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Abstract: - Heart Rate Variability (HRV) is widely used as an index of human autonomic nervous activity. 
HRV is composed of two major components: high frequency respiratory sinus arrhythmia (RSA) and low 
frequency sympathetic components. The ratio of LF/HF is viewed as an index of human autonomic balance, so 
the low frequency sympathetic and the high frequency parasympathetic components of an ECG R-R interval 
must be adequately separated. Adaptive filters can isolate the low frequency, enabling the attainment of more 
accurate heart rate variability measures. For the raised case, this paper suggests an efficient (short size) case 
based model and illustrates its performance in adaptive filtering of heart rate signal. This method renders 
analogous results to what a higher order conventional FIR model adaptive filter may yield. The strength of the 
proposed  model comes out of its ability in tracking the phase difference variation between the reference and 
the main signal of an adaptive filtering system.  This capability, then is shown, that leads to the increase in the 
convergence rate of the LMS algorithm in HRV adaptive filtering. Simulation results supporting the proposed 
concept are presented. 
 
 
Key-Words: - Adaptive filter, All pass filter, FIR model, First order equalizer, HRV filtering, Rate of conver-

gence, Least Mean Squares. 
 
 
1 Introduction 
Hear rate variability (HRV) is a measure of altera-
tions in heart rate derived by measuring the 
variation of RR intervals. HRV parameters have 
been shown to aid assessment of cardiovascular 
disease [1]. Heart rate is influenced by both sympa-
thetic and parasympathetic (vagal) activity. The 
influence and balance of both branches of the auto-
nomic nervous system (ANS) have been termed 
sympathovagal balance and is reflected in the RR 
interval changes. A low frequency (LF) component 
of HRV has been proposed as reflecting both sym-
pathetic and parasympathetic effects on the heart 
and generally occurs in a band between 0.04 Hz and 
0.15 Hz.  The influence of vagal efferent modulation 
of the sinoatrial node can be seen in the high fre-
quency band (HF), loosely defined between 0.15 
and 0.4 Hz and known as respiratory sinus arrhyth-
mia (RSA) because it occurs at the respiratory 
frequency. The magnitude of this high frequency 
band has been demonstrated to be associated with 
the extent of cardiac parasympathetic activity in 
pharmacological autonomic blockade studies [3], 
respiratory sinus arrhythmia, cardiac vagal tone, and 
respiration: within and between-individual relations. 

The ratio of power in the LF and HF components 
(LF/HF) has been used to provide an estimate of 
cardiac sympathovagal balance, although this meas-
ure remains indispute [2]. Nevertheless, several 
studies have indicated that when considered jointly, 
HF and LF HRV may provide useful information 
about both sympathetic and parasympathetic influ-
ences upon the cardiac cycle [4].   

Spectral HRV is a measure of power in various 
frequency bands. To determine the RSA amplitude 
over a period of time, frequency domain, time 
domain and phase domain approaches have been 
analyzed [6].  Presented in [5] is an adaptive filter 
that separates the LF and HF components and there-
fore yields distinct spectral analysis measures for 
each band. The suggested order for the used FIR 
filter is 20.  In this paper an adaptive filter with a 
new model structure, with just a few parameters, is 
introduced which behaves similar to the higher 
order FIR model adaptive filter in facing RSA 
filtering. The reason behind the power of this model 
is its capability in offering a higher rate of conver-
gence to the adaptive algorithm. When the unwanted 
and the main signal have close frequency bands, the 
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algorithm with higher rate of convergence perform 
superior to the other contestant’s algorithms.  

In section 2 the high frequency component of 
HRV signal is briefly analyzed. Section 3 embodies 
a short description of adaptive filter and the basis of 
the proposed model. Section 4 contains simulation 
results and finally, conclusion comes in section 5. 

 
 

2 HF HRV signal analysis 
In this section, the process of respiratory pattern 
effect on HRV is investigated. Understanding the 
relationship between the breathing signal and the 
high frequency parasympathetic components of 
HRV surely directs us to finding a better and com-
putationally efficient method for the decomposition 
of HRV into its low and high frequency compo-
nents.  

In the recent years, there has been a lot of of re-
search efforts reagarding heart rate variability 
(HRV) mechanisms. A search, made in PubMed, 
reported more than 4,000 citations that both linear 
and nonlinear HRV measures had been used [11]. 
Mostly, linear estimates, which include various time 
and frequency domain indices, was used for the 
HRV measurement. However, a few non-linear 
indices of HRV had also been proposed [11]. 

HRV signal contains 3 frequency bands [11]: 
a) A very low frequency (VLF) band located in 

the less than 0.04 Hz (with dubious physiol-
ogic significance). 

(b) A low frequency (LF) band located in the 
0.04-0.15 Hz range (which derives from short 
term regulation of blood pressure). 

c) A high frequency (HF) band with a very large 
range from 0.15-0.40 Hz (reflecting momen-
tary respiratory influences on the heart rate or 
respiratory sinus arrhythmia) 

The respiratory parameters that can affect HRV 
estimates, include respiratory frequency, tidal vol-
ume, end tidal partial pressure of carbon di-oxide 
(PETco2), the time ratio of expiration/inspiration 
and respiratory dead space [11]. Since breathing 
through an oro-nasal mask or mouthpiece can also 
affect breathing pattern, it can be extrapolated that it 
will also influence HRV estimates [11]. 
 
 
2.1 HF HRV Frequency 
Simultaneous oscillation of heart rate (HR) and 
blood pressure (BP) at the breathing frequency was 
first observed by Hales in 1733. The respiration 
related fluctuation of HR has been named “respira-
tory sinus arrhythmia” (RSA), and it manifests as 

increasing HR upon inspiration and decreasing HR 
upon expiration [7]. On the other hand, parallel 
oscillation of RR intervals with nerve activity in the 
absence of lung movements have also been reported 
[8] that indicates the association between the central 
respiratory drive and respiratory-related cardiovas-
cular oscillation, thus, it would be wise to regard 
HRV oscillation even in the absence of lung move-
ment. 

Related to the importance of respiration, the 
logical conclusion is that once the actual breathing 
rate is known, detection of the HF power should be 
centered around the fundamental respiration fre-
quency and not a default fixed frequency which is 
the case with traditional HRV analysis. This also 
implies that breathing pattern (Vt) is a good signa-
ture for removal of HF component from HRV. 

 Noting that, since the measured breathing pat-
tern signal is not a pure sinusoid and contains 
harmonics of its fundamental frequency, for having 
an appropriate reference signal, the Vt fundamental 
frequency has to be extracted. This is also true for 
the measured RR interval signal containing RSA 
and its fundamental frequency harmonics. 

 
• Cardiac aliasing 
There is yet another mechanism reported to be 
involved in mediating respiratory fluctuations of 
heartbeat. [12] observed that if a special relationship 
exists between mean heart rate (fHR) and mean 
frequency of breathing (fB) such that fB is greater 
than 1/2 fHR, RSA can be observed in a frequency 
range which is lower than the frequency of breath-
ing. The mathematical fundamentals of this 
physiological phenomenon are the same as those for 
the ‘aliasing’ effect in signal sampling [11]. How-
ever, the rate of breathing showing this 
phenomenon, is actually higher than the normal one 
and this can only happen in special test procedures.  
 
• Low frequency component 
Recently, independence of low-frequency rhythms 
from respiratory activity has also been reported [11]. 
 
• Respiratory frequency change 
Frequency modulation breathing yields a large 
LF/HF index as predicted from the theoretical 
analysis and from simulated data [13]. Free breath-
ing yields even larger values for the LF/HF index 
than FM breathing, which is consistent with the 
large variability in breathing patterns when subjects 
are allowed to breathe at will [13]. This result means 
that HF power spectrum is widened by variation in 
breathing frequency. 
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2.2 RSA Amplitude 
 
• Respiratory frequency  
Despite many past studies, the precise mechanisms 
of respiration-induced SA are still debated [11]. 
However, the RSA amplitude is markedly affected 
by respiratory frequency [15]. As the respiratory 
frequency decreases, the RSA amplitude increases 
to attain a maximum amplitude at 6min-1, and as the 
frequency goes below 6min-1, the amplitude de-
creases [15, 10]. 

In an experiment reported in [14], HF power at a 
respiration rate of 15 min-1

 was increased compared 
with the other rates. LF power, in turn, was rela-
tively small at that physiologic rate, so that the 
measurement of sympathetic/parasympathetic 
balance, was close to unity. Reductions of respira-
tion rate shifted the RSA into LF range or even 
below LF range. In accordance with this shift, LF 
power was increased whereas HF power was re-
duced, resulting in an increased ratio of HF to LF 
power. The respiration rate of 30 min-1

 was also 
associated with reduced HF power, because, at this 
rate, the RSA fells beyond the HF range. This led, 
together with the almost unchanged LF power, to a 
non-significant increase in LF/Hf, erroneously 
suggesting a changed sympatho-vagal balance.  LF 
power tended to decrease from below a rate of 6 
min-1. Once the RSA is equal to power in a fre-
quency band around respiratory rate, it can shift 
throughout the spectrum depending on the respira-
tion and thus, obscure the effects under 
investigation. This results are in good accordance 
with results from other studies that showed that the 
amount of the RSA-related power in the frequency 
domain varies with the respiration rate: it is high at 
low rates and starts to decrease at a rate of about 7 
min-1. 

Multiple regression analyses of RSA as criterion 
variable and respiratory measures (frequency and 
tidal volume) as predictors confirmed that RSA 
magnitude was significantly associated with respi-
ratory parameters during daily life [17]. 
 
• Tidal volume 
In a synchronized breathing-heart beat test, [9] 
reports that there are no statistically significant heart 
rate changes with the doubling of the tidal volumes, 
thus, implies that variations occurring with normal 
breathing should not seriously change HRV, 
whereas, [16] shows a change of about 20% in HRV 
with similar tidal volume changes. In another respi-
ratory frequency controlled experiment reported in 
[15], it is shown that there is an approximately 
linear relationship between RSA and tidal volume 

both in 0.1 Hz and 0.25 HZ which linearity is more 
consistent in 0.25 Hz  than in 0.1 Hz. The conclu-
sion is that there is a sort of relationship between 
tidal volume amplitude and RSA amplitude. 
 
• HRV amplitude versus CO2 
 It has been shown in conscious humans [7] that 
increase in RSA magnitude due to the direct effects 
of CO2 are independent of changes in tidal volume 
and breathing frequency [11]. 
 
• Relative timing of inspiration and expiration 
[18] showed that RSA could also be modulated by a 
third respiratory variable. In their experiment, 
examining the effect of a variation in inspiration and 
expiration times on heart rate variability, the sub-
jects were given controlled breathing with either 
short inspiration followed by long expiration or long 
inspiration followed by short expiration.  In trials 
with short inspiration followed by long expiration, 
RSA was significantly larger than in trials with long 
inspiration followed by short expiration [11]. 
 
• Respiratory dead space 
Result of an experiment suggests that the power 
spectrum of heart rate variability is strongly influ-
enced by the dead space induced by a face mask 
used in expiratory gas exchange analysis [11]. 
 
• Age 
The results of study in [9] showed a significant 
decrease in HRC with increasing age. 
 
 
2.3 RSA Phase shift 
The results of a synchronized respiration-heart beat 
experiment shows that there is a variable phase shift 
between the HF HRV signal and the respiratory 
signal (Vt) that changes when subject shifts from 
sitting position to supine position [9]. [10] also 
measures the frequency response of HF HRV versus 
the stimulus (breathing) and shows that phase varies 
monotonically with frequency and its value is ap-
proximately 0 at 6min-1. 
 

 
3 RSA adaptive filtering 
In the previous section discussed that, RSA reflects 
breathing pattern and RSA frequency varies as 
breathing pattern rate changes. Moreover, RSA 
amplitude is also a function of various variables, 
among them, the tidal volume. This condition makes 
adaptive filtering technique a fitting choice for the 
removal of RSA from HRV signal or in other word, 
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the separation of LF HRV and HF HRV from each 
other. In this way, RR interval is considered as the 
main signal and Vt plays the role of the reference 
signal in adaptive filtering system. 

To make the case ready for adaptive filtering, 
signal pre-processing should be undertaken. It 
should be noted that the measured breathing pattern 
has a mean and also is not a pure sinusoid and 
conveys some of its fundamental frequency har-
monics, while RSA frequency is believed to be 
related just to the fundamental frequency of Vt.  
Therefore, to have an efficient reference signal, in 
advance, these two unrelated components of the Vt 
signal have to be removed. Because of adequate 
distance between the harmonics band and the LF 
HRV band, a low order ordinary filter can handle 
the job. This may also be true for RSA that also 
conveys its harmonics, so the same band pass filter-
ing for the RR interval is also recommended.    

Another important condition that there exist is 
the variable phase shift between the RSA and the Vt 
that should be carefully regarded and its deteriorat-
ing impact on adaptive filter performance to be 
considered. 
 
 
3.1 FIR Model based adaptive filtering 
In order to separate the LF and HF components of 
an RR interval signal, prior to spectral analysis, the 
RR interval (RR) and the tidal volume (Vt) signals 
are applied to an adaptive filter with FIR model 
shown in Fig.1.   

 
In this, H(z) is an FIR tunable filter as follows:  

∑
−

=

−=
1N

0i
ti )ik(Vw)k(y  (1)

where W=[w0,…,wN-1] is its parameter vector, Vt(k) 
is input and y(k) is its output. 

For H(z) to be able to predict the trace of Vt ex-
isting in the input RR signal, namely RSA, the Least 
Mean Squares (LMS) algorithm is used.  The LMS 
algorithm renders a set of optimum coefficients, W, 

which are adjusted so that the mean squared error 
(MSE) between the RSA and the predicted one, y(k), 
is minimized.  

In LMS, the weights are updated on a sample-by-
sample basis as follows: 

[ ]
1N,...,0i

)k(y)k(R)ik(V2)k(W)1k(W Rtii

−=
−−+=+ μ (2)

where N is the filter order. This is a practical ap-
proach to obtaining estimates of the filter weights 
(W) in real-time without having to perform exten-
sive computations. The algorithm does not require 
prior statistical knowledge of the signal and instead 
uses instantaneous estimates. Therefore, the weights 
obtained by the LMS algorithm are estimates that 
gradually improve over time as the filter weights are 
adjusted as the filter learns the characteristics of the 
signal, and eventually converge. 

In the implementation, the set of weights is first 
initialized to zero. Then, for each subsequent sam-
pling instants k, the filter output is computed using 
the FIR filter expressed by Eq. (1), where the output 
y(k), predicting the respiratory or RSA component 
in the RR interval signal, is the filtered tidal volume 
(Vt). Having the predicted RSA, it is now possible to 
linearly subtract it from RR interval signal, RR. The 
error estimate is the algorithm output and is com-
puted by: 

)k(y)k(R)k(z R −=  

where z(k) is the LF component and y(k) is the 
predicted HF or RSA component. The filter weights 
W are updated based on this error expressed by 
Eq.(2), where µ controls the rate of convergence and 
the stability of the algorithm. 
 
 
3.2 The proposed model 
Having a close look at the oscillatory nature of the 
two signals, Vt(k) and RR(k), it directs us to a better 
model structure for adaptive filter. If it is assumed 
that most of the RSA(k) power resides in its funda-
mental frequency, as it is the case, the stirring part 
of Vt(k) can be modeled by a cosine function, 

)kcos(A)k(Vt ω=  

Then, its trace in the RR interval, RSA(k), will also be 
a type of shifted cosine with certain amplitude, 

)kcos(B)k(RSA ϕω −=  

For exact cancellation of RSA(k) from RR(k), y(k) has 
to be, 

)kcos(B)k(y ϕω −=  

Fig.1. Adaptive filter based on an FIR model. 
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For the estimation of the RSA(k), the reference 
signal, Vt(k) is passed through an adaptive filter and 
eventually, it is expected that the output, y(k) to be a 
correct estimate of RSA(k).  

In this paper, by using a different expression, 
y(k) is generated out of Vt(k) by introducing a new 
fit to case  concept. In this method, y(k) is formed 
by summation of Vt(k) with its arbitrary shifted 
version. The reason behind that comes out of this 
simple argument that a shifted version of a sinusoid 
can be attained by summation of two different phase 
shifted sinusoid  as follows: 

)kcos(B)]kcos(A[)]kcos(A[ 21 ϕωδωαωα −=−+

This can also be written in vector form, 
ϕδαα jj

2
0j

1 Be]Ae[]Ae[ −− =+  

The solution to the equation is, 

δ
ϕδα

δ
ϕα

sinA
)sin(B

sinA
sinB

21
−

==  

The solution does not set a specific value for δ, 
except that it must be nonzero.  

This type of model can also be expressed in 
geometrical concept. A cosine function can be 
represented by a vector, where its angle equals to 
the cosine phase shift. Since in a plane, any vector 
can be formed by summation of two out of phase 
variable length vectors (with probable minus sign), 
any shifted phase cosine can also be generated by 
summation of two different phase shifted cosine. 

The way that this idea is accommodated in adap-
tive filtering is shown in Fig. 2.  

 
In this structure, input Vt is injected into the algo-

rithm through two branches. From the first branch, it 
directly enters and forms vector 1, Vt=Dej0, that is in 
phase with Vt. From the second branch, vector 2, 
Vtd=Dejδ, is formed that is a phase shifted version of 
Vt. To do so, Vt is passed through a known allpass 
filter, G(z): 

1

1

z1
z)z(G −

−

−
−

=
β
β  

This filter has unity amplitude and inserts neces-
sary phase shift in the input signal, so that Vt=Dej0 is 
transformed to Vtd=Dejδ. Then the two branches 
enter the tunable parameter block and summed 
together. 

td1t0 VwVwy +=  

This output provides the desired shifted version 
of Vt needed for subtraction from RR interval to 
remove RSA from RR(k) interval. This is achieved, 
once the weights will have been properly adjusted. 

Figure 3 shows an example of the involved sig-
nals. The dotted line is the reference signal, the 
dashed line is the arbitrary shifted one and the solid 
line is the output of the above mentioned idea that 
has been fully settled over the desired signal.  

The choice of β alters the rate of convergence of 
the underlying LMS algorithm. Our Experiments 
support this proposition. 

Noting that by setting β=0, the proposed scheme 
turns to the conventional adaptive filter. Therefore, 
one conclusion may be that, a first order FIR model 
adaptive filter (which has 2 parameters) can also be 
able to filter the signal adequately.  To examine the 
case, the following experiments are conducted.  

The Vt signal is assumed to be, 

)k15.0*2cos(A)k(Vt π=  

and then RSA(k) will be, 

)2/k15.0*2cos(A)k(Rsa ππ −=  

In the first experiment, a second order FIR filter 
was used. The result of the test has been depicted in 
Fig. 4. After 100 seconds, the algorithm has still not 
fully converged. This result obtained with maximum 
possible value of µ=0.25. The upper graph shows, 
how two parameters of the filter are changing to 
accommodate the situation. 

In the next trial the order of N=4 is assigned to 
the FIR model with µ=0.1. Figure 5 shows the 
results: the lower graph, the error in the estimation 

Fig. 2. Adaptive filter with a special model. 
 

 
Fig. 3. Generating an estimate of a shifted sinusoid 

RSA(k)(solid line) from  Vt (dotted line) and its arbi-
trary shifted version, Vtd( dashed line). 
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and the upper graph, the trace of 4 filter parameters. 
This time it took about 20 second for the algorithm 
to converge.  

In the third experiment an 8 order FIR filter with 
µ=0.02 was tested. Figure 6 illustrates the results. 
Convergence happens after 10 seconds and 8 pa-
rameters of the filter change appropriately to 
manage the situation. 

In the last experiment, the signals are applied to 
the proposed model. The rate of convergence of the 
algorithm can be viewed from Fig. 7. From this 
figure, it can be clearly realized that It took less than 
4 seconds for the algorithm to converge.  This is the 
point that this paper tries to make much of it. Figure 

3 shows the Vt signal (dotted line), the phase shifted 
Vtd and the produced y(k) (solid line) that has been 
resided over the RSA(k). Exact estimation of RSA(k) 
has now been obtained in a shortest period. 

Figure 7 clearly indicates the superiority of the 
suggested design to the other FIR choices. This 
result was obtained  by setting µ=0.25 and β=0.6. 
Figure 8 is the same test with β=0.9, indicating that 
the sensitivity of the algorithm to the choice of β is 
low. 

Changes of β affects the algorithm performance, 
therefore, it has to be set appropriately. Fortunately, 
in HRV filtering, the sensitivity of the algorithm to 
the value of β is low. For respiratory signal fre-
quency between 0.15 to 0.4 Hz, real world span of 
the signal, and under various phase shifts, a value 
between 0.6 and 0.9 for β can fulfill the job. Search 
for an optimal value of β can easily be embedded in 
the LMS algorithm, but for this case is not really 
needed. No need to say that it adds to the complex-
ity of the algorithm. 
 
 
4 Simulations 
 
A. Data 
The tidal volume data may be collected from the 
LifeShirt. The LifeShirt contains two inductive 
plethysmography (IP) sensors encircling the ribcage 
and abdomen used to measure tidal volume. 

In this experiment, the harmonics and the mean 
of the Vt(k) and RSA(k) are assumed to have been 
already filtered by a band pass filter. Noting that the 

  
Fig. 4. The performance of the FIR model adaptive filter 

with N=2. 
Fig. 5. The performance of the FIR model adaptive filter 

with N=4. 
 

 
Fig. 6. The performance of an order 8 FIR model adaptive 

filter. 
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harmonics band is totally separated from the LF 
frequency band and there is not any overlapping 
between them to make filtering difficult. This be-
forehand filtering action, improves the performance 
of the adaptive filter methods. Actually, a third 
order Eliptic filter with pass band edge of 0.15Hz 
and stop band edge of 0.3Hz is adequate for har-
monics cancellation and high frequency 
measurement niose reduction. A real Vt signal, 
before BP filtering, looks more like the graph in 
Fig.9 than a pure sinusoid. Its harmonics at 0.3 Hz 
has been illustrated in the spectrum graph. 

On this basis, the BP filtered tidal volume simu-
lation signal [5] can be written as, 

)tf2cos(D)t(Vt hπ=  (3)

where the volume is expressed by D whose value 
depends on ribcage and abdominal cross sectional 
area, which varies with changes in posture and 
mass.  

The LifeShirt also contains a single lead ECG 
sampled at 200 Hz, which is linearly interpolated to 
1 kHz, and heart rate is determined based on R wave 
locations.  

The BP filtered RR interval simulated signal may 
be represented by [5]: 

)tf2sin(B)tf2sin(A)t(s llhh απαπ +++=  (4)

where A is the peak-to-peak RSA amplitude per 
breath, expressed in msec, B is the LF/HF ratio, 
expressed as a fraction of A. The parasympathetic 
(HF) component and sympathetic (LF) component 
have frequencies fh, fl and phases αh, αl respectively. 
Based on the discussion in section 2, RSA compo-
nent of RR has the same frequency as Vt with a 

variable phase shift. Both signals are assumed to be 
sampled in 5msec intervals. 
 
B. FIR Model adaptive filter 
The simulated RR interval signal, before BP filter-
ing, has been illustrated in Fig. 10 for a parameter 
set with high and low frequencies of 0.15 and 
0.13Hz, respectively, where power leaks from the 
LF band into the adjacent HF band. 

No phase variation is applied to this signal. An 
RSA amplitude of A = 200 msec is used with 
B=100 to give a 50% LF/HF ratio. These signals are 
applied to the adaptive filter.  Figure 11 shows the 
predicted HF component within the RR signal, 
predicted based of the reference signal Vt. It is 
evident from the trace that it takes approximately 
100 seconds for the filter to tune and adapt to simu-
lation characteristics. The weighting parameters are 
as follows: 

W=[0.0013, 0.0241, 0.0460, 0.0662, 0.0840, 0.0987, 
0.1098, 0.1169, 0.1199, 0.1186, 0.1131, 0.1036, 

0.0905, 0.0744, 0.0558]  

The LF signal is derived by linearly subtracting 
the HF signal from the original raw signal. Figure 
12 shows the separated LF signal and its spectrum. 
It is obvious that the HRV has been accurately 
decomposed. These results are obtained with the 
filter order of N=15. Increasing the filter order does 
not improve the results as is the case with LMS. 
Decreasing it below N=6, leads to algorithm com-
plete failure. The step size parameter, µ=6*10-4 
produced the best result. This value appears to be 
very small, as the input signals have not been nor-
malized. This is one drawback using the ordinary 
LMS adaptive filter, since when heart rate and 

  
Fig. 7. The performance of the proposed model adaptive 

filter with N=2 and β=0.6. 
 

Fig. 8. The performance of the proposed model adaptive 
filter with N=2 and β=0.9. 
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respiratory amplitude vary the updating parameter 
requires retuning. This is resolved with the Nor-
malized Least Mean Squares NLMS, which is 
common in most software packages. This approach 
has been shown to increase accuracy when applied 
to current HRV spectral analysis techniques. How-
ever, when applying linear subtraction, although the 
predicted signal may be nearly perfect, any slight 
phase variation creates large artifact in the resultant 
signal [5]. 

The graphs in Fig. 11 and 12 are the reproduction 
of the investigation reported in [5] done with an FIR 
model of order N=20. The frequencies of the test in 
here, are different from [5]. Apparently, the reason 
for using N=20 in [5], as we noticed in our 
simulations, is due to the DC offset of Vt signal that 
would probably had not got removed. 
 
C. The proposed model adaptive filter 
This time the simulated RR interval and Vt(k) signal 
are applied to the proposed model with β=0.8. 
Figure 13 and Fig. 14 show the results. The opti-
mum filter parameters are: W=[ -0.0693, 1.0442]. 
The acceptable result with µ=25*10-4 is obtained. 

As the graphs show, the proposed model having 
just two parameters, works analogous to the FIR 
filter with N=20 as reported in [5] or FIR filter with 
N=15 that we used for the reproduction of the 
results of [5]. 

What is important with this model, as our ex-
periments indicate and the model structure suggests, 
is that this model is able to strongly tackle the phase 
shift variation given by αh changes, what a FIR 
model adaptive filter fails to accomplish easily. This 
is, of course, true for the studied case and for the 
other situations must be investigated. 
 

5 CONCLUSION 
In this paper a new model structure for adaptive 
filtering, based on the nature of the involved signals, 
is introduced that gives similar performance as what 
a higher order FIR model adaptive filter in removing 
RSA component of HRV may yield. The trace of Vt 
signal in RR interval (RSA) is an unknown shifted 
phase Vt with, generally, unknown amplitude. On 
this basis, the proposed model is designed so that to 
have the capability of tracking the phase shifted Vt, 
and its probable variations, in the RR interval. This 
is accomplished by summing together Vt signal with 
its arbitray shifted version through a set of optimally 
adjusted weights. It is shown that the proposed 
model significantly improves the rate of conver-
gence of the underlying LMS algorithm. This 
strength is what makes the new model to perform 
superior to a high order FIR model adaptive system 
of HRV signal filtering. 
 

Acknowledgement. This work was partially sup-
ported by ETRC, Shahed university, Tehran, IRAN. 
 
 
References: 
[1] M.H. Crawford, S. Bernstein, P. Deedwania, 

ACC/AHA guidelines for ambulatory electro-
cardiography. Circulation 100, 1999, PP. 886-
893. 

[2] D.L. Eckberg, Sympathovagal balance: a critical 
appraisal. Circulation 96, 1997, PP. 3224-3232. 

[3] P. Grossman, M. Kollai, Individual differences 
in respiratory sinus arrhythmia, intra individual 
variations and tonic parasympathetic control of 
the heart.  Psychophysiology 30, 1993, PP. 486-
495. 

 
 

Fig. 9. A type of  realstic Vt signal. 
 

Fig. 10. The simulated RR interval and its spectrum. 

WSEAS TRANSACTIONS on SIGNAL PROCESSING S. Seyedtabaii

ISSN: 1790-5052 248 Issue 4, Volume 4, April 2008



[4] P. Grossman, J.A. Van Beek, A Comparison of 
Three Quantification Methods for Estimation 
of Respiratory Sinus Arrhythmia. Psychophysi-
ology 27, 1990, PP. 702-714. 

[5] D.B. Keenan, P. Grossman,  Adaptive Filtering 
of Heart Rate Signals for an Improved Measure 
of Cardiac Autonomic control. Int. J. of signal 
processing.  2,2005, PP. 52-58. 

[6] M. Pagani, N. Montano, A. Porta, Relationship 
between spectral components of cardiovascular 
variabilities and direct measures of muscle 
sympathetic nerve activity in humans. Circula-
tion 95, 1997, PP. 1441–1448. 

[7] N. Sasano, A.E. Vesely, J. Hayano, H. Sasano, 
R. Somogyi, D. Preiss et al., Direct effect of 
PaCO2 on respiratory sinus arrhythmia in con-
scious humans. Am J Physiol Heart Circ 
Physiol 282, 2002, PP. 973-976. 

[8]  B.E. Shykoff, S.S. Naqvi, A.S. Menon, A.S. 
Slutsky, Respiratory sinus arrhythmia in dogs: 
Effects of phasic efferents and chemostimula-
tion. J Clin Invest 87(5), 1991, PP. 1621–1627. 

[9] P. Robert, K. Daniel, Heart rate change as a 
function of age, tidal volume and body position 
when breathing using voluntary cardiorespira-
tory synchronization.   Physiol. Meas. 18, 1997, 
PP. 183–189. 

[10] E. Vaschillo, B. Vaschillo, Lehrer P (2004) 
Heartbeat Synchronizes With Respiratory 
Rhythm Only Under Specific Circumstances.  
Chest 126, 2004, PP. 1385-1387. 

[11] K.K. Tripathi, Respiration And Heart Rate 
Variability : A Review With Special Reference 
To Its Application In Aerospace Medicine.  Ind 
J Aerospace Med 48(1), 2004, PP.  64-75 

Fig. 11. Predicted HF by an order 15 FIR model. Fig. 12. Predicted LF by an order 15 FIR model. 

  
Fig. 13. Predicted HF by the order 2 proposed model. Fig. 14. Predicted LF by the order 2 proposed model. 

 

WSEAS TRANSACTIONS on SIGNAL PROCESSING S. Seyedtabaii

ISSN: 1790-5052 249 Issue 4, Volume 4, April 2008



[12] H. Witte, U. Zwiener, M. Rother, S. Glaser, 
Evidence of a previously undescribed form of 
respiratory sinus arrhythmia (RSA)- the 
physiological manifestation of ‘cardiac alias-
ing,  Pflugers Arch,412, 1988, PP. 442-444. 

[13] M.A. Garc´ıa-Gonz´alez, C. V´azquez-Seisde-
dos, . Pall`as-Areny, Variations in breathing 
patterns increase low frequency contents in 
HRV spectra. Physiol. Meas. 21, 2000, PP. 
417–423. 

[14] J.D. Schipke, M. Pelzer, G. Arnold, Effect of 
respiration rate on short-term heart rate vari-
ability.   J Clin Basic Cardiol 2, 1999, PP. 92-
95. 

[15] H. Kobayashi, Normalization of Respiratory 
Sinus Arrhythmia by factoring in Tidal Vol-
ume, Journal of Physiological Anthropology, 
1998,   PP. 207-213. 

[16] D. Laude, M. Goldman, P. Escourrou, J.  
Elghozi, Effect of breathing pattern on blood 
pressure and heart rate oscillations in humans 
Clin. Exp. Pharmacol. Physiol. 20, 1993, PP.  
619–626 

[17] P. Grossman, F.H. Wilhelm, M. Spoerle1, 
Respiratory sinus arrhythmia, cardiac vagal 
control and daily activity,  Am J Physiol Heart 
Circ Physiol 287, 2004, PP. 728–734. 

[18] G. Strauss-Blasche, M. Moser, M. Voica, D.R. 
McLeod, N. Klammer, W. Marktl, Relative 
timing of inspiration and expiration affects res-
piratory sinus Arrhythmia. Clin Exp Pharmacol 
Physiol  27, 2000, PP. 601-606. 

 

WSEAS TRANSACTIONS on SIGNAL PROCESSING S. Seyedtabaii

ISSN: 1790-5052 250 Issue 4, Volume 4, April 2008




