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Abstract: Time–frequency distributions (TFDs) are computationally costly to compute. We address this problem

by presenting algorithms to reduce the computational load for computing TFDs. Before we can compute the TFDs,

however, we first must define a discrete version of the TFD. Defining a discrete TFD (DTFD) is, unfortunately,

not a straightforward process—for example, a popular DTFD definition does not satisfy all desirable mathematical

properties that are inherent to the continuous TFD. In this paper, we define a new DTFD definition, the DTFD-

C. This definition is closely related to another DTFD definition which we recently proposed, the DTFD-B. The

DTFD-B and DTFD-C satisfy all desirable properties. We provide algorithms for both these definitions and show

that the DTFD-C requires only 50% of the computational complexity and memory required to compute the DTFD-

B.

Key–Words: Discrete time–frequency distributions (DTFD), discrete Wigner–Ville distributions (DWVD),

discrete-time signal processing (DSP), time–frequency signal analysis, algorithms, computational load, fast Fourier

transforms (FFTs)

1 Introduction

The signal analyst requires high performance at a low

cost. Time–frequency methods provide high perfor-

mance analysis tools for nonstationary signals [1–4],

which are signals that have time-varying frequency

characteristics. But, unfortunately, using time–

frequency methods comes at a cost—a computational

cost. Time–frequency methods use time–frequency

distributions (TFDs)—two-dimensional functions that

represents the time–frequency domain. To compute

these TFDs requires a large computational load in

comparison to the one-dimensional time or frequency

methods.

In this paper, we present simple algorithms to re-

duce the computational cost of TFDs. Because a dig-

ital device, such as a computer, requires a discrete

TFD (DTFD), we first need to define a discrete ver-

sion of the continuous TFD before we design the al-

gorithms. Ideally, the DTFD should satisfy all desir-

able mathematical properties of the continuous distri-

bution. (These desirable properties are a set of com-

monly presented properties [5–9].)

1.1 Findings and Scope of Paper

We start this paper with a review of two existing

DTFDs definitions: a popular DTFD definition [10]

which we call the DTFD-A; and a definition which

we recently proposed [9], the DTFD-B. In addition,

we define a new DTFD definition, the DTFD-C. Next,

we compare the properties of the three definitions—

the DTFD-C and DTFD-B satisfy all desirable prop-

erties. Then, we present algorithms for the DTFD-C

and DTFD-B. Finally, we look at the computational

load for each algorithm and show that the DTFD-C

requires only 50% of the computational complexity

and memory required to compute the DTFD-B.

In this paper, we consider only the class of

quadratic real-valued TFDs—a popular class of TFDs

[11]. We do not consider the AF-GDTFD definition

[8] because it contains aliasing [9]. Also, we assume

that the signal under analysis is real valued.

2 Review of Existing Definitions

Any quadratic TFD can be expressed in terms of

the Wigner–Ville distribution Wz(t, f) and time–
frequency smoothing kernel γ(t, f) as

ρz(t, f) = Wz(t, f) ∗
t
∗
f

γ(t, f) (1)

where the symbol ∗ represents the convolution oper-
ation. The Wigner–Ville distribution (WVD) of s(t)

WSEAS TRANSACTIONS on SIGNAL PROCESSING
John M. O’ Toole, Mostefa Mesbah 
and Boualem Boashash

ISSN: 1790-5052 320 Issue 5, Volume 4, May 2008



is

Wz(t, f) =

∫

∞

−∞

z(t + τ
2 )z∗(t − τ

2 )e−j2πτfdτ

where z(t) is the analytic associate s(t) [11].

Because the TFD ρ(t, f) is a function of two vari-
ables, t and f , we can transform the TFD through four
different domains using the Fourier transform as

Wz(t, f) ∗
t
∗
f

γ(t, f) - Kz(ν, f) ∗
f
G(ν, f)

Kz(t, τ) ∗
t
G(t, τ)

6

- Az(ν, τ)g(ν, τ)

6 (2)

where the variables (t,τ ), (ν,τ ), (ν,f ), and (t,f ) rep-
resent the time–lag, doppler–lag, doppler–frequency,

and time–frequency domains, respectively; the arrows

in (2) represent Fourier transforms. Thus we can im-

plement the time–frequency convolution as a multi-

plication in the doppler–lag domain. We shall use this

approach to generate the DTFD.

To define a DTFD, we therefore require a dis-

crete WVD (DWVD) and a discrete kernel. Because

the kernel is independent of the signal, we can sam-

ple the kernel is any of the four domains, assuming

a closed-form expression for the kernel exists in that

domain. Also, if we assume that the kernel is time

and frequency bandlimited, then the discrete kernel

will be alias free. The difficult arises, however, when

forming the DWVD, as we cannot sample the WVD

in the time–frequency domain; instead, we must form

the DWVD from the discrete-time signal. Before we

review DTFD definitions, we start with a review of

DWVD definitions.

2.1 Discrete Wigner–Ville Distributions

To ensure that the discrete WVD (DWVD), and there-

fore the DTFD, is alias free, we transform the dis-

crete N -point real-valued signal s(nT ) to the 2N -
point complex-valued signal y(nT ) using the method
in [12]. This new signal y(nT ) has the form

y(nT ) = 0, forN ≤ n ≤ 2N − 1, (3)

Y ( k
2NT ) ≈ 0, forN ≤ k ≤ 2N − 1,

where Y (k/2NT ) is the discrete Fourier transform of
y(nT ). We exploit the property of y(nT ) in (3) in the
algorithms of Section 5.

There are two popular DWVD definitions, which

we name the DWVD-A and the DWVD-B.

1

2

1 2

n (= t/T )

m [= τ/(2T )]

(a)

2

4

2 41 3

1

3

n (= 2t/T )

m (= τ/T )

(b)

Figure 1: Different time–lag (t, τ) sampling grids
with sampling period T : (a) discrete grid (nT, 2mT )
and (b) discrete grid (nT/2, mT ).

2.1.1 DWVD-A

Claasen and Mecklenbräuker [5] sampled the time–

lag function K(t, τ) in time t with sample frequency
1/T and in lag τ with sample frequency 1/2T . This
methods uses the discrete grid shown in Fig. 1a to ob-

tain the discrete function KA(nT, 2mT ). This dis-
crete function, in terms of the discrete signal y(nT ),
is

KA
y (nT, 2mT ) = y((n + m)T )y∗((n − m)T ).

To compute the DWVD, we simply discrete

Fourier transform (DFT)KA
y (nT, 2mT ):

WA
y (nT, k

2NT ) =
N−1
∑

m=0

KA
y (nT, 2mT )e−jπmk/N

for n, k = 0, 1, . . . , N − 1.

2.1.2 DWVD-B

Chan [13] proposed another approach for sampling

the time–lag function. The method uses a nonuni-

form sampling grid, illustrated in Fig. 1c. The resul-

tant time–lag functionKB(nT/2, mT ), for even–odd
values of n, is

Ky(nT, 2mT ) = y((n + m)T )y∗((n − m)T )

Ky((n + 1
2)T,(2m + 1)T )

= y((n + m + 1)T )y∗((n − m)T ).
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The DWVD is the DFT of time–lag function:

WB
y (nT

2 , k
4NT ) =

2N−1
∑

m=0

KB
y (nT

2 , mT )e−jπmk/(2N)

for n, k = 0, 1, . . . , 2N − 1.
The array size for the two DWVD definitions dif-

fer: DWVD-A is anN byN array whereas DWVD-B
is an 2N by 2N array. Hence the DWVD-B is more
computational expensive to compute. The advantage

of DWVD-B, however, is that this definition satisfies

more desirable properties than DWVD-A satisfies [6].

The two DWVDs are closely related [6, 14]:

DWVD-A is a decimated, in time and frequency, ver-

sion of DWVD-B, as

WA
y (nT, k

2NT ) = WB
y (2nT

2 , 2k
4NT ). (4)

We proposed another DWVD definition [7], the

DWVD-C, similar to the preceding relation:

WC
y (nT

2 , k
2NT ) = WB

y (nT
2 , 2k

4NT ).

DWVD-C also satisfies all the desirable properties

that DWVD-B satisfies [7].

2.2 Discrete Time–Frequency Distributions

2.2.1 DTFD-A

The method to form the DTFD-A, sometimes called

the generalised DTFD, is as follows [10]. First, de-

fine the discrete doppler–lag kernel gA(l/NT, 2mT )
for l, m = 0, 1, . . . , N − 1, which we represent as
γA(nT, k/2NT ) in the time–frequency domain. Sec-
ond, form the DWVD-B from y(nT ). Third, convolve
the time–frequency kernel with the DWVD:

ρA
y (nT, k

2NT ) = WA
y (nT, k

2NT ) ⊛
n

⊛
k

γA(nT, k
2NT ).

for n, k = 0, 1, . . . , N − 1. The symbol ⊛ represents
the circular convolution operation.

2.2.2 DTFD-B

To form the DTFD-B, we do as follows [9]. First, de-

fine the discrete doppler–lag kernel gB(l/2NT, mT )
for l, m = 0, 1, . . . , 2N − 1, which we represent
as γB(nT/2, k/4NT ) in the time–frequency domain.
Second, form the DWVD-B from y(nT ). And finally,
convolve these two functions:

ρB
y (nT

2 , k
4NT ) = WB

y (nT
2 , k

4NT ) ⊛̄
n
⊛̄
k

γB(nT, k
2NT ).

for n, k = 0, 1, . . . , 2N − 1. The symbol ⊛̄ repre-
sents a modified circular convolution operation that

compensates for the nonstandard periodic form of the

DWVD-B [6, 9].

3 The DTFD-C Definition

We propose another DTFD definition by decimating

DTFD-B by a factor of two in the frequency direction.

Thus, we express this new DTFD definition, which we

call the DTFD-C, as

ρC
y (nT

2 , k
2NT ) = ρB

y (nT
2 , 2k

4NT ). (5)

4 Properties

Here we present a set of properties, inherent to the

continuous TFD, which the discrete definition should,

ideally, satisfy [5–8, 11]. We define this set of proper-

ties for the DTFD-B. We can simply modify the prop-

erties for the other two DTFD definitions.

• Time–frequency covariance: A signal of the
form

y(nT ) = x((n − n0)T )e jπk0n/N

produces the following shift in the DTFD:

ρB
y (nT

2 , k
4NT ) = ρB

x ((n−2n0)
T
2 , (k−2k0)

1
4NT ).

• Timemarginal: By summing along the frequency
direction in the DTFD, we get the instantaneous

power of the signal:

2N−1
∑

k=0

ρB
y (2nT

2 , k
4NT ) = |y(nT )|2 .

• Frequency marginal: By summing along the time
direction in the DTFD, we get the energy spec-

trum:

2N−1
∑

n=0

ρB
y (nT

2 , 2k
4NT ) =

1

2N

∣

∣Y ( k
2NT )

∣

∣

2
.

• Time support: If the time-domain signal

y(nT ) = 0, for n < 2n1 and n > 2n2,

then

ρB
y (nT

2 , k
4NT ) = 0, for n < 2n1 and n > 2n2.

• Frequency support: If the frequency-domain sig-
nal

Y ( k
2NT ) = 0, for k < 2k1 and k > 2k2,

then

ρB
y (nT

2 , k
4NT ) = 0, for k < 2k1 and k > 2k2.
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• Instantaneous frequency: The periodic first mo-
ment [5] [15, pp. 463] of the DTFD, with respect

to frequency, is equal to the instantaneous fre-

quency of the signal:

arg

[

2N−1
∑

k=0

ρB(2nT
2 , k

4NT )e jπk/N

]

mod 2π

= 2

[

ϕ(n + 1) − ϕ(n − 1)

2
mod π

]

.

We assume that the signal y(nT ) has the form

y(nT ) = A(n)e jϕ(n).

• Group delay: The periodic first moment of the
DTFD, with respect to time, is equal to the group

delay of the signal:

arg

[

2N−1
∑

n=0

ρB(nT
2 , 2k

4NT )e−jπn/N

]

mod −2π

=
θ(k + 1) − θ(k − 1)

2
mod − π.

We assume that the spectral signal Y (k/2NT )

has the form Y (k/2NT ) = a(k)e jθ(k).

• Moyal’s formula: This property, also know as
unitarity or inner-product invariance, states that

2N

2N−1
∑

n=0

2N−1
∑

k=0

ρB
x (nT

2 , k
4NT )ρB

y (nT
2 , k

4NT )

=

∣

∣

∣

∣

∣

N−1
∑

n=0

x(nT )y(nT )

∣

∣

∣

∣

∣

2

.

• Signal recovery: We can recover the time-
domain signal, up to a constant phase, from the

DTFD:

2N−1
∑

k=0

ρB
y (nT

2 , k
4NT )e jπkn/2N = y(nT )y∗(0)

Both the DTFD-C and the DTFD-B satisfy all

these properties; the DTFD-A does not satisfy all

these properties [8], as we detail in Table 1.

5 Algorithms

To compute the DTFDs definitions efficiently, we

implement the two convolutions operations in (1)

using the discrete Fourier transform (DFT) method

[10,16,17]. The steps are as follows, using the DTFD-

A definition as an example. To simplify the notation

we use sequence notation wherever possible—for ex-

ample, we write ρA[n, k] instead of ρA(nT, k/2NT ).

Table 1: Properties for the three DTFD definitions.

DTFD-A DTFD-C DTFD-B

nonnegative X X X

TF covariance X X X

time marginal X X X

freq. marginal X X

time support X X X

freq. support X X X

IF X X X

group delay X X

Moyal’s formula X X

signal recovery X X

Legend: IF: instantaneous frequency; TF: time–

frequency

1. Generate the time–lag functionK[n, m] from the
signal y[n].

2. Obtain the time–lag functionR[n, m] as follows:

R[n, m] = IDFT
l→n

{

DFT
n→l

{K[n, m]} g[l, m]

}

(6)

where g[l, m] is the doppler–lag kernel and IDFT
represents the inverse DFT.

3. Form the DTFD from the relation

ρA
y [n, k] = DFT

m→k
{R[n, m]} . (7)

Fig. 2 illustrates this simple process.

In the algorithms for DTFD-C and DTFD-B, we

use two different discrete representations for the time–

lag function because this function has a nonuniform

discrete grid. From Fig. 3a, we can see that the

nonuniform gird R(nT/2, mT ) is not in a suitable
form for storage in an array. Thus, we have two op-

tions: either we shift the sample points at R((n +
1/2)T/2, (2m + 1)T ), highlighted as the grey points
in Fig. 3a, across in the lag direction by T or we
shift these sample points down in the time direction by

T/2. We call the function shifted in time the shifted-
down array Rd[n, m] and the function shifted in lag
the shifted-across array Ra[n, m]—Fig. 3 illustrates
this process. Note that both arrays contain the same

sample points but are ordered differently. Also, we

define the variable Nh, which we use in the following

algorithms, as

Nh = ⌈N/2⌉.
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3

1

2

4

1 2 3 4

5

5

t (= nT/2)

τ (= mT )

(a)

1

2

1 2 4 53

n

m

(b)

1

2

4

5

1 2

3

n

m

(c)

Figure 3: Two ways to store the time–lag function R(nT/2, mT ) as an array. (a) R(nT/2, mT ), (b) the shifted-
down array Rd[n, m], and (c) the shifted-across array Ra[n, m].

y[n]

FormK[n, m]

DFT

DFT

IDFT

A[l, m]

g[l, m]

R[n, m]

ρA
y [n, k]

n → l

l → n

m → k

Figure 2: Flowchart for computing the DTFD-A.

where the function ⌈x⌉ returns an integer larger than
or equal to x.

5.1 DTFD-A Algorithm

Reilly and Boashash presented an algorithm for the

DTFD-A [10]. Because this algorithm forms the basis

of the algorithms for the DTFD-C and DTFD-B, we

outline it here.

The algorithm takes advantage of the conju-

gate symmetrical property of the time–lag function

R[n, m]. There are two benefits to this. First, we can
halve the number of DFTs required to generate the

function R[n, m], described in (6), by only comput-
ing this time–lag function for positive lag m values.
We then recover the negative values from the conju-

gate symmetry [10].

Second, because the DTFD is real valued, we can

reduce the number of DFTs in (7). We may use an

inverse real-valued fast Fourier transform (FFT) algo-

rithm to implement these DFT operations [18]. An

alternative to the inverse real-valued FFT method is

a method that uses a real-valued FFT with minimal

computational overhead [7]. The advantage of the lat-

ter method is that real-valued FFTs are more readily

available in signal processing software packages com-

pared with the inverse real-valued FFT algorithms.

5.2 DTFD-C Algorithm

In this implementation, we reduce the computational

load by two procedures. First, we compute the time–

lag function R[n, m] for positive lag values only, as
we previously described. Second, we use the real

value property of the DTFD to further reduce the

computational load when going from the time–lag

to the time–frequency domain. For this transforma-

tion, we must employ a new technique because, unlike

the function for the DTFD-A, the time–lag function
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for the DTFD-C is not conjugate symmetrical. This

new technique is similar to one we proposed for the

DWVD-C [7]. We shall now detail these two proce-

dures.

Lets first examine the characteristics of the

shifted-across functionRa[n, m] for the DTFD-C. For
even n values, the function is conjugate symmetri-
cal with respect to the lag axis—that is, Ra[2n, m] =
(Ra)∗[2n, N−m]. Thus, for even n values we can im-
plement the DFT operations efficiently, as mentioned

in Section 5.1.

A problem arises, however, when n is odd, as
the DFT of Ra[2n + 1, m] is complex valued because
Ra[2n + 1, m] 6= (Ra)∗[2n + 1, N − m] [7]. Thus,
we need to modulate the output of the DFT to ensure

a real-valued DTFD [6]:

ρC
y [2n+1, k] = e−jπk/NDFT

m→k
{Ra[2n + 1, m]} . (8)

Unlike for n even, the computational load cannot be
reduced because the DFTs in (8) produces a complex

valued output.

To implement (8) efficiently, we do the following.

We rewrite (8) as

ρC
y [2n + 1, k] =

[

cos2(πk/N)

sin(πk/N)
+ sin(πk/N)

]

· ℑ

(

DFT
m→k

{Ra[2n + 1, m]}

)

(9)

for k = 1, . . . , N − 1, where the function ℑ (c) re-
turns the imaginary part of c. Next, we define a func-
tion R̄a[n, m] so that the DFT of R̄a[n, m] equals the
imaginary part of the DFT of Ra[n, m]—that is,

DFT
m→k

{

R̄a[n, m]
}

= ℑ

(

DFT
m→k

{Ra[2n + 1, m]}

)

where R̄a[n, m] is a function of Ra[n, m]. Therefore,
because the DFT of R̄a[n, m] has a real-valued output,
we can reduce the computational load.

When k = 0, equation (9) is undefined. For this
special case, we simply sum along the lag values:

ρC
z [2n + 1, 0] =

N−1
∑

m=0

Ra[2n + 1, m].

The following algorithm details the method. In this

algorithm, we use the shifted-down array R̄d[n, m],
rather than the shifted-across array R̄a[n, m], so we
can easily integrate it with the first part of the algo-

rithm, as we shall see.

• Input: 2N -point analytic signal y[n] and N by

(N + 1) kernel gC[l, m].

• Output : 2N by N DTFD array ρC
y [n, k].

1. Form the time–lag array Kd[n, m] from the sig-
nal y[n]:

Kd[n, 2m] = y[n + m]y∗[n − m]

Kd[n, 2m + 1] = y[n + m + 1]y∗[n − m]

for n = 0, 1, . . . , N − 1 and m = 0, 1, . . . , Nh.

The array Kd[n, m] is the shifted-down version
of the function K(nT/2, mT ), as illustrated in
Fig. 3.

2. DFT Kd[n, m] to the doppler–lag domain to
obtain the discrete ambiguity function (DAF)

A[l, m]:

A[l, m] = DFT
n→l

{

Kd
z [n, m]

}

form = 0, 1, . . . , Nh.

3. Multiply by the kernel, for all l, m values:

S[l, m] = A[l, m]gC[l, m].

4. IDFT back to the time–lag domain:

Rd[n, m] = IDFT
l→n

{S[l, m]}

form = 0, 1, . . . Nh.

5. Recover the negative lag values from the positive

ones:

Rd[n, 2N − 2m] = (Rd)∗[n, 2m]

form = 1, 2, . . . , Nh − 1 and

Rd[n, 2N − 2m − 1] = (Rd)∗[n, 2m + 1]

form = 0, 1, . . . , Nh − 1.

6. Finally, transform the time–lag function

Rd[n, m] to the time–frequency domain to
obtain the DTFD. Do as follows for n even and
n odd:

(a) for n even,

ρC[2n, k] = DFT
m→k

{

Rd[n, 2m]
}

(b) for n odd, do the following:

i. Let

h[k] =
cos2(πk

N )

sin(πk
N )

+ sin(πk
N )

for k = 1, 2, . . . , N − 1, and h[k] = 0
for k = 0.

WSEAS TRANSACTIONS on SIGNAL PROCESSING
John M. O’ Toole, Mostefa Mesbah 
and Boualem Boashash

ISSN: 1790-5052 325 Issue 5, Volume 4, May 2008



ii. Over n = 0, 1, . . . , N − 1, let

R̄d[n, 0] = ℑ
(

Rd[n, 0]
)

and

R̄d[n, m] =
1

2j

(

Rd[n, 2m + 1]

− (Rd)∗[n, 2N − 2m − 1]
)

,

for m = 1, 2, . . . , Nh. Then, using

the conjugate symmetry of R̄d[n, m]
recover the negative lag values:

R̄d[n, m] = (R̄d)∗[n, 2N − 2m − 1],

form = Nh + 1, Nh + 2, . . . , N − 1.

iii. DFT to the time–frequency domain

and multiply by constant h[k]:

ρC
y [2n+1, k] = DFT

m→k

{

R̄d[n, m]
}

h[k].

iv. Do for frequency sample k = 0,

ρC
y [2n + 1, 0] =

N−1
∑

m=0

Rd[n, 2m + 1]

5.3 DTFD-B Algorithm

The DTFD-B algorithm is closely related to the

DTFD-C algorithm with one major difference—the

time–lag function R(t = nT/2, τ = mT ) extends in
the lag direction from |τ | ≤ 2NT , unlike the DTFD-
A or DTFD-C time–lag functions which extend only

from |τ | ≤ NT . They have different regions of sup-
port because the time–lag function of the DWVDs as-

sociated with the DTFD definitions are different. We

show these regions of support in Fig. 4.

To reduce the computational load, we compute

the time–lag function R[n, m] in the lag direction for
m = 0, 1, . . . , N − 1, which corresponds to the con-
tinuous region 0 ≤ τ ≤ NT . Then, we recover the
lag region NT < τ ≤ 2NT from the initial time–lag
function. To do so, we make use of the relation [6,10]

R(nT
2 , (2N − m)T ) = R∗((n − N)T

2 , mT ) (10)

We now present the algorithm.

• Input: 2N -point analytic signal y[n] and 2N by
(N + 1) kernel gB[l, m].

• Output: 2N by 2N DTFD ρB
y [n, k].

1. Form the time–lag function Kd[n, m] from the
signal y[n]:

Kd[n, 2m] = y[n + m]y∗[n − m]

Kd[n, 2m + 1] = y[n + m + 1]y∗[n − m]

for n = 0, 1, . . . , N − 1 and

Kd[n, m] = 0

for n = N, N + 1, . . . , 2N − 1. The 2N by
(N + 1) array Kd[n, m] is a shifted-down ver-
sion of version of the function K(nT/2, mT ),
as illustrated in Fig. 3b.

2. DFT Kd[n, m] to the doppler–lag domain to ob-
tain the DAF A[l, m]:

A[l, m] = DFT
n→l

{

Kd
z [n, m]

}

form = 0, 1 . . . , N .

3. Multiple the DAF by the kernel, for all l, m val-
ues:

S[l, m] = A[l, m]gB[l, m].

4. IDFT back to the time–lag domain:

Rd[n, m] = IDFT
l→n

{S[l, m]}

form = 0, 1 . . . , N .

5. Expand the time–lag function in the positive lag

direction using the relation in (10),

Rd[n, 2N − m] = (Rd)∗[n − N, m]

form = 0, 1, . . . , N −1 and n = 0, 1, . . . , 2N −
1. The array Rd[n, m] is now 2N by (2N + 1).
This expansion process is equivalent to expand-

ing the continuous function R(t, τ) from 0 ≤
τ < NT to 0 ≤ τ < 2NT .

6. Limit Rd[n, m] from n = 0, 1, . . . , 2N − 1 to
n = 0, 1, . . . , N − 1; the array Rd[n, m] is now
N by (2N + 1).

7. Recover the negative lag values from the positive

ones:

Rd[n, 4N − 2m] = (Rd)∗[n, 2m],

form = 1, 2, . . . , N − 1 and

Rd[n, 4N − 2m − 1] = (Rd)∗[n, 2m + 1],

form = 0, 1, . . . , N − 1. The array Rd[n, m] is
now N by 4N .

8. Finally, transform the time–lag function

Rd[n, m] to the time–frequency domain to
obtain the DTFD. Do as follows for n even and
n odd:
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Figure 4: Region of support for time–lag (t, τ) functions of the (a) DWVD-A and DWVD-C, and (b) DWVD-B.
The functions outside the grey shaded area are zero.

(a) for n even,

ρB[2n, k] = DFT
m→k

{

Rd[n, 2m]
}

(b) for n odd, do the following:
i. Let

h[k] =
cos2( πk

2N )

sin( πk
2N )

+ sin( πk
2N )

for k = 1, 2, . . . , 2N−1, and h[k] = 0
for k = 0.

ii. Over n = 0, 1, . . . , N − 1, let

R̄d[n, 0] = ℑ
(

Rd[n, 0]
)

and

R̄d[n, m] =
1

2j

(

Rd[n, 2m + 1]

− (Rd)∗[n, 4N − 2m − 1]
)

for m = 1, 2, . . . , N . Then, using the
conjugate symmetry of R̄d[n, m], re-
cover the negative lag values:

R̄d[n, m] = (R̄d)∗[n, 2N − 2m − 1],

form = N + 1, N + 2, . . . , 2N − 1.

iii. DFT to the time–frequency domain

and multiply by constant h[k]:

ρC
y [2n+1, k] = DFT

m→k

{

R̄d[n, m]
}

h[k].

iv. Do for frequency sample k = 0,

ρC
y [2n + 1, 0] =

2N−1
∑

m=0

Rd[n, 2m + 1]

6 Computational Load

We now quantify the computational complexity and

memory required by each algorithm. We define the

term computational complexity as the total number of

additions and multiplications used by the algorithm.

We look only at the number of DFTs used by each al-

gorithm as this accounts for most of the computational

complexity [10, 17].

We make three assumptions. First, we assume

that an N -point DFT uses cN log2 N real multipli-
cations and real additions. The constant c is spe-
cific to the type of DFT algorithm. Second, we as-

sume that the complexity for the DFT of a conjugate-

symmetrical signal is equal to half the complexity of

a DFT for complex-valued signal [7, 18]. Third, we

assume that 2Nh ≈ N .
We present the results in Table 2 where we can see

that there is a two-fold increase in computational com-

plexity between the three definitions. Specifically, the

computational load for the DTFD-C is twice that for

the DTFD-A; the computational load for the DTFD-

B is twice that for the DTFD-C. Fig. 5 displays this

relation.

7 Conclusion

The DTFD-C and DTFD-B satisfy all desirable prop-

erties, whereas the DTFD-A does not. The DTFD-

C requires only half of the computational complexity

and memory to compute compared with that for the

DTFD-B. Hence, the newly proposed definition, the

DTFD-C, has the clear advantage over the other two

definitions: it provides the signal analyst with a high
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Figure 5: Computational complexity for the three algorithms. We define computational complexity as the total

number of additions and multiplications used by the algorithm and N is the signal length. The plot is on a log–log
scale.

Computational Memory
complexity (array size)

DTFD-A 6N2
h log2 N N by N

DTFD-C 12N2
h log2 N 2N by N

DTFD-B 24N2
h log2 2N 2N by 2N

Table 2: Computational load for the three DTFD def-

initions.

performance tool, by retaining all useful properties, at

a low (computational) cost.
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