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 Abstract: - Motion estimation is one of the most important steps in video compression algorithms. It reduces 

temporal redundancy present in frame sequences and allows a better compression of video material. Most of 

the actual video compression algorithms use “block matching” methods which operate on the bitmap form of 

the frames. This paper presents a method for computing the values of DCT coefficients of a block of pixels 

positioned on certain coordinates over four adjacent blocks using only the DCT coefficients of these four 

blocks. Performance of this method is analyzed for both integer and non-integer displacements. Also, an 

equivalent of the full-search algorithm translated in 2D-DCT domain is presented. 
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1   Introduction 

     Video sequences are characterized by a high 

level of information redundancy. Video compression 

algorithms use this feature of the video material to 

achieve high levels of data reduction. In fact, video 

compression is based on the similarity between 

successive frames. 

     Most of the actual video compression algorithms 

encode each frame in two steps [1]. In the first step 

(motion estimation), they try to create an as good as 

possible version of the current frame from other 

frames which were already encoded. For doing this, 

the current frame is divided in square blocks of NxN 

pixels. Then, for a maximum motion displacement 

of R pixels per frame, each block of pixels is 

matched against a corresponding block at the same 

coordinates but in the previous frames, within the 

square window of width/height N+2R. The best 

match is selected by testing a matching function like 

mean squared error (MSE) or mean absolute 

difference (MAD). In this step only the information 

about the position of the best matched blocks from 

previous frames (motion vectors) are encoded. 

     The searching can be performed for each possible 

position in the search area (Full Search algorithm). 

In this case the best match is found but the 

computing effort involved is huge. For this reason, 

some strategies for reducing the number or search 

steps were proposed like Three Step Search - TSS 

[2], Two Dimensional Logarithmic Search -TDL 

[3], Hierarchical Search – HS [4] [5], Adaptive 

Search [6], Fast and Robust Search [7], etc.. 

     Because real motion in video frames is not 

carried out over integer pixels, motion estimation is 

performed at sub-pixel level [10]. This kind of 

search involves interpolation of pixel values and 

searching over an enhanced resolution images which 

increase the complexity of the procedure. 

     In the second step (motion compensation) the 

difference between the reconstructed frame created 

in the first step and the actual frame is encoded 

using a still image compression algorithm (usually 

based on discrete cosine transform, quantization and 

entropy coding). 

     Usually this search is performed on the bitmap 

form of the frames. Many video formats like 

MJPEG [8], DV25, DV50 [9], use Discrete Cosine 

Transform (DCT) for compressing frames. 

     In these cases it would be better to do the 

searching and matching tests directly in the 

transformed domain. 

      There are some proposed methods for motion 

estimation based on pseudo phase techniques [11] or 

phase correlation [12]. Other approaches focus on 

refinement of the estimations at sub-pixel level 

using DCT coefficients [13]. 

     This paper presents a method for computing the 

values of DCT coefficients of a block of pixels 

positioned on certain coordinates over four adjacent 

blocks using only the DCT coefficients of these four 

blocks. 
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     The presentation is organized as follows. The 

problem to solve is stated within the next section. 

The proposed solution for 1D and 2D cases and 

simulation results are succinctly described in section 

3. Section 4 contains some concluding remarks and 

a references list completes the article. 

 

 

2   Problem Formulation 

     The general case in a search step is the one 

presented in the Figure 1. We have a block from the 

current frame and we want to compare it with a 

candidate block X which stand over four adjacent 

blocks (A, B, C and D). These four main blocks are 

located in a previous encoded frame (reference 

frame). The candidate block X is positioned at 

(dx,dy) pixels relative to the bottom-left corner of 

the block D. 
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Fig.1 Position of the candidate block 

     The problem is to compute the DCT coefficients 

of the candidate block X directly from the DCT 

coefficients of the four adjacent blocks. 

     The candidate block X is a sum of 4 partial 

blocks (XA, XB, XC and XD), each of them 

containing parts of main blocks A, B, C respectively 

D like in the following figure: 

 XA block 

part of 

block A 

XB block 

part of 

block B 

XC block 

part of 

block C 

XD block 

part of 

block D 

 
Fig.2: The structure of partial blocks 

     Each of the four partial blocks can be obtained 

from the main blocks by shifting the image inside 

them. 

     For example, the XA component can be obtained 

from the main block A by shifting the image inside 

it dx pixels to the left and N-dy pixel up like in the 

Figure 3 below: 
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Fig.3: Obtaining XA from A 

     The shifts necessary for obtaining all the 

components are summarized in the next table: 

     Horizontal        Vertical 
Component  Main 

   Dir. Amount    Dir. Amount 

      XA    A   Left   dx  Up   N-dy 

      XB    B   Right   N-dx  Up   N-dy 

      XC    C   Left   dx  Down   dy 

      XD    D   Right   N-dx  Down   dy 

Table 1: Generation of candidate block components 

     Because Discrete Cosine Transform is linear, the 

transform applied to a sum of elements is equal to 

the sum of the transform applied to each element.  

     For this reason, the 2D-DCT transform of the 

candidate block Tx can be determined from the 2D-

DCT transform of its components, by using the 

following equation: 

XDXCXBXA

X

TTTT

XDDCTXCDCT

XBDCTXADCT

XDXCXBXADCTT

+++=

++

++=

+++=

)()(

)()(

)(

 (1) 

     It can be noticed that 2D-DCT transform of the 

shifted components XA, XB, XC and XD are 

needed. 

     Therefore, the problem is to determine a method 

for compute 2D-DCT transform of a shifted matrix 

directly from its own 2D-DCT coefficients and 

amounts of vertical and horizontal shifts. 

 

 

3   Problem Solution 

     The first step to find the method to determine the 

DCT coefficients of a shifted matrix is to analyze 

the 1D case of this problem. Next, the 2D case will 

be derived from the results obtained in the fist step. 
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3.1 The one-dimensional case 

     Suppose that the values of an initial vector y are 

moved down by s positions. The result is a shifted 

vector ys. The upper-most s positions are filled with 

zeros like in the Figure 4: 
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Fig.4: Initial and shifted vector 

     The elements of discrete cosine transform Ty 

applied to the initial vector y can be computed using 

the following equation [14]: 
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     This equation can be written in a matrix form like 

the following: 

yQTy =  (3) 

where matrix Q is defined by: 
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     For integer values of the displacement s, the 

shifted vector ys can be obtained from intial vector y 

by: 

ysSys )(=  (5) 

where the S(s) matrix have 1 on the s-the 

subdiagonal and 0 in rest. 

     Initial vector y can be computed from its DCT 

transform Tys using: 

y
T

TQy =  (6) 

     DCT coefficients of the shifted vector (Tys) can 

be obtained from the DCT coefficients of the initial 

vector (Ty), by using: 

y

y
T
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 (7) 

     Analyzing the displacement matrix D(s) for all 

possible integer values from 0 to 7, we found that its 

elements can be described by the next formula: 
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     Although the values of constants ji,α , ji,β  and iγ  

can be evaluated in closed form, the manipulations 

are rather difficult. Therefore, the coefficients can 

be obtained in a simpler way, with the help of Least 

Squares Method (LSM) [15]. The following 

algorithm leads to the desired result: 

1. For each (i,j) with 1:0 −= Ni and 1:0 −= Nj  

 1.1. For 1:0 −= Ns  (integer values) 

  1.1.1. Generate initial vector y using: 
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  1.1.3. Compute 1D-DCT of the two vectors: 
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  1.1.4. Determine the value of )(, sd ji  as: 
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  1.2.1. Solve the superimposed system 

   below, by using LSM: 
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   where: 
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  else 

  1.2.2. Solve the superimposed system 

   below, by using LSM: 

   




























=



















−−−

i,j

i,j

,N,N

,,

.,

N

β

α

aa

aa

aa

b

b

b

0101

1101

1000

1

1

0

MMM
 

   where: 

   









=








=

=

N

jk
a

N

ik
a

(k)db

k

k

i,jk

π

π

sin

sin

1,

0,  

     For example, the values of these constants were 

determined for the case of N=8 (usual size in 

image/video compression applications): 
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     For this case (N=8), the maximum error in 

approximation of the real )(, sd ji  coefficients was 

about 7.4e-16 (using double precision arithmetic). 

     The matrix D(s) is used only for down-shift case. 

For the up-shift (s<0) another matrix (U(s)) must be 

used. Elements of the U(s) matrix are defined by: 

)(1)( ,, sdsu ji
ji
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3.2 The bi-dimensional case 

     Assume that the values of an initial matrix M are 

moved down by dy positions and right by dx 

positions. The result is a shifted matrix Ms like in 

the Figure 5 below: 
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Fig.5: Initial and shifted matrix 

     The 2D discrete cosine transform applied to the 

initial matrix is: 

T
M QMQT =  (10) 

     The 2D-DCT coefficients of shifted matrix (TMs) 

can be obtained from the 2D-DCT coefficients of 

the initial matrix (TM) by using: 

)()(),( dxHTdyVdydxT MMs =  (11) 

     The V(dy) matrix corresponds to the vertical shift 

and the H(dx) matrix to the horizontal. These two 

matrices are defined by: 
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3.3 Determination of 2D-DCT coefficients of 

the candidate block 

     Now a method for determination of 2D-DCT 

coefficients of the candidate block X can be 

designed (see again Figure 1). 

     From equation (1), it follows: 

XDXCXBXAX TTTTT +++=  (14) 
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     Matrices XA, XB, XC and XD are shifted 

versions of matrices A, B, C respectively D. The 

amounts of shift on horizontal and vertical directions 

needed for each matrix are given in Table 1. 

     Using this information and equation (11), the 

four components of TX can be determined as follows: 

)()(
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 (15) 

     It can be noticed that we need only the 2D-DCT 

transforms of the four initial blocks (TXA, TXB, TXC 

and TXD) and the values of displacements on the two 

directions dx and dy. 

 

 

3.4 Tests 

     The accuracy of the proposed method was 

evaluated using several tests. 

     Generation of DCT coefficients of a shifted 

vector from DCT coefficients of the initial vector 

described by equations (7) and (8) do not require 

any accuracy evaluations for integer values of the 

displacement. Its accuracy was already tested 

when ji,α , ji,β  and iγ  coefficients were determined 

using the Least Squares Method. 

     The first test was performed to evaluate accuracy 

of determination for 2D-DCT coefficients of the 

candidate block described by equations (14) and 

(15). 

     For this test, the next image was considered (size 

16x16 pixels): 

 

dx 

d
y
 

 

Fig.6: The test image 

     This image is a part of a larger size real image 

(luminance component) and pixel values are integer 

numbers between 0 and 255. 

 

 Extracted block 

 
Fig.7: Source image for the test block 

     The 2D-DCT coefficients of block with size of 

8x8 located at (dx,dy) pixels from the bottom-left 

corner of the image were computed by the following 

methods: 

• applying 2D-DC transform over the image block 

extracted directly from initial bitmap; 

• using equations (14) and (15) applied to the 2D-

DCT coefficients of the four sub-blocks. 

     The all 64 coefficient values obtained by the two 

methods were compared and the maximum absolute 

difference was found. 

     This test was performed for all possible integer 

pairs (dx,dy) between (0,0) and (8,8). The maximum 

absolute differences noticed for each case were 

arranged in a matrix where the element from line i 

and column j correspond to the maximum absolute 

difference noticed for a vertical displacement dy=i 

and a horizontal one dx=j. This matrix is: 
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     The values are very small and are very likely 

caused by approximation errors inherent in floating 

point operations. 

     Another category of tests were focused on 

accuracy in the case of non-integer displacements. 

This kind of test is difficult to be done in 2D or 

using real images. For this reason, we performed the 

following tests only in 1D case: 

• accuracy evaluation of shifted vector DCT 

coefficients obtained by equations (7) and (8); 

• accuracy evaluation for a 1D version of the 

candidate block DCT coefficients determination 

described by equations (14) and (15). 
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     The second test assumes the following situation: 

 

XA A B 

X 

XB 

N 

N N 

dx 

 
Fig.8: The 1D case of the candidate block DCT 

coefficients determination 

     We have the 1D-DCT transform of the two main 

vectors and is necessary to determine the 1D-DCT 

transform of the X vector. 

     The candidate vector X is a sum of 2 partial 

vectors (XA and XB), each of them containing parts 

of main vectors A respectively B like in the 

following figure: 

 XA vector 

part of A vector 

XB vector 

part of B vector 
 

Fig.9: The structure of partial blocks 

     The shifts necessary for obtaining the two 

components are summarized in the next table: 

           Horizontal 
Component  Main 

   Direction    Amount 

      XA    A   Left   dx 

      XB    B   Right   N-dx 

Table 2: Generation of candidate block components 

     Like in the 2D case, DCT transform of the 

candidate vector Tx can be determined from the DCT 

transform of its components, using a correspondent 

equation: 

XBXAX TTT +=
 (16) 

where: 

( )

( )dxNHTT

dxHTT

BXB
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 (17) 

     Both tests will be performed using some test-

vectors chosen for an easy evaluation of the DCT 

coefficients determination accuracy. 

     Evaluation will be performed on the non-

transformed vectors obtained from the DCT 

coefficients after applying the inverse transform. 

 

3.4.1. Results of shift evaluation tests 

 

     The first test vectors tried were the 8 base 

functions which define the DCT transform. The 

values of the K base vector are defined by: 
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     In the ideal case, shifting these vectors to the 

right by s positions will produce the following 

values for elements: 

• for 5.0≤s : 
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     All these vectors were tested for displacements to 

the right between 0 and 1 position with a resolution 

of 0.05. 

     To not exceed the page limit, in this paper, will 

be presented only the results for the extreme values 

of the K (1 and 7) and for displacements by 0.25, 

0.5, 0.75 and 1 positions. 

     In the next plots, the dotted line represent the 

ideal shifted vector determined by equations (19) 

and (20) and the solid line represent the vector 

obtained performing shift in transformed domain 

followed by inverse transform: 

• for K=1: 

 
Fig.10: K=1, shift by s=0.25 positions 

WSEAS TRANSACTIONS on SIGNAL PROCESSING Petrescu Catalin-Dumitru, Stefanoiu Dan and Lupu Ciprian

ISSN: 1790-5052 376 Issue 6, Volume 4, June 2008



 
Fig.11: K=1, shift by s=0.5 positions 

 
Fig.12: K=1, shift by s=0.75 positions 

 
Fig.13: K=1, shift by s=1 position 

• for K=1: 

 
Fig.14: K=7, shift by s=0.25 positions 

 
Fig.14: K=7, shift by s=0.5 positions 

 
Fig.15: K=7, shift by s=0.75 positions 

 
Fig.16: K=7, shift by s=1 position 

     It can be noticed that there are some errors in 

determination of shifted vectors especially for the 

displacement values around 0.5 positions, the 

magnitude of these errors increasing as K become 

higher. 

     These errors are more visible for the elements 

located on the left side of the vector. This side 

corresponds to the place where the values of the 

vector are not defined for displacements greater than 

0.5 positions and zero padding is performed. 

     Another test vector which was tried is a linear 

ramp defined by: 

iyi =  (21) 
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     In the ideal case, shifting these vectors to the 

right by s positions will produce the following 

values for elements: 

• for 5.0≤s : 

( ) sisyi −=  (22) 

• for 5.0>s : 
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     This vector was tested for displacements to the 

right between 0 and 1 position with a resolution of 

0.05 but, like in the base vector case, only the results 

for 0.25, 0.5, 0.75 and 1 values are presented in the 

following plots. 

 
Fig.17: shift by s=0.25 positions 

 
Fig.18: shift by s=0.5 positions 

 
Fig.19: shift by s=0.75 positions 

 
Fig.20: shift by s=1 position 

     For this vector, errors are still present but their 

magnitudes are smaller than in the base vector cases. 

 

3.4.2. Results of candidate vector determination 

evaluation tests 

 

     The first test vectors were the same 8 base 

functions which define the DCT transform. These 

base vectors were used as the main vectors A. For 

continuity reasons, the base vectors B were chosen 

to be the extensions of the base functions as follows: 
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 (24) 

     In the ideal case, the candidate vector X obtained 

for a displacement dx will have the following values: 

( ) ( )







 ++
=

16

212
cos

πdxik
dxx

K
i  (25) 

     Testing these vectors for displacement values 

between 0 and 1 position with a resolution of 0.05 a 

very small error (about 10
-15

…10
-14

) was noticed. 

     This fact leads to the conclusion that shift 

estimation errors corresponding to the A and B main 

vectors have almost same values but with opposite 

signs and canceling themselves. 

     The second test vectors were a linear ramp 

extended to both A and B vectors as follows: 

7:0,8

7:0,

=+=

==

iib

iia

i

i
 (26) 

     In the ideal case, the candidate vector X obtained 

for a displacement dx will have the following values: 

dxixi +=  (27) 

     Testing for displacement values between 0 and 1 

position with a resolution of 0.05, an error of 

maximum 0.0479 was noticed. Although this error is 
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bigger than in the base vectors case, its value is 

small enough to be considered almost null. 

 

3.5 Motion estimation 

     In the motion compensation step, the difference 

between the “reconstructed” frame and the actual 

frame is encoded using a still image compression 

algorithm (usually based on discrete cosine 

transform, quantization and entropy coding). Classic 

matching functions like mean squared error (MSE) 

or mean absolute difference (MAD) do not 

guarantee that the difference frame is easy to 

compress because they try to minimize the energy of 

the difference frame in the bitmap domain not in 

transformed one. 

     Using the proposed method for the estimation of 

transformed coefficients of the candidate block, the 

matching functions can evaluate the energy of the 

DCT coefficients which are actually encoded. 

     One idea of matching function likely to be used 

in the transformed domain is: 

( ) ∑∑
−

=

−

=

−
=

1

0

1

0
,

,, ),(
),,(

N

i

N

j
ji

jiji

h

ydydxx
YdydxXF  (28) 

where: 

• X is the matrix of 2D-DCT coefficients of the 

candidate block from the reference frame; 

• Y is the matrix of 2D-DCT coefficients of the 

current block; 

• jih ,  are the quantization coefficients used in the 

motion compensation step for compressing the 

difference frame. 

     It can be noticed that the differences between 

DCT coefficients of the current and candidate block 

are weighted by quantization coefficients. The 

reason is to make the matching function less 

sensitive to the high frequency components which 

are however reduced in the quantization step. 

     Another reason behind this weighting can be the 

fact that noise tend to affect more the high 

frequency components, hence, this weighting will 

reduce the sensitivity of the matching function to the 

noises too. 

     Using this matching function defined above, its 

equivalent in transformed domain for the full-search 

algorithm can be developed. 

     Suppose that the current block is known by its 

2D-DCT transform Y. The search area cover four 

adjacent blocks (see Figure 1). All 2D-DCT 

transforms of these four blocks are known as TA, TB, 

TC and TD. The result is a motion vector (vx,vy) 

which gives the relative displacement of the best 

matched block from the reference frame. 

 

1. ∑∑
−

=

−

=

=
1

0

1

0
,

,
N

i

N

j
ji

ji

h

y
fmin , vx=-1, vy=-1 

2. For dx=0:8 (allowed in fractionar steps) 

 2.1. For dy=0:8 (allowed in factionary steps) 

  2.1.1. determine 2D-DCT transform of 

   the candidate block X(dx,dy) using 

   equations (11) and (12) 

  2.1.2. evaluate the match function: 

   ( )YdydxXFf ),,(=  using equation (13) 

  2.1.3. if f < fmin then 

   2.1.3.1. fmin = f 

   2.1.3.2. vx = dx 

   2.1.3.3. vy = dy 

     At the end, vx and vy will contain the horizontal 

and vertical components of the motion vector. If vx 

and vy will have -1 value, this means that no 

candidate block from the search area would offer a 

smaller coefficients energy of the difference than the 

actual coefficients of the current block. 

 

 

4   Conclusion 

     The method for motion estimation in DCT 

transformed domain has some advantages over 

classic methods: 

• if the video material is already compressed with 

a DCT based algorithm (like MJPEG or DV25) 

it is not necessary to perform conversions from 

transformed to bitmap domain before motion 

estimation and then another conversion back for 

the difference block; 

• this method allows to test candidate blocks 

shifted by non-integer amount of pixels, hence 

pixel interpolation and searching with greater 

resolution are avoided; 

• it allows using of some match functions more 

appropriated to the motion compensation step. 

     It can be noticed that number of operations 

needed by the full-search algorithm version 

presented here is much bigger than for classic 

version. This fact leads to the need of extending the 

research for finding efficient versions of the search 

step. 

     Another weak point of this method is the 

presence of the errors in the non-integer 

displacement cases. However, the tests showed that 

the magnitude of these errors is small enough to be 

considered important. 
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