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Abstract: Continuous piecewise linear models constitute useful tools to extract the basic features about the patterns
of growth in complex time series data. In this work, we present an iterative algorithm for continuous piecewise
regression with automatic change-points estimation. The algorithm requires an initial guess about the number and
positions of the change-points or hinges, which can be obtained with different methods, and then proceeds by
iteratively adjusting these hinges by displacements similar to those of Newton algorithm for function root finding.
The algorithm can be applied to high volumes of data, with very fast convergence in most cases, and also allows for
sufficiently close hinges to be identified, thus reducing the number of change-points, and so resulting in models of
low complexity. Examples of applications to feature extraction from remote sensing vegetation indices time series
data are presented.

Key–Words: Continuous piecewise regression, Segmented regression, Multiple change-point models, Remote sens-
ing, NDVI, MODIS.

1 Introduction
Remote sensing of vegetation dynamics, soil proper-
ties, and other ecosystem variables and indicators con-
stitutes a key tool in ecology, agriculture and environ-
mental studies at several temporal and spatial scales
(e.g., [1, 2]). Many different techniques can be used to
analyze this kind of data (e.g., [3, 4, 5]), and the devel-
opment of efficient methods to identify patterns and
extract features from remote sensing derived spatio-
temporal data series is a key point in the applications
[6].

Time series of vegetation indices, such as the
normalized difference vegetation index (NDVI), are
derived products from data of Earth observing sys-
tems like the Moderate Resolution Imaging Spec-
troradiometers (MODIS) [7] on the Terra platform.
MODIS derived NDVI data are available from the
year 2000, every 16 days for a global grid of pixels
with a maximum resolution of 250 m, and they are
just an example, as paradigmatic as it could be, of
many different fields where huge amounts of time se-
ries data are produced and need to be analyzed with
efficient methods capable of extracting their main fea-
tures, some of which may be readily noticeable to a
human observer.

A common characteristic in NDVI time series
is the presence of different regions with increasing

Figure 1: NDVI time series values (×10000) for an
area of semiarid vegetation in southeast Spain. Time
values (abscissas) are number of days, starting from
01/01/2000.

and decreasing trends, which correspond to periods of
growth and decline of vegetation. This pattern is well-
defined in Fig. 1, which shows data -four years period-
for a set of contiguous pixels in a semiarid area of the
Valencia region (southeast Spain), although it may not
be so clear in the individual curves, i.e., in the data se-
ries for each pixel.
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Figure 2: NDVI time series values from Fig. 1 with a
continuous piecewise linear model fitted to the data.

A simplified model of the functional dependence
suggested by this type of data is shown in Fig. 2,
a continuous polygonal which characterizes the se-
quence of growth rate changes, providing the position
of the change-points and the slopes of the linear seg-
ments.

The problem of fitting a continuous piecewise lin-
ear model to a series of data is referred to as piece-
wise [8] or segmented [9] regression, linear regression
with multiple structural changes [10] or regimes, or in
the case of two segments as broken-line or two-phase
[11, 12] regression. In the classical statistical frame-
work, this problem has been tackled as a particular
case of nonlinear regression [13], or with specific ap-
proaches aimed at minimizing the sum of squares of
errors, yielding least squares estimates of the param-
eters, or maximum likelihood estimates in the case
of independent identically distributed normal errors
[14, 15, 16] or under particular hypothesis on the error
structure [9, 17].

When the number and positions of the change-
points are known, the estimation of the model
is straightforward. Segmented linear models with
change-point estimation without the continuity re-
quirement are special cases of model trees [18, 19],
where induction methods such as Quinlan’s M5 [20]
are well-designed for predictive performance with
many regressors. The restrictions imposed by the
continuity condition, and the discontinuities in the
derivative implied by a polygonal model, make the
estimation of the model by minimizing some form
of risk function much more difficult. Some authors
use approximate smooth models to avoid these prob-
lems [21, 22], while the more direct algorithms are
mainly based on grid search [16] or some form of
greedy exploration of the possible change-points [15].
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Figure 3: A section of the NDVI data from Fig. 1,
showing a step of the fitting process, where for the cur-
rent selection of change-points (indicated by vertical
lines) a line is fitted in each segment (bars) and their
intersections obtained as new change-points (crossed
circles).

Other computationally intensive approaches include
bayesian [23] and fuzzy methods [24].

Piecewise linear models are usually approxima-
tions to complex real phenomena, that allow to ex-
tract the basic features of the data, and so find appli-
cation in many different fields, as in economy [10],
ecology [25] or cancer research [26]. The objective
of this work is to efficiently fit a continuous polygo-
nal model to large datasets, with a computational ap-
proach that does not intend to yield a global optimum
for some measure of adjustment, but to capture in an
objective manner the main trends of the data, provid-
ing estimates for the relevant parameters in the prob-
lem considered.

2 Description of the method

The method proposed, which we denote with the
acronym HANDFIT, standing for Hinges Adjustment
by Newton-like Displacements FIT, consists of two
phases. First, an initial guess about the number and
positions of the change-points or hinges is made, for
which various alternatives suited for different particu-
lar problem are considered. Then, an iterative process
to displace these hinges, analogous to Newton method
for root finding, is applied. Several parameters of the
algorithm can be adjusted so that the type of features
that are of main interest be extracted, although a com-
pletely automated functioning is also possible.
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Figure 4: Continuous piecewise linear model fitted to
the data from Fig. 3, given by the final convergent so-
lution of the algorithm.

2.1 Iterative Adjustment of the Hinges
Assume we have an initial estimation of the ab-
scissas of the increasing sequence of change-points,
{xi}i=1...n, in a fixed domain with endpoints a = x0

and b = xn+1. The iterative algorithm proceeds
in two steps. Firstly, for each interval [xi, xi+1] a
line segment is adjusted to the data by ordinary least
squares, although any other fitting method could be
used as well (Fig. 3). Secondly, the intersection points
between consecutive segments are computed, so that
their abscissas define the new change-points, and
the process is repeated until convergence is achieved
(Fig. 4). The stopping criterion defining convergence
is simply that a fixed threshold for the displacements
of the hinges not be exceeded, and for sound choices
of the threshold it is usually reached after only a few
iterations.

The second step in the algorithm is essentially a
Newton iteration, as the new points are the intersec-
tion of affine varieties, which in the simplest New-
ton method, the Newton-Raphson algorithm to com-
pute zeros of real functions, are the tangent line and
the X-axis. Newton-like algorithms are in most cases
very fast, but it is well-known that these type of meth-
ods may produce abrupt jumps, which in our problem
could yield non-admissible values when the ordering
of the hinges is not preserved (Fig. 5).

To tackle this eventuality, if x̂i is to be the ab-
scissa of the new i-hinge, the relative increments,

x̂i − xi

xi+1 − xi
, x̂i > xi;

x̂i − xi

xi − xi−1
, x̂i < xi;

are always transformed using a sigmoid function
(Fig. 6), with a dampening coefficient that can be ad-
justed to successfully avoid any problems. This cau-

Figure 5: Example of data where non-admissible val-
ues would be produced at an iteration step.

Figure 6: Example of sigmoid function used to correct
for possible jumps during the iteration process.

tionary safeguard has the cost of increasing the num-
ber of iterations, but it results in a more robust algo-
rithm, with still a fast speed of convergence for most
data. It should be clear, however, that convergence
can not be guaranteed for any arbitrary dataset, as no
sound continuous linear model can be expected to fit a
data series resulting from a process with intrinsic dis-
continuities.

Depending on the data and the number and po-
sitions of the starting points, two consecutive hinges
might get close enough to consider that they should be
identified, and this is what the algorithm does when
a proximity threshold is crossed, which can also be
automatically defined in terms of the minimum num-
ber of different data points in a segment for the least
square adjustment be considered sound. Thus, the al-
gorithm can automatically correct to a certain extent
an excess of hinges in the initial set, and hence results
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Figure 7: Up: Local slopes for the NDVI data series
in Fig. 3, showing their medians and the gaussian ker-
nel used to filter them. Down: Smoothed curve of the
medians. The values of the abscissas corresponding
to zeros of the filtered medians are displayed, and the
change-points of the final solution indicated by verti-
cal lines.

in models that are not of much higher complexity than
that suggested by the data.

2.2 Initial Selection of the Change-Points
Different strategies can be applied to select the initial
set of change-points, according to the type of data and
the particular features of interest, although the itera-
tive step leads from many distinct reasonable elections
of the starting points to the same final convergent so-
lution, as will be discussed in the next section.

For the data in Fig. 1, where the pattern is essen-
tially a sequence of periods with alternate growing and
decay behavior, a plausible election would be those
points where the mean slope of the curves changes in
sign, i.e., where it passes trough zero.

In Fig. 7 (up), the cloud of slopes for 120 similar

Figure 8: NDVI time series values (×10000) for an
area of rice crops in southeast Spain. Time values (ab-
scissas) are number of days, starting from 01/01/2000.

curves is displayed, showing their medians as robust
estimations of the slopes. Although there are many
points where the curve of the medians changes in sign,
in the three sections marked in the graph, which cor-
respond to the segments of a final convergent fitted
model, the second one consists essentially in positive
values, whereas in the other two the values of the me-
dians are mostly negative. Considering all the zeros
in this curve as initial change-points would produce
a model of very high complexity, despite the limited
reduction in the number of hinges that the iteration
step of the algorithm is capable of perform. A more
reasonable election is obtained filtering the medians
using a gaussian kernel filter, as the one shown in
the same figure, and working with the curve of the
smoothed medians (Fig. 7 down). The zeros of the
filtered median give values close to the final iterated
solution obtained from a subjective selection of the
starting points, and very similar results are obtained if
the data are averaged and the smoothed slope of the
mean curve is used instead.

Consider, however, the NDVI data presented in
Fig. 8, corresponding to rice crops, also in the Va-
lencia region. Here the dynamics of the vegetation
is more complex, as besides the clearly defined evo-
lution of the crop, there are also other periods that
correspond to phases of harvesting, growing of nat-
ural vegetation and preparation of the fields for the
new season. All the pixels show similar and synchro-
nized behaviors, since they are subjected to the same
labors at specific moments in time, and so the curves
are much more better defined than those in Fig. 1, al-
lowing for a more detailed description than just the
incresing/decreasing pattern.
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Figure 9: NDVI time series values from Fig. 8, with
a continuous piecewise linear model fitted to the data.
Note the variations in the slopes of contiguous seg-
ments, which do not restrict to a positive/negative se-
quence.

In Fig. 9, a simple model that represents fairly
well the periods of growth and decay of the crops is fit-
ted to the data. In Fig. 10, a different model of higher
level of complexity, in terms of the number of change-
points considered, is presented. This last model re-
flects better than the previous one the transitions be-
tween the periods of growth and decay, as well as the
phases between consecutive cropping seasons. Both
models are final equilibrium solutions of the iterative
algorithm for different elections of the number and po-
sitions of the initial change-points. The rationale for
deciding between these two models depends on the
kind of features that we are interested in, either the ba-
sic characterization of the crop dynamics, as in Fig. 9,
or a more detailed description of the whole vegetation
dynamics as in Fig. 10. Hence, this decision must be
set by the analyst according to the objectives of the
study, although it can be incorporated into the algo-
rithm, either in an explicit or implicit way, trough the
the method used for the selection of the initial points
and with the setting of the different parameters modu-
lating the outcome of the algorithm, as window sizes
of the smoothing filters or thresholds levels.

In any case, in this more general context the previ-
ously discussed method relying on the change in sign
of the slopes is clearly inappropriate, and the selection
of the starting points could instead be based on the dis-
tribution of the curvatures (Fig. 11). In Fig. 11 (up),
the cloud of curvatures for the data in Fig. 8 is shown,
where it has been obtained using a moving window
of suitable amplitude, to compute the curvatures for
each curve and abscissa fitting a second degree poly-

Figure 10: NDVI time series values from Fig. 8, with
a continuous piecewise linear models of higher com-
plexity than that of Fig. 9 fitted to the data.
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Figure 11: Up: Local curvatures for the data in Fig. 8.
Down: Medians of the distribution of local curvatures
(dots), and continuous smoothed median after filtering
with a gaussian kernel.
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Figure 12: Positions of the ten most extreme values of
the local curvatures for the NDVI data in Fig. 8.

nomial to the points inside the window. The medians
of the curvatures have been smoothed with a gaussian
kernel, as shown in Fig. 11 (down), and the zeros of
the derivative of the filtered curvature function, cor-
responding to the most extreme values above some
threshold, have been selected (Fig. 12).

For equally spaced data, curvatures can be com-
puted in an very efficient way using a Savitzki-Golay
type method [27] to adjust the quadratic polynomials
for each position of the moving window. In case that
for the specific data quadratic polynomials were not
flexible enough to detect the zones of interest, poly-
nomials of higher degree could be used, and the com-
putational effort would be comparable if a Savitzki-
Golay strategy could be employed, i.e., if abscissas
were uniformly spaced.

A robust and computationally efficient alterna-
tive, to avoid computing curvatures through fitting
of second or higher degree polynomials, is to con-
sider the angles between lines adjusted to contiguous
sets of points (Fig. 13). Using a double-sized mov-
ing window, two lines are fitted to the points at the
left and the right of each abscissa, and the angles be-
tween these lines are computed (Fig. 13 up). Then,
they can be post-processed as in the previous method
(Fig. 13 down), and the most extreme values selected
with some threshold criteria (Fig. 14).

2.3 Sensitivity to initial conditions
Although a variety of methods can be used to deter-
mine the starting set of hinges, we note that many dif-
ferent selections of the initial points lead to the same
final result, which is one of a very restricted set, that
of the fixed points for the Newton-like iteration al-
gorithm. To illustrate this behavior, for the data pre-
sented in Fig. 3, where two change-points seem to pro-
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Figure 13: Up: Local angles for the data in Fig. 8.
Down: Medians of the distribution of local angles
(dots), and continuous smoothed median after filter-
ing with a gaussian kernel.

Figure 14: Positions of the ten most extreme values of
the local angles for the NDVI data in Fig. 8.
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Figure 15: Index of discontinuity (root mean squares
of jumps between contiguous segments) as a function
of the positions of the two change-points when fitting
a piecewise linear model to the data in Fig. 3.

vide a sound model, an exhaustive search on the initial
positions of the two change-points was performed.

For each position of the two change-points, when
a simple piecewise linear model is fitted, i.e., when
each segment is optimally fitted to their data by or-
dinary least squares without requiring the continuity
condition, a measure of the magnitude of the jumps
across contiguous segments gives an idea of the re-
gions that can sustain a continuous model (Fig. 15),
the zeros of this function being the points sought by
the algorithm. If we apply the iterative algorithm from
any pair of these initial points, a convergent solution is
eventually reached, and the set of the positions of the
change-points in the possible final solutions is shown
in Fig. 16. The regions defined by the set of initial
points that result in the same final solution are pre-
sented in Fig. 17. The larger central region in this fig-
ure, comprising more than half of the possible elec-
tions for the initial change-points, result in the so-
lution shown in Fig. 4, which intuitively provides a
sound model for the data. In fact, this is also the two
change-points model with the minimum global error
of fit (Fig. 18).

A different question that can be raised is the sen-
sitivity of the algorithm to small variations in the orig-
inal data. In real applications, data are measured with
a certain degree of error, and any feature extraction
algorithm should not give much different outcomes
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Figure 16: Abscissas of the two change-points in the
set of the final iterated solutions for the data in Fig. 3,
resulting from an exhaustive search of the initial posi-
tions for the change-points.
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Figure 17: For the data in Fig. 3, regions of initial
positions for the change-points that result in the same
final solution.
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Figure 18: Global errors of fit for the models corre-
sponding to the different final solutions in Fig. 16.
The values displayed correspond to the models with
the two lowest global errors.

Figure 19: Sensitivity of the final positions of the
hinges to random perturbation of the data. Two sec-
tions of data series from Fig. 8 were perturbed, adding
independent gaussian noise to the x and y coordinates
of the points, with standard deviations as indicated in
the figure, producing 50 replications. For each clus-
ter of the final change-points, elipsoids determined
by three standard deviations of their distributions are
shown.

for close data inputs. To explore the robustness of
the algorithm to random perturbations of the data, we
selected a section of two curves from data in Fig. 8
and added gaussian noise to the positions of the data
points. The final positions of the change-points given
by the algorithm were consistent, determining models
exhibiting similar behaviors (Fig. 19).

3 Discussion
The algorithms presented in this work provide a com-
putationally efficient method to fit continuous piece-
wise linear models to data series when the number of
points is high and many change-points have to be con-
sidered, and can be an alternative to methods based on
exhaustive or grid searches aimed at minimizing some
global risk function.

Our objective in fitting these kinds of models is to
extract the main features, in terms of different growth
regimes, present in the data, and in this context it is
clear that some kind of a priori information, either
explicit or implicit, has to be used to define what a
trait of interest is. Consider, for instance, the data pre-
sented in Fig. 8. As shown in Fig. 9 and Fig. 10, mod-
els of different levels of complexity can be fitted, de-
pending wether the interest lies essentially in the suc-
cession of grothw/decline seasons or a more detailed
description is sought.

Our primary envisaged application for these type
of models is in the analysis of remote sensing vege-
tation data, as exemplified along the paper, although
there are many other fields where continuous piece-
wise linear models are sound models and can pro-
vide basic description of the patterns of growth ex-
hibited by the data, and where efficient algorithms are
needed to cope with high volumes of data. However,
it should be kept in mind that no algorithm for contin-
uous piecewise regression can be successful when the
data does not reflect the continuity properties needed
in these models (Fig. 20).

There are several options and parameters in the
algorithms that can be set to fine tune the method, and
obtain the type of model more adequate for the data in
consideration. Besides the different options for the se-
lection of the initial points, the size of the moving win-
dows used to compute local curvatures or angles, the
shape of the smoothing kernels and the values of the
thresholds to select the most extreme values determine
the number and positions of the initial change-points.
Nevertheless, any sound choice for these parameters
would lead to very similar sets of starting points, as
exemplified by comparing Fig. 12 and Fig. 14. More-
over, as discussed in the previous section, the final set
of change-points are the points of equilibrium of the
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Figure 20: Example of simulated data produced by a
discontinuous model.

iteration process, and so there is no need for an inten-
sive effort to optimally determine the positions of the
initial points, as most of them will usually lead to the
same final solution.

Finally, it should be clear that the method can
be run in a completely automated way. The choice
between different models with the same number of
change-points can be based on the global error of
fit, while some suitable model selection criteria [28]
taking into account the number of parameters of the
model, such as AIC [29] or BIC [30], can be em-
ployed to select between models with different num-
ber of change-points.
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