3 cos , 1

0, 1

p
p p

pf p p
p

  
−  ≤  

=   
                                               >

π
π

ππ ; (22) 

 
e) Sasaki window: 
 

( ) ( ) ( ) ( )1 sin 1 cos , 1

0, 1

p p p p
f p

p

 + −  ≤= 
                                                >

π π
π , (23) 

 

where kp
L

=  and , ,0,k L L= − K K . 
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 A particular 2D window function is the mean-
squared error optimal window derived by Rao and 
Gabr. It is given by the equation: 
 

( ) ( ) ( )

( )

1 2 1 2 1 2 13

1 2 2

8, , ,
7

,

w p p g p p g p p p

g p p p
π

=  + − − +

+ − − 

, (24) 

 
where: 
 

( ) ( )

( )

2 2
1 2 1 2

1 2 2 13 3
1 2

2 1
2 12 2

1 2

2 2, cos

sin

p p p pg p p p p
p p

p p p p
p p

π
π

π

+ +
= ⋅ − −

−
− ⋅ −

,(25) 

 

and 1
kp
L

= , 2
lp
L

= , , ,0,k L L= − K K , 

, ,0,l L L= − K K . 
 The projections on the reference plane of the 
above mentioned 2D windows are presented in Fig.1. 
 

 
 

 

 

 

 

 
Fig.1: 2D windows for bispectrum estimation 
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 In the special literature, these 2D windows are 
analyzed in terms of bispectrum bias supremum ( J ), 
bispectrum variance (V ) and respectively, in terms 
of MSE between the true value and estimated 
bispectrum. It is demonstrated that the MSE is 
proportional to an index of efficiency E V B= ⋅ , the 
variance of the estimator is approximately 
proportional to the index V  and finally, the 
bispectrum bias supremum is proportional to the 
index J , where, [5]: 
 

( )
( )1 2 1 2 1 22

1 ,
2

B W d d
π π

π π

ω ω ω ω ω ω
π − −

= − ∫ ∫ ,   (26) 

 

( )
( ) 2

1 2 1 22

1 ,
2

V W d d
π π

π π

ω ω ω ω
π − −

= ∫ ∫ , (27) 

 

( )
( ) ( )2

1 2 1 2 1 22

1 ,
2

J W d d
π π

π π

ω ω ω ω ω ω
π − −

= −∫ ∫ . (28) 

 
 In the Table 1 the values of these indexes 
obtained in [5] are presented. 
 As one can see from this table, the bispectrum 
estimator obtained by using of MSE optimal window 
assures the smallest MSE between the true value and 
the estimated bispectrum. Also, it has good values 
for the bias and the variance. 
 
                                                                         Table 1 

Index Window J V B E 
Daniell 99468.5 0.1199 8990 1078.5 
Parzen 8392.43 0.0409 1324.78 54.2 
Hamming 60664.8 0.9067 6261.80 567.76 
Priestley 288002 0.2032 10909.3 2216.91 
Sasaki 1315.2 0.0486 2007.43 97.29 
MSE 
optimal 2220.74 0.0691 458.69 31.68 

Indexes J , V , B  and E  of the analyzed 2D 
window functions 

 
 In order to obtain the smallest variance of the 
estimator, Parzen window is indicated to be used. 
This window has also a good value of the MSE and a 
moderate value for the bias. Also, for the smallest 
bispectrum bias supremum, Sasaki window is 
recommended to be used. It has a very good value 
for the variance and a moderate value of the MSE. 
 A compromise between these three indexes is 
given by Daniell window. The Hamming window 

has the largest variance and the Priestley window has 
the largest bispectrum bias supremum. 
 
5 Bispectral resolution and leakage 
effect of 2D windows 
In some higher-order statistical signal processing 
applications (e.g., quadratic phase coupling detection 
problem, birange profile reconstruction), it is 
important to calculate the bispectral resolution and 
leakage effect of the indirect bispectrum estimate for 
different types of 2D window functions. 
 In order to see the bispectral resolution of the 
indirect estimate, it must take into account the 2D 
discrete-time Fourier transforms of 2D window 
functions and the cross sections through the main 
lobes of these at -3 dB level. 
 In the Fig.2 these transforms are presented. As 
one can see from this figures, they have a larger or a 
narrower main lobe and a bigger or a smaller 
sidelobe level. The shapes of the main lobes and of 
the sidelobes are also different. 
 In the Fig.3 the cross sections through the main 
lobes are indicated. Consequently, we will have very 
good information and a suggestive visual view on the 
bispectral resolution of the analyzed 2D window 
functions. 
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Fig.2: 2D discrete-time Fourier transforms of the 

analyzed window functions (in dB) 
 
 Similar with the case of 1D window functions 
used in the power spectrum estimation (Blackman-
Tukey method, [8]), the bispectral resolution is better 
when the size L  of the 2D window increases. The 
diagrams presented in the Fig.2 and Fig.3 are 
obtained for 129L =  samples. This value cannot be 
increasing very much because the variance of the 
estimator increases. Also, a large value of L  means a 
large number of estimated third-order cumulant 
samples ( )3,ˆ ,xc k l , k L≤ , l L≤ . Accordingly, a 
longer computing time it is necessary to perform a 
larger number of operations. In the same time, small 
values of L  reduce the bispectral resolution and 
increase the bias of the estimator. 

 

 
Fig.3: Cross section through the main lobes of 2D 
discrete-time Fourier transforms of the tested 2D 

window functions (at -3 dB level) 
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 As it can be seen from Fig.3, the shape of the 
cross section through the main lobes is not circular, 
and practically, is one elliptic. Accordingly, the 
bispectral resolution depends a lot by the chosen 
direction into frequency plane. 
 The values of relative width assigned to the main 
lobes are important to study the reducing way of the 
bispectral resolution when another 2D window 
functions than the rectangular one are used. 
Consequently, the relative width at -3 dB level is the 
ratio between the area of the cross section through 
the main lobe of the investigated window and the 
area of the cross section through the main lobe for 
the (reference) rectangular window. The values of 
relative width are obtained analyzing Fig. 3 and are 
synthetically presented in Table 2. 
 As one can see from Table 2, the rectangular 
window has the smallest width of the main lobe and 
accordingly, an estimator using this type of window 
has the best bispectral resolution, [7]. Also, similar 
results are given by the MSE optimal window use. 
However, this last window has an additional 
advantage: the estimator has the smallest MSE. 
 The Priestley, Daniell and Hamming windows 
have good values of the relative width compared 
with the case of rectangular window. 
 Although the Sasaki and Parzen windows offer 
the largest main lobes, the Sasaki window has the 
best bias and respectively, the Parzen window has 
the best variance of the estimator. 
 

                                                  Table 2 

Window Relative widths of 
the main lobes 

Rectangular 1 
Daniell 2.25 
Hamming 2.57 
Parzen 5.25 
Priestley 1.49 
Sasaki 4.50 
MSE optimal 1.07 

The relative widths assigned to the main lobes 
 obtained in case of analyzed 2D window functions 

 
 The level of the sidelobes is an important factor 
to study the effect known as spectral leakage. The 
cross section acquired at 1 0ω =  or 2 0ω =  and 
respectively, the diagonal sections at 1 2ω ω=  and 

1 2ω ω= −  through the 2D Fourier transforms are 
shown in Fig. 4. As it can be seen, these diagrams 
put in evidence a lower sidelobe level of the window 
functions compared with the case of rectangular 
window use. Accordingly, the bispectral leakage 

effect decreases when another 2D window functions 
than the rectangular one are used. 
 The values assigned to the sidelobe levels can be 
obtained from Fig. 4 and are synthetically presented 
in Table 3. 
 
                                                                         Table 3 

Level of the sidelobes (dB) 

Window 1 0ω =  
or 

2 0ω =  
sections 

1 2ω ω=  
section 

1 2ω ω= −  
section 

Rectangular -19.03 -16.77 -19.03 
Daniell -42.23 -35.87 -42.23 
Hamming -50.74 -60.72 -50.74 
Parzen -55.37 -74.59 -55.37 
Priestley -33.66 -27.88 -33.66 
Sasaki -107.56 -111.05 -107.56 
MSE optimal -21.38 -24.63 -38.47 

Level of the sidelobes for the tested 2D window 
functions (cross and diagonal sections) 
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Fig.4: Cross (blue line 1 0ω =  or 2 0ω = ) and 

diagonal (red line 1 2ω ω= , black line 1 2ω ω= − ) 
sections through the Fourier transforms of the  

tested 2D windows 
 
 As one can see from Table 3, the rectangular and 
the MSE optimal windows have the biggest level of 
the sidelobes and therefore, they have the largest 
leakage effect. 
 In the same direction, a very good compromise 
between resolution and leakage effect in case of 
indirect bispectral estimator use are given by 
Priestley, Hamming, and Daniell windows. 

More details regarding theoretical aspects treated 
in this section can be found in [7]. 
 
6 Experimental results 
The main objective of the experimental part of this 
paper is to put in evidence the advantages (or 
disadvantages) resulting after applying of the 
different types of 2D window functions on the 
bispectral estimation. In order to implement this 
goal, it was used a concrete application of signal 
processing namely, the quadratic phase coupling 
detection problem, [4], [5]. 
 Let the signal ( )s n : 
 

( ) ( )
6

1
cos i i

i
s n nω ϕ

=

= +∑ , (29) 

 
where 2 1 0ω ω> > , 5 4 0ω ω> > , 3 1 2ω ω ω= + , 

6 4 5ω ω ω= + , 1 2 5, , ,ϕ ϕ ϕ  K  are all independent 
random variables, uniformly distributed over 
[ ],π π−  and 6 4 5ϕ ϕ ϕ= + . The components of the 
signal ( )s n  with the frequencies 4 42 fω π=  and 

5 52 fω π=  are quadratically phase coupled, [4], [6]. 
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 According to [4], the bicorrelation ( )3, ,sc k l  of 

( )s n  is the following: 
 

( ) ( ) ( )

( ) ( )
( ) ( )

3, 5 4 6 4

4 5 6 5

4 6 5 6

1, cos cos
4
cos cos

cos cos .

sc k l k l k l

k l k l

k l k l

ω ω ω ω

ω ω ω ω

ω ω ω ω

=  + + − +

+ + + − +

+ − + −  

 (30) 

 
 The 2D Fourier transform of the first term from 
the right side of the above formula is: 
 

( ) ( )

( ) ( )
( ) ( )

1 2
5 4

2
1 5 2 4

2
1 5 2 4

cos

2

2 .

j k l

k l
k l e ω ωω ω

π δ ω ω δ ω ω

π δ ω ω δ ω ω

+∞ +∞
− +

=−∞ =−∞

+ ⋅ =

= − − +

+ + +  

∑ ∑ % %

% %

% %
 (31) 

 
 From relations (30) and (31), we have the 
bispectrum ( )3, 4 5,sS ω ω% %  of ( )s n : 
 

( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( )( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( )

3, 1 2 1 5 2 42

1 5 2 4 1 6 2 4

1 6 2 4 1 4 2 5

1 4 2 5 1 6 2 5

1 6 2 5 1 4 2 6

1 4 2 6 1 5 2 6

1 5 2 6

2 ,sS ω ω δ ω ω δ ω ω
π

δ ω ω δ ω ω δ ω ω δ ω ω

δ ω ω δ ω ω δ ω ω δ ω ω

δ ω ω δ ω ω δ ω ω ω ω

δ ω ω δ ω ω δ ω ω δ ω ω

δ ω ω δ ω ω δ ω ω δ ω ω

δ ω ω δ ω ω

= − − +

+ + + + − + +

+ + − + − − +

+ + + + − + +

+ + − + − + +

+ + − + − + +

+ + −  

% % % %

% % % %

% % % %

% % % %
% % % %

% % % %
% % .

 (32) 

 
 Consequently, the theoretical bispectrum of this 
signal is made by peaks only at frequencies of 
quadratically phase coupled components: ( )4 5,ω ω , 

( )5 4,ω ω , ( )6 4,ω ω− , ( )6 5,ω ω− , ( )5 6,ω ω− , 

( )4 6,ω ω− , ( )4 5,ω ω− − , ( )5 4,ω ω− − , ( )6 4,ω ω− , 

( )6 5,ω ω− , ( )5 6,ω ω−  and ( )4 6,ω ω− . 
 It was generated a synthetic signal consisting of 
three cosinusoidal components with normalized 
frequencies: 1 1.5=f , 2 2=f  and 3 1 2 3.5= + =f f f , 
and respectively, phases: 1ϕ , 2ϕ , 3 1 2ϕ ϕ ϕ= + . The 
phases are independent random variables, uniformly 
distributed over [ ],π π− . 
 In order to obtain the estimated bispectrum of this 
signal, 64 independent realizations were used, and 
each realization contained 128 samples. It was 
estimated 41 samples of the bicorrelation using the 
biased cumulant estimator. 

 The experimental results are shown in Fig. 5 and 
they confirm the theoretical aspects presented in 
previous chapters of the paper. Also, as one can see 
from this figure, if other types of windows different 
by rectangular window case are used in simulations, 
the bispectral resolution is weaker and the levels of 
the sidelobes are smaller one. 
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Fig.5: Estimated bispectrum of three quadratically 
phase coupled cosinusoidal components (in dB) 

 
More details regarding experimental aspects 

treated in this section can be found in [7]. 
 

7 Conclusions and Future Work 
The theoretical and experimental results presented in 
this paper leads to the following remarks concerning 
the influence of 2D window functions on the 
performances assigned to the estimated bispectrum: 
 - when a finite set of measured data is available, 
the problem of higher-order statistics estimation for a 
signal is a sensible problem. In order to obtain good 
results, it must be known all the variables which are 
involved in the estimation process; 

- in order to obtain the best estimates, the suitable 
2D window functions must be used in the bispectral 
estimation (using indirect method). Also, these 
windows have particular advantages and 
disadvantages, and none of them is perfect. 
      Consequently, when we choose a proper 2D 
window, it must take into account the bias, the 
variance and others quality measures of the 
estimator, the bispectral resolution and finally, the 
leakage effect. In this sense, the authors of the paper 
offer some important theoretical and experimental 
details that can lead to the right decision. 

 The main goal for a future work in this action 
field refers to the design and implementation of other 
improved 2D window functions. Also, it will be 
interesting to make a generalization of these 2D 
windows to the multidimensional case. 
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