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Abstract:  In this paper, we consider Bayesian analysis proposed by Bretthorst for estimating parameters of the 
corrupted signals and incorporate it with a simulated annealing algorithm to obtain a global maximum of the posterior 
probability density of the parameters. Thus, this analysis offers different approach to find parameter values through a 
directed, but random, search of the parameter space.  For this purpose, we developed a Mathematica code of this 
Bayesian approach and used it for recovering sinusoids corrupted by random noise. The simulation  results support the 
effectiveness of the method.  
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 1 Introduction 
The ultimate goal of collecting data is to gain 
meaningful information about a physical system.  
However, in many situations, the quantities that we 
would like to determine are different from the ones 
which we are able to have measured. If the data we 
measured depends on the quantities we want, it contains 
at least some information about them. Therefore, 
extracting this information from data is subject to this 
paper.  

 

     In many experiments, a discrete data set 
 is recorded. These values are 

sampled from an unknown function at discrete 
times  and  also denoted as the output of the 
physical system that we want to be modeled: 

1 2{ , ,..., }T
Nd d d=D

1{ ,...., }T
Nt t

( )y t

              ,          (1)        ( ) ( , ) , ( 1, 2,..., )i i i id y t f t e i N= = + =θ                       

where ( , )f t θ is the model signal function, which is to 
be determined, and { }ie  represents a vector of errors 
that are  independent  and are drawn from the zero mean 
Gaussian distribution with the variance of 2σ .  
Different models correspond to different choices of the 
model signal function ( , )f t θ . According to Bretthorst, 
the most general model may be given in the following 
form: 

                          1
( , ) ( ,{ })

m

j j
j

f t t ω
=
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The model signals ( ,{ })j t ωG
}

 are functions of 

parameters 1{ ,..., ρω ω ( 2m )ρ= that we label 

collectively{ }ω . The  represents the amplitude 

corresponding to the 
jB

j th model function ( ,{ }).j t ωG

1 2, }}B ρ

 
The goal of data analysis is usually to infer the 
parameters 1 11 21, },...,B B{{ , { , Bρ ρω ω=θ  by 
using the observed data values D .   
    Besides estimating the parameters, there are two 
additional important problems. The one we will 
postpone to discuss here  is to assess whether or not the 
model is appropriate for explaining the data. The other is 
to obtain an indication of the uncertainties in the 
parameter values,  i.e. some measures of how far they 
are away from the true parameters. 
     In this paper, we address the problem of estimation of 
sinusoids in white Gaussian noise within a Bayesian 
framework. This problem is of great interest in many 
fields of science, including seismology, nuclear 
magnetic resonance and radar. Under an assumption of a 
known number of sinusoids, several algorithms have 
already been applied to the spectral analysis and 
parameter estimation problems, such as least-square 
fitting [11], discrete Fourier transform [6], and the 
periodogram [23]. With least square fitting, the model is 
completely defined and the question remaining is to find 
the parameters by minimizing the sum of squared 
residuals.  This approach is usually too restrictive and 
assumes more about the problem than is really known. 
Generally, we do not know which model functions will 
fit the data best, or how many parameters are required to 
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fix the model functions. Since Cooley and Tukey[6] 
introduced the fast Fourier transform (FFT) technique in 
1965, followed  the rapid development of computers, the 
discrete Fourier transform has been a very powerful tool 
in spectral analysis. In a typical situation in spectral 
analysis an attempt is made to gain information about an 
underlying signal in a time series which has sampled 
discretely over a finite time, and which is corrupted by a 
random noise. In this case, the Fourier transform 
consists of  the signal transform plus a noise transform.  
If the peak of signal transform is larger than the noise 
transform, the added noise does not change the location 
of the peak very much. One can then estimate the 
frequency from the location of the peak of the data 
transform, as intuition suggests. Unfortunately, this 
technique does not work well when the signal-to-noise 
ratio in the data is small.  In 1987, Jaynes derived 
periodogram directly from the principles of Bayesian 
inference.  After his work, researchers have given much 
attention to the relationship between Bayesian inference 
and parameter estimation. Bretthorst and some other 
researchers [1, 2, 6, 8,27 , 28] have done excellent works 
in this area for the last fifteen years.  

2 

is 

     In this study, we consider combining a Bayesian 
approach, suggested by Bretthorst[3,4,5] with a very 
different optimization algorithm, called simulated 
annealing[7]. It explores the entire surface of the 
posterior probability density of the frequencies and tries 
to optimize it while moving both uphill and downhill. 
Thus, it is largely independent of the starting values, 
often a critical input in conventional optimization 
algorithms. Furthermore, it can escape from local optima 
and go on to find the global optimum by the uphill and 
downhill moves. So a computer programme for the 
implementation of this method  using Mathematica 
programming language is developed and  then applied to 
some computer simulated results based on the single and 
multiple harmonic frequency models. 
 
 
2 Bayesian Parameter Estimation 
Let us now reconsider the problem given in Equation (1) 
within the Bayesian framework, which combines 
likelihood with prior information to produce a posterior 
distribution.  The prior information generally takes the 
form of  probabilities and probability distributions 
expressing our prior belief in parameter values and 
model hypothesis.  If θ  is a set of parameters of 
interest, then their joint posterior probability density of 
the parameters given the observed data D  and I

          
2 2

2 ( , | ) ( | , , )( , | , ) .
( )

P PP
P

σ σσ =
θ Ι D θ Ιθ D Ι

D | I
        (3) 

The quantity  is called the prior distribution; 
it represents prior knowledge of the parameters 

2( , | )P σθ Ι

2{ , }σθ

D
(P D | I

given the information . The sampling 
distribution  is the likelihood of the data 

 given the model parameters. The probability function 
 is a normalization constant of the posterior 

probability density. Therefore, Equation (3) can also be 
written in the following form: 

I
2( | , ,P σD θ )Ι

)

          2 2( , , ) ( , | ) ( | , , ).P P Pσ σ∝θ D Ι θ Ι D θ Ι2σ      (4) 

In words, the posterior probability density of the 
parameters is proportional to the product of the 
likelihood and the prior probability density of the 
parameters. 

  A key component in Bayes theorem is the 
likelihood function , which is 
proportional to the probability density of the noise. If the 
variance of the noise 

2( | , , )P σD θ Ι

2σ  is known, then the likelihood 
function takes on the following form:                                         

              

2 2 2
2( | , , ) (2 ) exp

2

N NQP σ πσ
σ

− ⎡ ⎤= ⎢⎣ ⎦
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where the exponent Q  is defined as follows 
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where  

   
.     (8) 

1
({ }, ) ({ }, ),( , 1,..., )

N

jk j i k i
i

G t G t j kω ω
=

Ω = ⊗ =∑ m

 
In  many  problems  it  may not be required  to  estimate 
all elements of the model parameter vector  and 
parameters which are of no interest are known as 
nuisance parameters. A powerful feature of the 
Bayesian framework is that the nuisance parameters 
may be removed from consideration by integration, a 
process called marginalization. In order to obtain the 
probability density that depends only on the 

kθ
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frequencies{ }ω , therefore we need to integrate out the 
nuisance parameters {   and }B σ  dependence,  

3 

        
({ ) , | ) { }d} | , (P P , dω σ σ= Ι B∫Ι θD D  ,          (9) 

which implies what the data and prior information have 
to tell us about the frequencies { }ω  regardless of the 

values of the amplitudes { }B and the deviation of the 
noise σ .  To do this, it is necessary to make the matrix  

( )jk ωΩ  to be diagonal, effectively by introducing new 
orthogonal model functions: 

  
1j ja G=

( )i

1

jλ

( )j i

( ) ({ ), ( 1,..., )m
kk

H t t j mω
=

=∑ },k

1
0

,   (10) 

where   

     
1

N

k jk
i

j k
HH t t

j k=

=
= =

≠∑ δ

1

m

k

⎧
⎨
⎩

( )

      .        (11) 

This diagonalization process gives a new expression for 
the model function, 

                   
( ) k kf t A

=
∑ H

k

t= ,                            (12) 

where the new amplitude  is related  to the old 
amplitude

A

jB  by 

              1

m

, ( ,..., )k k j kj
j

1A B a
=

= ∑ k mλ =                 (13) 

and where  represents the kja j th component of the th 

normalized eigenvector of 

k

jkΩ , with jλ  as the 
corresponding eigenvalue. Substituting this into 
Equation (12) and defining 

                    1
( , )

N

j
i

H { }itj ih d ω
=

= ∑ ,                         (14) 

to be the projection of the data onto model functions 
( ,{ })jH t ω , we can then proceed to perform the  

integration over

m

jA 's analytically.  If 2σ  is known, then 
the problem is completed, provided we have no 
additional prior information. The joint posterior 

probability density of the { }ω  parameters, conditional 
on the data and our knowledge of σ  is then given by 

                 

2
2

2({ } | , , ) exp( )
2
mP ω σ
σ

∝
hD I .             (15) 

But if there is no prior information available about the 
noise, then 2σ  can be taken as a nuisance parameter  
and  eliminated as  it was done with the amplitudes.  
Often there will be little prior knowledge concerning the 
noise variance  and it is then appropriate to use the 
Jeffreys' prior:                          

                            1( )P σ
σ

=                               (16) 

By using this  prior  and integrating over σ  parameter 
the posterior probability density of the frequencies   in 
Equation (15) turns into the following form: 

                  

2

2N
h
d

2({ } , ) (1 )
m NmP Iω

−

∝ −D

( )N m

.              (17) 

This has the form of the "Student t- distribution" with 
− degree of freedom. As well as determining the 

{ }ω  parameters for which the posterior probability is a   
maximum, it is also desirable to compute the variances 
associated with them. This is because one always 
requires knowing how good the estimate is. Therefore, 
let ˆ{ }ω  represent the estimated values of { }.ω  Then we 

can expand the function  2h  in a Taylor series at the 
point ˆ{ }ω , such that   

2
2

, 1

ˆ ˆ( )(
({ }| , , ) exp

)jk j k k

j k

b
P I

ρ ω ω
ω σ α

σ=

− −

2
jω ω⎡ ⎤

−⎢ ⎥〈 〉⎣ ⎦
∑D     (18)              

with jkb defined as 

                   

2 2

ˆ
ˆ2 j j

k k

jk
j k

mb ω ω
ω ω

=
=ω ω

∂
= −

∂ ∂
h

 .                     (19) 

For an arbitrary model the matrix jkb  cannot be 
calculated analytically; however, it can be evaluated 
numerically. Using Equation (18) we can make the 
(mean) ± (standard deviation) approximations for the 
{ }ω parameters. This can be done  by using orthogonal 
transformation to convert the multiple integrals  into the 
Gaussian types. It can then be performed multiple 
integrations analytically with respect to  the  frequencies  
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just  as it was done with the amplitudes.  Let jν  and  
represent the  eigenvalue and eigenvectors of the 
matrix

kju
thj

jkb , respectively. Then the new orthogonal 
variables are given by  

         
1 1

, k jk
j jν k kj j

k k k

s u
s u

ρ ρ

4 

ν= =

= Δ Δ =∑ ∑

k

 .           (20) 

where ˆk kω ω−Δ = . Using these orthogonal variables, 
the estimate variance for kω  is simply defined in the 
following form:  

                   

2
2 2

1
k

jk

j

uρ

σ σω
jν=

∑=  .                              (21) 

Thus the expected values of the  parameters can 
easily be implemented by 

ω

                              
ˆ ωω = ω ± σ .                           (22) 

One can also show that the expected values of the 
parameters { }A  are given by j jA h〈 〉 =

}
, which when 

transformed to the parameters {B  becomes 

                        
1

1m

k
j j

j jkB h a
λ=

= ∑〈 〉  .                     (23) 

The uncertainty in the  is jA σ± , so that the 

corresponding variance in the { }kB  is 

                      2 2

1

1
k

m

B j
j j

a aσ σ
λ=

= ∑ k jl  .                (24) 

 
 
3 Global Optimization Algorithm 
The approach summarized above, introduced by 
Bretthorst, and requires analytic or numerical 
approximation of integrals which is not given here. As a 
result, the Bayesian parameter estimation problem turns 
into the maximization of the posterior probability 
density given in Equations (15) or (17). Unfortunately, 
conventional algorithms[13] based on the gradient 
direction fail to converge for this problem. Even when 
they converge, there is no assurance that they have 
found the global, rather than a local maximum. This is 
because the log of the probability density function is so 
sharply peaked and highly nonlinear function of the 
frequencies. Bretthorst used a pattern search algorithm 
described by Hook-Jevees to overcome this problem. 
However, its efficiency decisively depends on the choice 

of the initial step size. When the step sizes are chosen 
too small the algorithm requires much iteration to 
appropriately increase the length of search direction 
vector. When the step sizes are chosen too large they 
have to be reduced before the algorithm can advance 
towards the optimum. Finally, the choice of the starting 
point and the initial step sizes strictly determine which 
optimum will be found. It may be a local or a global 
optimum. To deal with this kind of problem, we 
consider here simulated annealing algorithm, which has 
been applied to continuous global optimization 
problems. Details of this algorithm can be found in the 
references [7, 10, 15, 16]. 
    The essential starting parameters to maximize the 
posterior probability density function 

({ } | , , )P Iω σD are Γ  which by analogy with original 
application is known as the system temperature 
irrespective of the objective function involved 
and 1 2{ , ,..., }ρω ω ω=W

W

, the starting vector of the 
frequencies. A function evaluation is made at the 
starting point and the value of ( | , , )P IσW D is 

recorded. Next,  ∗W  is obtained from  by changing 
only 

W
jth element of , W

                           j j jω ω δω∗ = + ,                            (25) 
where  
                        

( )N(0,1)j jδω β ω= ϒ                (26) 

 is recalculated until 0 2jω π∗≤ ≤  for all over j 's. The 

step size jδω  is proportional with the squared root of 

the Cramer-Rao lower bound ( j )ωϒ [11],  defined by 

            
2

3 2 2
1 2

48( ) ( 1, 2,..., )ˆ ˆ( )j
j j

j
N B B

σω ρϒ = =
+

(27) 

for each frequency jω  and β  is an appropriate constant 

for scaling. ( j )ωϒ  is a lower limit to the variance for a 

measurement of the frequency jω , and so its squared 
root generates a natural scale size of the search space 
around the estimated value of  jω .  It is expected that 
better solutions lie close to solutions that are already 
good and so normally distributed step sizes can then  be 
used[14]. 

If  is larger than( | , ,P σ∗W D )I )( | , ,P IσW D , 
∗W  and its probability density value are recorded since 

this is the best current values of the optimum frequency 
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vector denoted as . Otherwise, the Metropolis 
criterion [21] decides on acceptance. For this purpose, 
the value  

optW

                              
( ,

5 

)
[ ]

P Iδ
= −

Γ
W D

expp

Γ

            (28) 

is computed and compared with a random number 
chosen from uniform distribution in the interval [0, 1].  
If  is greater than this number, the new point is 

accepted and  is updated with and the algorithm 
moves downhill. Otherwise, is rejected. From an 
optimization point of view, an iterative search accepting 
only new point with highest function value is like 
rapidly quenching a physical system at zero temperature: 
It is very likely to get stuck in a metastable, local 
maximum. On the contrary, the simulated annealing 
permits downhill moves under the control of the 
temperature parameter  .  At higher temperature only 
the gross behavior of the cost function is relevant to the 
search. As temperature decreases, finer details can be 
developed to get a good final point. While the optimality 
of the final point cannot be guaranteed, the method is 
able to proceed toward better maxima even in the 
presence of many local maxima. From Equation (28) 
there are two factors, lower temperatures and larger 
differences in the function’s value, which decrease the 
probability of a downhill move. After  iterations the 

 temperature is reduced by the annealing schedule 
defined as 

p
W ∗W

∗W

nΓ

Γ

                           
1

0Γ = Γ
1<

exp[ ],m
k r kΓ−                      (29) 

for some  and the initial temperature 0 rΓ≤ 0 .Γ  A 
lower temperature makes a given downhill move less 
likely, so the number of  rejections increase and the 
step lengths decline. In addition, the first point tried at 
the new temperature is the current optimum. The smaller 
steps starting at the current optimum focuses attention 
on the most promising area. The algorithm ends by 
comparing the last 

Γ

nε  values of the largest function 
values from the end of each temperature reduction with 
the most recent one.  If all these differences at the k th 
iteration 

         
( , ) (

) (

k k

opt

P P

P P

, ) ,( 1,2,.., )

( , , )

l

k

l nεε

ε

−− ≤ =

− ≤

W D I D I

W D I D I

∗ ∗

∗ ∗

W

W
    (30) 

are less than a pre-assigned number ( 0)ε >  then the 
algorithm terminates. This criterion helps to ensure that 
the global maximum is reached.  

4 Power Spectral Density 
Before we discuss the computer simulated examples, 
there is something we need to say about how to display 
the results. The usual way the result from a spectral 
analysis is displayed is in the form of a power spectral 
density, which shows the strength of the variation 
(energy) as a function of frequency. In Fourier transform 
spectroscopy, this is typically taken as the squared 
magnitude of the discrete Fourier transform of the data.  
In order to display our results in the form of a power 
spectral density,  it is necessary to give an attention to its 
definition that shows how much power is contained in a 
unit frequency. According to Bretthorst [3], the 
Bayesian power spectral density[27], which is defined as 
the expected value of the power of the signals over the 
joint posterior probability density,  is  implemented in 
the following form: 

    {2 2
11

( ) ( ) ( },{ } , , ) ...
2 jj

Np p D Iρ d d ρω ω σ
=

= ∑∫ B B Β B  (31) 

Performing integrals over 1 2, ,..., ρB B B  by using 
Equations (18) and (19), the power spectral density can 
be approximated as  

1 ˆb b − 2
2 2 2

2 2
1 1

( )ˆ( ) 2( ( )) ( ) exp( )
2 2

kk kk k
j

j k

p h
ρ ρ ω ωω σ ω

πσ σ= =

= + −∑ ∑ . (32) 

This function stresses information about the total energy 
carried by the signal and about the accuracy of each line.  
In the next section, we will present some numerical 
examples how well this technique works. 
 
 
5 Computer Simulated Examples 
To verify the performance of the algorithm, we 
generated data vector from one, two and five sinusoids 
and then added the noise vector generated from a zero 
mean Gaussian distribution with a deviation of σ  to this 
vector. Here the time  runs over the symmetric time 
interval 

t
T−  to T  in  integer steps. To 

ensure that the data have zero mean value the average 
value of the data  is computed and  subtracted  from 
each data point. After obtaining simulated data, we 
carried out its Bayesian analysis, assuming that we know 
the mathematical form of the model but, not the values 
of the parameters. We first gave starting values to the 
list of the frequencies to begin a multidimensional 
search for finding a global maximum of the posterior 
probability density given in Equations (15) or (17). As 
an initial estimate of the frequencies for the 
maximization procedure, we chose the locations of the 
peaks in the power  spectrum  density, which is a 

(2 1) 512T + =
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squared  magnitude  of  the  fast  Fourier  transform 
(FFT) of data. Once, the frequencies  are estimated, we 
carry  on calculating the amplitudes and  parameter 
errors  approximately  by  using  Equations (21), (23) 
and (24).  
    In the first example, the noisy data set is generated 
from the following equation: 
 

        (33) 
0.001 0.5403cos(0.3 )

0.8415sin(0.3 ) ( 1,...,512)
i i

i i

d t
t e i

= +
− + =

where . For this data, the computer 
programme we  developed  was run on the workstation 
in two cases. In the first case, we assumed that the 
standard deviation  of  noise  is  actually known and 
used the probability density given in Equation (15) to 
maximize.  The estimated values associated with the 
estimated deviations are tabulated in Table 1.  In the 
second case, we also suppose that the standard deviation 
of noise 

N(0,1)ie

σ  is unknown and repeated calculations using 
the probability density  given   in Equation (17). The  
results  are similar  to  those  shown  in Table 1. It  can  
be  seen  that a single frequency and amplitudes are 
recovered very well. As we can see, when the noise 
level is unknown Bayesian inference can give very 
accurate results  together  with  an  estimate  of the noise 
level and the signal-to-noise ratio ( )[3,4,5] shown  
in Table 1.  The usual way of  displaying  the results in 
the spectral analysis is in the form of a power spectral 
density shown in Fig. 2.  The Fourier Spectral density 
contains spurious side lobes, but these do not appear in 
the plot of the Bayesian spectral density.  

sTn

    In the second example, we consider a model signal 
with two close harmonic frequencies: 
 

    (34) 
0.5403cos(0.3 ) 0.8415sin(0.3 )

0.4161cos(0.31 ) 0.9093sin(0.31 )
i i i

i

d t t
t

= -
- -

6 

i it e+
In a similar way, we produced the same size data 
corrupted by the zero mean Gaussian noise with 1σ = . 
Using this data shown in Figure 3, we run our 
Mathematica code again in the case where the deviation 
of noise is unknown. The time interval is the same as the 
first example and Table 2 contains the estimated values 
associated with the  deviations for the parameters.  Here 
again the computed values are all very close to the true 
values and the two frequency lines are clearly resolved. 
This is also clearly evident from the Bayesian power 
spectral density shown in Fig. 4. It can be seen that the 
Fourier power spectral density shows only a single peak 
in between the two frequencies. Actually with the 
Fourier spectral density when the separation of two 

frequencies is less than the Nyquist step, 

1 2 2 / Nω ω π− < , the two frequencies are 
indistinguishable. This is simply because there are no 
sample points in between the two frequencies in the 
frequency domain. If 1 2 2 / Nω ω π− >  theoretically 
the two frequencies can then be distinguished. If 

1 2ω ω− is not large enough, the resolution will be very 
poor. Therefore, it is hard to tell where the two 
frequencies are located. This is just the inherent problem 
of the discrete Fourier power spectral density. In this 
example the two frequencies are separated by 0.01, 
which is less than the Nyquist step size. There is no way 
by using Fourier power spectral density that one can 
resolve the two frequencies, however Bayesian power 
spectral density gives us very good results with high 
accuracy.  Furthermore,   Figs. 1-3 show the power of 
the method for recovering the signal from the noisy data 
using the estimated values of the parameters of 
sinusoids.  
    In general, let us consider a multiple harmonic 
frequency model signal:  
 

    

 cos(0.1 t 1) 2cos(0.15 2)
5cos(0.3 3) 2cos(0.31 4)
3cos( +5) 

i i i

i i

i i

d t
t t

t e

= + + +
+ + + +
+ +

           (35) 

 
The time series with a sample size of 512,  including the 
zero mean Gaussian noise with 1σ = ,  is shown in 
Figure 5. The best estimates and the marginal deviations 
for all the parameters are tabulated in Table 3. Once 
again, all the frequencies have been well resolved, even 
the third and fourth frequencies which are too closed are 
not to be separated by the Fourier power spectral density 
shown in Fig. 5.  This is why Fourier Power spectrum 
shows only four peaks. The Bayesian power spectral 
density plot for this example shows five sharp peaks.  
These results we obtained are also similar to that of 
Bretthorst [3] and they also demonstrate the advantages 
of Bayesian inference using together with simulated 
annealing algorithm.  
   Moreover, we initially assumed that the values of the 
random noise in data were drawn from the zero mean 
Gaussian normal density. Fig. 6 shows the exact and 
estimate probability densities of the random noise in 
data.  It is seen that the estimated (dotted) probability 
density is closer to the true (solid) probability density 
and the histogram of the data is much closer to the true 
probability density. The histogram is also known as a 
nonparametric estimator of the probability density 
because it does not depend on specified parameters. 
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6 Conclusions 
In this work we have partially developed and applied 
Bayesian inference with simulated annealing to the 
spectral analysis and parameter estimation problem. The 
results presented here show that Bayesian statistical 
inference used together with a simulated annealing 
provides rational approach for estimating, in an optimal 
way, values of parameters of sinusoids corrupted by 
random noise. Both frequency and amplitudes can be 
recovered from the experimental data and the prior 
information with high accuracy, especially the 
frequency, which is the most important parameter in 
spectral analysis. A significant advantage of the 
Bayesian approach comes from the very large posterior 
probabilities, which are sharply peaked in the 
neighborhood of  the  best  fit. This helps to simplify the 
problem of choosing starting values and performing the 
random search for the best parameters. Although  
simulated annealing spend large consumption of CPU 
time, it is competitive when compared to the multiple 
runs often used with conventional algorithms to test 
different starting values. 
  We have not addressed the problem of model selection, 
which is a big part of spectral analysis. In analyzing 
experimental data, it is not always known which model 
functions apply. In general one has enough prior 
information in a given experiment to select the best 
model among a finite set of model functions.  Bayesian 
inference helps us to accomplish this.  This work and a 
comparison with the most recent methods will deserve 
further investigations.  In addition, the computer 
simulations show that Mathematica  is powerful system 
for doing mathematics by computer and it has steadily 
grown in breadth and depth to become today an 
unparalleled platform for all forms of computations. 
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Table 1. Computer simulations for a single harmonic 

frequency model. 
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   Fig. 1. Recovering signal from noisy data produced 
from single harmonic frequency model 

Bayesian Parameter estimation 

  Parameters   Estimated Values 
 

1w  0.299852 0.0005±  

1B  0.603579 0.05±  

 
 
 

   σ  : Known 
N  :  512 
m   : 3 

sTn  : 0.725 
σ    : 1. 

 
2B  -0.817479± 0.06  
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 Fig. 2. Spectral analysis of one frequency model.                
 
Table 2. Computer simulations for two closed     

frequency model 
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   Fig. 3. Recovering signals from noisy data produced   

from two closed harmonic frequency model. 
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       Fig. 4. Spectral analysis of two frequencies model. 

 

   Bayesian Parameter estimation 

Parameters Estimated Values 
 

1w       0.300082± 0.0009

2w     0.310574± 0.0001

1B    0.  520649± 0.063

2B    -0.869805± 0.063

3B    -0.381937± 0.063

σ: Unknown   
N:  512 
m :  6 

sTn 1.029 
 σ: 0.9963 

4B    -0.855687± 0.063
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   Table 3. Computer simulations for a multiple 

harmonic frequency model1. 
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Parameters Estimated Values 

1w  0.0994±0.0004 

2w  0.1501±0.0002 

3w  0.2998±0.0001 

4w  0.3100±0.0003 

5w  1.0000±0.0001 

1A  0.94±0.08 

2A  2.07±0.08 

3A  4.97±0.09 

4A  1.98±0.09 

 
 
 
 
 

σ : Unknown 
N :  512 
m  : 15 

sTn 1.029 
σ̂ : 0.9963 

5A  2.98±0.08 

 
        
        

 

          Fig. 5.  Spectral analysis of multiple frequency model.             
 
 

Fig. 6. Comparison of exact and estimate probability 
densities of noise in data. 

 

                                                 

1 In order to compare the results with that of  Bretthorst   in 
this example we converted 

2 2 , ( 1,..., ).i i iA B B iρ ρ+= + =  
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