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Abstract: - In this paper we introduce a novel technique that can be used as an indicator of the number of active 
signal sources in convolutive signal mixtures. The technique is designed so that the number of sources is 
estimated using only recorded signals and some marginal information, such as possible minimum and 
maximum triggering frequencies of sources, but no information on mixing matrix, other parameters of signal 
sources, etc. Our research is based on the convolution kernel compensation method (CKC), which is a blind 
source separation method. First, a correlation matrix of the recorded signals is estimated. Next, a measure of the 
global activity of the signal sources, called activity index, is introduced. The exact analytical model of the 
activity index variance was derived for the purpose of the estimation of the number of signal sources. Using the 
analytical model, the number of active signal sources can be estimated if some a priori marginal information is 
available. We evaluated these marginal parameter values in extensive simulations of compound signals. The 
number of sources, their lengths, signal-to-noise ratio, source triggerings, and the number of measurements 
were randomly combined in preselected ranges. By using the established marginal parameter values and 
increasing extension factors, the model of the activity index variance was deployed to estimate the number of 
signal sources. The estimation results using synthetic signal mixtures are very promising.  
 
  
Key-Words: - Compound signals, estimation of the number of sources, correlation matrix, convolutive signal 
mixture, variance model, convolution kernel compensation. 
 

1 Introduction 
In all engineering disciplines signal measurements 
usually appear in complex forms, they are actually 
compounds of many sources that contribute to the 
recorded signal. Therefore, the terms signal 
mixtures or compound signals are commonly used 
to describe such signals [7], [9]. Once the signal is 
recorded, we are interested in its components. We 
want to estimate how many sources produced the 
mixture and how the individual sources look like 
[12]. The procedure of source estimation starts 
already with signal acquisition, where different 
recording techniques can support the final goal. 
Nowadays, sensor arrays are becoming quite 
common for several concurrent measurements, 
because more spatial information is gained this way 
[5], [6].  

A well-known everyday example of compound 
signals is a meeting room with more people talking 
simultaneously. If the number of speakers and noise 
are limited, the human brain is capable of 
identifying the individual speakers, but the 

procedure is not so straightforward for the computer 
[14], [15].  

The problem of estimating the number of signal 
sources is a common problem in all fields dealing 
with complex signals, such as surface 
electromyograms (sEMG) [7], [20], electroence-
phalograms (EEG) [11], radar and sonar signals [1], 
image processing [19], speech recognition systems 
[21], etc. 
 Various techniques have been proposed for 
estimating the number of signal sources in 
multichannel time-series, one of the first being 
eigenvalue-based method [1] that applies the fact 
that the number of dominant eigenvalues of signal 
correlation matrix corresponds to the number of 
signal sources. The main problem of eigenvalue 
based methods is how to set a threshold between 
dominant and non dominant eigenvalues. The 
information theoretic criteria, such as Akaike 
information criterion (AIC) and minimum 
description length (MDL) are used for optimal 
threshold setting, because these techniques do not 
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require any subjective threshold settings; the 
number of signal sources is estimated by 
minimizing the AIC or the MDL criteria. 

Many improvements of the original eigenvalue-
based method have been introduced. The eigenvalue 
gradient method (EGM) [2] computes gradients of 
sorted eigenvalues of auto-correlation matrix to 
estimate the number of signal sources. The EGM 
performance is comparable to that of the MDL at 
high signal-to-noise ratio (SNR), but at low SNR the 
EGM is better than MDL.  

Another extension of the original method uses 
Gerschgorin disks theorem [3]. By introducing the 
unitary transformation of covariance matrix, the 
Gerschgorin radii of the eigenvalues are used to 
determine the number of signal sources. It has been 
reported that Gerschgorin disk estimator provide 
more accurate estimation of the number of sources 
than MDL in both, simulated and real signal 
mixtures. 

Gu et al. [4] deployed eigenvectors instead of 
eigenvalues and peak-to-average power ratio based 
frequency estimation algorithm to estimate the 
number of sources. Authors reported that their 
method is superior to others, especially at low SNR.  

Other important approaches for the estimation of 
the number of signal sources include statistical 
approach [5], [16], independent component analysis 
(ICA) [9], overcomplete ICA [9], [18], wavelet 
packets [21], frequency-domain blind source 
separation (BSS) [20], inverse filters [17]. 

The common drawback of the proposed methods 
is their high computational complexity, because 
they require several multi-dimensional searches. 
Fishler and Poor [6], motivated by real life 
problems, implemented the low-complexity MDL-
based method by eliminating the need for multi-
dimensional searches. Their estimator became a 
favourable choice for practical application, because 
of its robustness and speed. 

The vast majority of the researches tackled 
problems with overdetermined systems (where 
number of sources is smaller than number of 
measurements) [1]-[6], but there have also been 
some experiments with underdetermined systems 
(also known as overcomplete representations), 
where the number of sources is greater than the 
number of measurements [8], [9], [13]. The 
overview and comparison of some overcomplete 
ICA algorithms can be found in [18]. Dealing with 
overcomplete representations, the estimation of the 
number of sources is not excellent, but reduction in 
the number of needed measurements is achieved. 

Olsson and Hansen [8] introduced a 
probabilistic blind source separation that is based 

solely on the time-varying second order statistics of 
the sources. Their algorithm employs a Gaussian 
linear model for the mixture and expectation 
maximization (EM) algorithm. The method 
performance was tested on speech signals. It was 
shown that the activity of the two speech sources in 
a single measurement can be detected.  

Lee et al. [9] presented technique for the blind 
source separation of more sources than 
measurements for the speech signals. They used 
framework for learning overcomplete 
representations and reported that with two 
measurements they were able to extract up to four 
mixed speech signals. 
 Our paper is structured into six sections. The 
next section describes the methods used, namely the 
model of convolutive signal mixtures, convolutive 
kernel compensation (CKC), the activity index and 
analytical model of the activity index variance.  
Section 3 is devoted to the simulation studies and 
simulation results. Section 4 reveals how the model 
of activity index variance can be used to estimate 
the number of signal sources, and the advantages 
and weaknesses of the approach. Next section 
discusses the derived analytical model of the 
activity index variance and simulation results. 
Section 6 concludes the paper and presents some 
possibilities for future research. 
 
 

2 Methods 
Our main motivation for the research was to model 
and analyse the relationship between activity index 
and the number of signal sources in convolutive 
signal mixtures. The modelled relationship can be 
used to support compound signal decomposition, 
where it is helpful to know the number of active 
signal sources prior to the decomposition. To use an 
estimator before the decomposition, it has to be fast 
and reliable; therefore we based it on the CKC 
activity index, which has all desired properties [7].  
 
 
2.1 Model of the signal mixtures 
We consider convolutive multiple-input multiple-
output (MIMO) system as in [7], [13]. Suppose that 
N source signals in the form of pulse trains 

1( ),..., ( )Ns n s n  are convolved by impulse responses 

of N×M system channels and observed by M 
sensors, producing M measurements: x1(n),..., xM(n). 
Taking into account the linearity of the modelled 
MIMO system, the i-th measurement ( )ix n  can be 
written as a sum of contributions from all N sources: 
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where ( )ijh l  denotes the impulse response of the j-th 

source as detected by the i-th sensor, and ( )js n  

stands for the train of δ pulses of the j-th source. 
Suppose all the system-channel impulse responses 
of length L samples.  

Assuming N inputs and M outputs, the vector 
notations are as follows: 

T
1( ) [ ( ),...., ( )]Mn x n x n=x for the vector of M 

measurements and T
1( ) [ ( ),...., ( )]Nn s n s n=s  for the 

vector of N sources. Using the vector notations, Eq. 
(1) can be transformed into a matrix form: 
   
 ( ) ( ),n n=x Hs  (2) 
 
where H stands for the so called mixing matrix of 
size M×NL, which contains the system-channel 
impulse responses ( )ijh l . 

When the influence of noise is considered we 
get:  
 ( ) ( ) ( ),n n n= +y x ω  (3) 

where T
1( ) [ ( ),...., ( )]Mn y n y n=y  denotes the trans- 

posed vector of M noisy measurements, and 
T

1( ) [ ( ),...., ( )]Mn n nω ω=ω  stands for the noise 
vector. 
 
 
2.2 Activity index 
In this section the global indicator of source activity, 
known also as activity index, is studied. Activity 
index was first introduced as a part of CKC 
algorithm [7].  Preliminary studies have shown that 
activity index indeed is a function of the number of 
signal sources [22]; therefore its analytical model is 
studied in details in this paper. Activity index is 
derived for the convolutive signal mixtures as 
presented in the Section 2.1. The only compulsory 
information to compute activity index are signal 
measurements (signal mixtures). 

Having M measurements, and assuming that the 
number of measurements M is greater than the 
number sources N (the system in Eq. (2) is 
overdetermined), a positive integer K exists that 
satisfies: ( 1) ( ).M K N L K+ > +  K is known as 
extension factor and stands for the number of shifted 
replicas of original measurements (see Fig. 1). 
Extended vectors of measurements are designated 
by the bars, for example or .x y  

Activity index is obtained by multiplying the 
inverse of correlation matrix with extended vectors 
of measurements on both sides: 
 
 T 1

A ( ) ( ) ( ).I n n n−= ⋅ ⋅yy R y  (4) 

 
The correlation matrix of extended noisy 
measurements is computed as T ,=yR yy  its 

dimensions are M (K+1) × M (K+1), where M 
(K+1) stands for the number of extended 
measurements.  

Assuming that there is no noise, the activity 
index could be thought of as an indicator of a 
global source activity as it differs from zero 
only at the time instants n, where at least one 
source is active. 

 

 
 
 

Activity index can be understood as a 
superimposition of more signal sources and an 
additional component which stands for additive 
Gaussian white noise (Fig. 2). The variance of such 
superimposition is computed with four main terms: 
variances of each individual source, covariances 
between the sources, variance of the noise and 
covariances between the noise and all the sources.  
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Fig. 1: Extension of a single synthetic 
measurement. The original measurement (K=0, 
upper row) is extended by 2 shifted replicas 
(K=1 and K=2). X-axis represents time, left y-
axis the amplitude and right y-axis the extension 
factor. 
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2.3 Model of activity index variance 
In the sequel, all four contributions within the 
activity index variance, var(IA), will be modelled 
separately. The same notation will be used 
throughout the derivations: N as the number of 
sources, M the number of observed signals, L the 
length of system-channel impulse responses, K 
extension factor, D length of signals, Ei the number 
of firings of the i-th source, ω(n) the n-th sample of 
noise, and ηij the number of superimposed samples 
in sources i and j. 

The sum of variances of individual sources can 
then be modelled as follows: 

 

 
2

1

( ) 1
.
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N

i i

N L K L K

D D D E=

− + ++
− − ∑  (5) 

 
The sum of covariances between the sources yields: 
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Variance of the noise contribution can be computed 
as:    

 

1
2

2
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( )
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Covariances between all the sources and noise 
contribution sum up into: 
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The total activity index variance is obtained by 

merging the models from expressions (5), (6), (7), 
and (8). If we sum up all the first (left) terms in 
expressions (5), (6), (7), and (8) the following 
simple result emerges: 

 

 
2 2( )

.
( 1)

M L K

D D

− +
−

 (9) 

 
The right-hand side terms in expressions (5), (6), 

(7), and (8) contain sums over one or two indices. 
The values of these sums depend on unknown 
parameters, such as samples of noise, number of 
firings of each individual source, number of 
superimposed samples of sources pairs, etc. In the 
final effort, the modelled relationships should be 
identified and the parameters estimated. So, the 
number of unknowns must be kept as low as 
possible. With this in mind, we tried to simplify the 
whole expression for the activity index variance in 
the following way:  
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 (10) 

 
where only four new parameters c0-c3 were 
introduced and defined in Eqs. (11) to (14). These 
parameters are expected variable, but as we are 
going to see from our simulations, at least two of 
them are practically independent of the number of 
signal sources and their lengths. This fact may 
considerably mitigate the estimations based on the 
derived analytical models. 
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Fig. 2: Graphical representation of activity index 
components. The x-axis represents time, left y-
axis amplitude and right y-axis component 
number. Components 1 and 2 represent signal 
sources, component 3 is white Gaussian noise, 
while component 4 depicts complete activity 
index, obtained as superimposition of 
components 1, 2 and 3. 
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As we see from the following relationships:  
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c0 is independent of extension factor K, while all 
others are functions of K. Their behaviour is 
interpreted by simulation studies on synthetic 
compound signals, as explained in the sequel. 
 
 

3 Simulation study 
Eq. (10) that stands for the model of the activity 
index variance involves two controllable 
parameters: number of extensions (K) and number 
of observed signals (M). In real cases, it can be 
expected the number of observations is given, at 
least after the signals have been recorded. So, K 
remains as the only controllable parameter. 
Therefore, the final estimation of the unknowns 
from Eq. (10) can be based on the computation of 
the activity index variance of real signals versus 
different extension factors.  
 
 
3.1 Synthetic signals 
For synthetic signal generation process, our custom 
generator was used, which generates convolutive 
signal mixtures in four steps. In the first step the 
firing patterns (trains of σ pulses) for all sources are 
generated, with their triggering moments according 
to a mean distance of 250 ms between consecutive 
triggerings and deviation of this distance of 50 ms. 
Sampling frequency was set to 1024 Hz. 

Next, the system-channel impulse responses for 
all sources and all measurements are generated (see 
data model in Section 2.1 for the details). We 

resorted to random system-channel impulse 
responses to show that our method is capable of 
estimating the number of signal sources in many 
various applications, not only sEMG for example. 
The random system-channel impulse responses for a 
single active signal source and a matrix of 12 × 5 
electrodes are depicted in Fig. 3. The Matlab 
random generator 'rand' was used and random 
numbers were generated on the interval [-1, 1].  

In the third step the firing patterns of sources are 
convolved with the corresponding system impulse 
responses, and noiseless measurements are obtained. 
Finally, zero-mean white Gaussian noise of different 
SNRs (from 20 dB down to 0 dB) is added to the 
signals. 

For each new simulation run, new system 
impulse responses, triggering instants, and white 
Gaussian noise are randomly generated. 

 

 
 
 
3.2 Simulation results 
The behaviour of parameters c0, c1, c2, and c3 was 
observed through a series of simulations with 
synthetic compound signals. The signal generator 
has already been described in the previous section. 

In our first experiment, the ranges of parameters 
ci were estimated so that all 5 parameters (L, N, M, 
K, and SNR) were changed in the intervals that are 
most likely to happen in the reality: N, L ∈  [1, 5, 
10, 15, 20], M ∈  [10, 50, 100, 200], K ∈  [1,...,5], 
and SNR ∈  [20, 10, 5, 1, 0] dB. This resulted in the 
following estimated ranges of parameters ci that are 
reported in Tables 1- 4.  

Fig. 3: Random shapes of generated system-
channel impulse responses for 12 × 5 
measurements and a single source. All system 
responses are of length L samples and their 
amplitude ranges between -1 and 1. 
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Our aim was to study, how the ranges of 
parameters ci change with the number of 
measurements (M). Therefore, for one table, M was 
fixed, while other four parameters (L, N, K, and 
SNR) changed as reported before. The range 
minimum of ci was obtained as minimal value that 
parameter ci occupied at all possible combinations 
of L, N, K, and SNR, while the range maximum of ci 
was obtained as maximal value of ci for all possible 
combinations of L, N, K, and SNR. 

 

Table 1: Ranges of parameters ci at M = 10. 

 
Parameter 

Range 
minimum 

Range 
maximum 

c0 9.09 e-2 1.07 e-1 
c1 4.00 e-4 2.31 e-3 
c2 4.17 e-5 1.96 e-2 
c3 -5.40 e-2 3.03 e-2 

 

Table 2: Ranges of parameters ci at M = 50. 

 
Parameter 

Range 
minimum 

Range 
maximum 

c0 9.39 e-2 1.06 e-1 
c1 3.09 e-4 4.55 e-3 
c2 6.06 e-5 9.56 e-4 
c3 -1.61 e-3 9.33 e-4 

 

Table 3: Ranges of parameters ci at M = 100. 

 
Parameter 

Range 
minimum 

Range 
maximum 

c0 9.09 e-2 1.11 e-1 
c1 2.27 e-4 1.91 e-3 
c2 3.69 e-4 9.65 e-4 
c3 5.38 e-4 9.05 e-4 

 

Table 4: Ranges of parameters ci at M = 200. 

 
Parameter 

Range 
minimum 

Range 
maximum 

c0 9.09 e-2 1.03 e-1 
c1 5.56 e-4 1.98 e-3 
c2 5.89 e-4 7.07 e-4 
c3 7.34 e-4 7.68 e-4 

 
 
Inspecting Tables 1- 4 carefully, one can see that 

ranges of parameters ci are stabilizing with the 
increasing number of measurements. Having enough 

measurements (at least 100), the dynamics of 
parameters ci is very limited, so that they can be 
represented only by close borders of their ranges. 

Comparing the variability of individual 
parameters ci at 200 measurements (Table 4), it is 
obvious that c3 is the most stable one, followed by 
c2, c1, and c0 in the increasing order of variability. 
Differences between the range minimum and 
maximum at 200 measurements are: 0.34e-5 for c3, 
1.18e-4 for c2, 1.4e-3 for c1, and 1.21e-2 for c0. 

In our second experiment functional 
relationships between parameters ci, extension factor 
and the number of sources were studied. 
Measurements were generated in the same way as 
described in the first experiment, with the only 
exception that the number of measurements was 
fixed at 100. The results are depicted in Fig. 4. This 
experiment confirmed that c0 is not a function of K, 
while c1, c2 and c3 are. It is also evident that the 
parameters ci converge to certain stable values as K 
increases. The experiment also revealed functional 
relationships between parameters ci and the number 
of sources. Parameters c1 and c2 are decreasing with 
the increasing number of sources. The exception is 
c1 that equals zero when only one source is active, 
because the covariance between sources does not 
exist at that special occasion. Parameters c0 and c3 
do not change with the number of sources 
uniformly.  

In the third experiment functional relationships 
between parameters ci, SNR, and the number of 
sources were studied. Fig. 5 shows that parameters 
c0, c1, and c2 are totally independent of SNR, which 
is a very desirable property. Parameter c3 is a 
function of SNR (c3 is decreasing with decreasing 
SNR), but it does not vary in a large content. 

Besides all described functional relationships, 
the simulations also show that parameters ci do not 
vary significantly by the changing number of 
sources. This means that the number of sources and 
the length of system-channel impulse responses may 
be searched for independently of the parameters ci. 
Or in other words, as these parameters do not 
depend much on the extension factor, either, they 
can be treated constant and introduced in solving 
Eq. (10) for N and L with their marginal values 
evaluated a priori by extensive simulations and 
reported in Tables 1 - 4. However, special care must 
be taken, as using such an approximation of 
parameters ci can decrease the estimation accuracy 
and hence deteriorate our proposed approach.  
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Fig. 4: The functional relationships between parameters ci, extension factor (K) and the number of sources (N). 
The x-axis represents extension factor, while y-axis reports the values of parameters ci. Each curve stands for a 
different number of sources, as it is reported in the figure legend. Fixed parameters were: L = 5, M = 100 and 
SNR = 20 dB. 
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Fig. 5: The functional relationships between parameters ci, SNR, and the number of sources. The x-axis 
represents SNR, while y-axis reports ci values. Each curve stands for a different number of sources, as it is 
reported in the figure legend. Fixed parameters were: L = 5, M = 100 and K = 5. 
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4 Estimation of the number of sources 
In previous sections we introduced the estimation of 
the number of sources, proposed our novel 
approach, derived analytical model and evaluate 
derived model with simulation studies. In this 
section we are going to demonstrate how our model 
can be used for the estimation of the number of 
sources. Because the approach is still in 
development stage, the estimation will be 
accomplished on synthetic signals only. 

Our proposed model in Eq. (10) holds if only the 
correct values of parameters ci are known.  As it is 
depicted in Fig. 4, the main problem is that 
parameters ci are not constant versus K. If they 
were, Eq. (10) would depend on 6 unknowns (L, N, 
c0, c1, c2, c3). But the parameters ci depend on 
extension factor, which means that only by 
observing Eq. (10) at different values of K 
unknowns cannot be eliminated. However, our first 
experiment shows these parameters vary in rather 
limited ranges and this can help when the number of 
sources is estimated. 
 First we simulated the model, so that parameters 
ci were computed exactly and inserted into Eq. (10). 
Such model has only two unknowns, L and N, so 
activity index has to be computed only at two 
different extension factor values, K. In our 
experiment we selected K = 0, 1; other parameters 
were set as follows: L = 5, M = 100, SNR = 20 dB. 
The estimation results for both N and L are reported 
in Table 5 . 
 
Table 5: Estimation results for N and L if parameters 
ci are known: the first column reports the actual 
number of sources N, the second the N estimate, and 
the third the L estimate. The actual length of system 
responses was 5 samples (L = 5). 
 

N N estimate L estimate 
1 1.02 4.89 
2 2.02 4.94 
3 3.02 4.96 
4 4.02 4.97 
5 5.02 4.98 

  
 
Finally we attempted the estimation without 

knowing the exact values of parameters ci. Instead 
of their exact values we used only minima and 
maxima of their ranges, as they are reported in 
Table 3 for the case with 100 measurements. 
Having four parameters ci, each of them can have 
two possible values (the range minimum and 
maximum), which produces 16 possible 

combinations of ci values. Having approximated 
parameters ci with their minima or maxima, only 
two unknowns, i.e. N and L, are left, so that only 
two equations are needed again. Two different 
extension factors were chosen, K = 0, 1, and two 
quadratic equations with two unknowns, N and L, 
comprised the system of equations. Having two 
equations, we searched for their intersection (see 
Fig. 6, where the difference of two quadratic 
equations is depicted). The main problem is that 
surfaces, represented by quadratic equations are 
close to parallel, so their intersection area is large 
and consequently a lot of different solutions are 
possible. Another problem is that equations are 
quadratic and there are 16 possible combinations of 
the ci values, therefore more solutions are possible 
and we have to decide, which one is the closest to 
the correct answer. We decided that the estimations 
have to meet the following requirements: they must 
be nonnegative and closest possible to the integer 
values. 
 

 
 
  
5 Discussion 
The proposed model, introduced in Eq. (10) holds if 
only the correct values of parameters ci are known. 
The main problem is that parameters ci are not 
constant versus K. If they were, Eq. (10) would 
depend on only on 6 unknowns. By constructing a 
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Fig. 6: The surface represents the difference of 
two quadratic equations that are used for the 
estimation of the number of sources and the 
length of the system responses. The area close to 
the zero is an equivalent for intersection. The 
large area that is close to zero and has moderate 
gradient is causing the main problems at 
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system of equations based on the model and its 
derivatives, the unknowns could be recovered. But 
the parameters ci depend on extension factor, which 
means that only by observing Eq. (10) at different 
values of K unknowns cannot be eliminated. 
However, our first experiment shows these 
parameters vary in rather limited ranges. This is 
important, because the derived model can be 
implemented in a search for the number of signal 
sources.  
 Some most important findings of our research 
are the following. The activity index level is 
independent of the SNR of additive Gaussian white 
noise, but it is proportional to the extension factor 
K. This is very interesting, because our method has 
therefore desirable noise characteristics. Moreover, 
from our analysis it became very probable that when 
the system becomes underdetermined, the number 
of recoverable sources, i.e. decomposed by the CKC 
method, converges to the correlation matrix 
dimensions, i.e. M (K+1). 

 
 
6 Conclusion 
The main goal of our research was to develop an 
efficient and robust method for the estimation of the 
number of active signal sources in compound multi-
channel signals. The research was based on activity 
index, as we found that the activity index variance is 
a function of the number of signal sources. The 
exact analytical model of the activity index variance 
was derived for the purpose of the estimation of the 
number of signal sources. Using the analytical 
model, the number of active signal sources can be 
estimated if some a priori marginal information is 
available, such as possible minimum and maximum 
triggering frequencies of sources. 

Our technique can be applied in various 
applications, such as pre-processing of multi-
channel sEMG prior to decomposition, in speech 
recognition systems, in estimation of direction of 
arrival in wireless signals, in biomedical 
engineering (EEG), various blind source separation 
algorithms, etc. 

This research inspired many possible future 
extensions of our work. To evaluate our method, 
comparison to other known methods for the 
estimation of the number of sources on the same 
datasets will be carried out. All the experiments so 
far were conducted on synthetic signals. At the 
beginning stages of the research this is obvious, but 
for real applications the method must also be 
evaluated by real signals. 
 

Acknowledgement 
This work was supported by Slovenian Research 
Agency (Contract No. 27245 and Programme 
Funding No. 0796-010). 
 
 
References: 
[1] M. Wax and T. Kailath, Detection of Signals 

by Information Theoretic Criteria, IEEE 
Transactions on Acoustics, Speech and Signal 
Processing, Vol. 33, No. 2, 1985, pp. 387-392. 

[2] J. Lou, Z. Zhang, Using Eigenvalue Grads 
Method to Estimate the Number of Signal 
Sources, in Proceedings of 5th IEEE 
International Conference on Signal 
Processing, 2000, pp. 223-225. 

[3] H.T. Wu, J.F. Yang, and F.K. Chen, Source 
Number Estimator using Gerschgorin Disks, in 
Proceedings of IEEE International Conference 
on Acoustics, Speech, and Signal Processing 
(ICASSP), 1994, pp. 261-264. 

[4] J.-F. Gu, P. Wei and H.-M. Tai, Detection of 
the Number of Sources at Low Signal-to-Noise 
Ratio, IET Signal Processing, Vol. 1, No. 1, 
2007, pp. 2-8. 

[5] E. Fishler and H. Messer, Order Statistics 
Approach for Determining the Number of 
Sources Using an Array of Sensors, IEEE 
Signal Processing Letters, Vol. 6, No. 7, 1999, 
pp. 179-182. 

[6] E. Fishler and H.V. Poor, Estimation of the 
Number of Sources in Unbalanced Arrays via 
Information Theoretic Criteria, IEEE 
Transactions on Signal Processing, Vol. 53, 
No. 9, 2005, pp. 3543-3553. 

[7] A. Holobar and D. Zazula, Multichannel Blind 
Source Separation Using Convolution Kernel 
Compensation, IEEE Transactions on Signal 
Processing, Vol. 55, No. 9, 2007, pp. 4487-
4496. 

[8] R.K. Olsson and L.K. Hansen, Estimating the 
Number of Sources in a Noisy Convolutive 
Mixture Using BIC, in Proceedings of 5th 
International Conference on Independent 
Component Analysis and Blind Signal 
Separation,  Berlin, 2004, pp. 618-625. 

[9] T. Lee, M. S. Lewicki, M. Girolami and T. J. 
Sejnowski, Blind Source Separation of More 
Sources Than Mixtures Using Overcomplete 
Representations, IEEE Signal Processing 
Letters, Vol. 6, No. 4, 1999, pp. 87-90. 

 
 

WSEAS TRANSACTIONS on SIGNAL PROCESSING Rok Istenic, Damjan Zazula

ISSN: 1790-5052 550 Issue 9, Volume 4, September 2008



[10] H. Sawada, R. Mukai, S. Araki and S. Makino, 
Estimating the Number of Sources Using 
Independent Component Analysis, Acoustical 
Science & Technology, Vol. 26, No. 5, 2005, 
pp. 450-452. 

[11] X. Bai and B. He, Estimation of Number of 
Independent Brain Electric Sources From the 
Scalp EEGs, IEEE Transactions on Biomedical 
Engineering, Vol. 53, No. 10, 2006, pp. 1883-
1892. 

[12] Q. Lv and X.-D. Zhang, A Unified Method for 
Blind Separation of Sparse Sources With 
Unknown Source Number, IEEE Signal 
Processing Letters, Vol. 13, No. 1, 2006, pp. 
49-51. 

[13] Y. Li, J. Wang, and A. Cichocki, Blind Source 
Extraction from Convolutive Mixtures in Ill-
Conditioned Multi-Input Multi-Output 
Channels, IEEE Transactions on Circuits and 
Systems, Vol. 51, No. 9, 2004, pp. 1814-1822. 

[14] K. Aczel, I. Vajk, Polyphonic music separation 
based on the Simplified Energy Splitter, 
WSEAS Transactions on Signal Processing, 
Vol. 4, No. 4, 2008, pp. 201-210. 

[15] B. Gao, W.L. Woo, and S.S. Dlay, Single 
Channel Audio Source Separation, WSEAS 
Transactions on Signal Processing, Vol. 4, No. 
4, 2008, pp. 173-182. 

[16] A. Al-Qaisi, W.L. Woo, and S.S. Dlay, Novel 
Statistical Approach to Blind Recovery of 
Earth Signal and Source Wavelet using 
Independent Component Analysis, WSEAS 
Transactions on Signal Processing, Vol. 4, No. 
4, 2008, pp. 231-240. 

[17] V. Shtrauss, Nonlinear Extension of Inverse 
Filters for Decomposition of Monotonic Multi-
Component Signals, WSEAS Transactions on 

Signal Processing, Vol. 7, No. 8, 2008, pp. 
442-451.  

[18] M. Borschbach and I. Hahn, Separation 
Capability of Overcomplete ICA Approaches, 
in Proceedings of the 6th WSEAS International 
Conference on Signal Processing, Dallas, 
Texas, USA, 2007, pp. 146-150. 

[19] A. Khaparde, M. Madhavilatha, M.B.L. 
Manasa, P.A. Babu, S.P. Kumar, FastICA 
Algorithm for the Separation of Mixed Images, 
WSEAS Transactions on Signal Processing, 
Vol. 4, No. 5, 2008, pp. 271-278. 

[20] M. Milanesi, N. Vanello, V. Positano, M.F. 
Santarelli, D.D. Rossi, L. Landini, 
Comparative Evaluation of Decomposition 
Algorithms based on Frequency Domain Blind 
Source Separation of Biomedical Signals, in 
Proceedings of 7th WSEAS Int. Conf. on 
Mathematical Methods and Computational 
Techniques In Electrical Engineering, Sofia, 
2005, pp. 324-329. 

[21] B. Mozaffary, M.A. Tinati, A. Aghagolzadeh, 
A. Erfanian, An Adaptive Algorithm for 
Speech Source Separation in Overcomplete 
Cases Using Wavelet Packets, in Proceedings 
of the 5th WSEAS International Conference on 
Signal Processing, Istanbul, Turkey, 2006, pp. 
140-144. 

[22] R. Istenic, D. Zazula, Analytical Model of the 
CKC-Based Activity Index Variance, in 
Proceedings of the 10th WSEAS International 
Conference on Mathematical Methods, 
Computational Techniques and Intelligent 
Systems, Corfu, Greece, 2008, pp. 246-249. 

 

 

WSEAS TRANSACTIONS on SIGNAL PROCESSING Rok Istenic, Damjan Zazula

ISSN: 1790-5052 551 Issue 9, Volume 4, September 2008




