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Abstract: - This paper provides a new statistical approach to blind recovery of both earth signal and source 
wavelet given only the seismic traces using independent component analysis (ICA) by explicitly exploiting the 
sparsity of both the reflectivity sequence and the mixing matrix. Our proposed blind seismic deconvolution 
algorithm consists of three steps. Firstly, a transformation method that maps the seismic trace convolution 
model into multiple inputs multiple output (MIMO) instantaneous ICA model using zero padding matrices has 
been proposed. As a result the nonzero elements of the sparse mixing matrix contain the source wavelet. 
Secondly, whitening the observed seismic trace by incorporating the zero padding matrixes is conducted as a 
pre-processing step to exploit the sparsity of the mixing matrix. Finally, a novel logistic function that matches 
the sparsity of reflectivity sequence distribution has been proposed and fitted into the information maximization 
algorithm to obtain the demixing matrix. Experimental simulations have been accomplished to verify the 
proposed algorithm performance over conventional ICA algorithms such as Fast ICA and JADE algorithm. The 
mean square error (MSE) of estimated wavelet and estimated reflectivity sequence shows the improvement of 
proposed algorithm  
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1 Introduction 

 
In seismic exploration, a seismic wavelet is sent 

to the earth layers and seismic trace is recorded by a 
geophone or hydrophone at the surface due to the 
impedance mismatches between different geological 
layers which are a great concern to the geophysicist. 
The geophysical structure of the earth can be 
explored through an analysis of the reflectivity from 
deep layers of the earth .The true reflectivity signal , 
however, is not easily reached; as an alternative, the 
recorded seismic trace is a smeared version of the 
reflectivity sequence, caused by the reverberations 
due to the surface layers [18]. One of the essential 
goals is to undo the effects of the degradation in 
order to recover the true earth signal [17]. This 
usually necessitates a certain deconvolution 
technique. The main aim of seismic deconvolution 
is to remove the characteristics of the source 
wavelet from the recorded seismic trace, so that one 
is perfectly left with only the reflectivity sequence 
(earth signal). The blind approaches of seismic 
deconvolution can be considered in situations where 
the reflectivity sequence and the source wavelet, are 
unknown from given seismic traces. In seismology, 
the recorded seismic trace  is defined to be the 

linear convolution of the source wavelet  with 
the earth’s reflection coefficients . Assuming no 
noise, the mathematically representation of this 
relationship is given in (1). 
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To precisely estimate both the earth signal and 
wavelet source, it is critical for the deconvolution 
algorithm to incorporate as much prior knowledge 
about the reflectivity sequence and the wavelet as 
possible. From geophysics point of view the earth 
layers are more or less homogenous and separated 
by interfaces. This prior knowledge allows us to 
statistically model the reflectivity sequence as a 
Bernoulli Gaussian process [15, 16]. Furthermore, 
the convolution process gives rise to a sparse mixing 
matrix which will be exploited to obtain an efficient 
ICA parameter estimation [4]. There are many 
methods of seismic deconvolution that can be 
accomplished so that an optimal estimate can be 
made of the earth model. A common of the seismic 
deconvolution methods utilize the steady state 
Wiener digital filter that assumes a minimum phase 
wavelet [3, 9]. In 1990 similar methods were )( itx
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2 Proposed MIMO-ICA Model developed by Weinstein and Shalvi [10]. Recently 
Bayesian statistic framework approaches [2, 8, 11, 
12] have been applied for blind seismic 
deconvolution. They explicitly modelled the 
sparseness of reflectivity sequence as Bernoulli 
Gaussian process where the location, amplitude and 
number of spikes are considered.  Also Kaplan and 
Ulrych [4] introduced banded ICA algorithm to 
solve blind seismic deconvolution by incorporating 
the banded property of mixing matrix into an ICA 
algorithm as prior information. Our novel technique 
which can be summarised in figure (1) presents a 
novel method to solve blind seismic deconvolution 
problem using independent component analysis by 
exploiting the sparsity of both the reflectivity 
sequence and the mixing matrix.  

 
Convolution model of discretely sampled seismic 
trace in equation (1) can be represented as ICA 
model using the zero padding matrices . iN

Asx =                                                            (2) 
The  matrices plays an important role in 
constructing the x ( ) sparse mixing matrix 

 by mapping the wavelet vector  into the  
row of mixing matrix as shown in equation (3) 
,where l  is the number of wavelet points.  
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A  (3) This paper is systematized as follows. In section 
2, the transformation method that maps the seismic 
trace convolution model into multiple inputs 
multiple output (MIMO) instantaneous ICA model 
will be explained in detail. Section (3) presents the 
mathematical analysis of blind seismic 
deconvolution algorithm. The experimental 
simulations that illustrate the improvement of 
estimated wavelet and earth signal using proposed 
techniques over Fast ICA algorithm [7] and JADE 
algorithm [14] will be presented in Section 4.  

The zero padding matrices with dimension x 
(

l
13 −l ) can be represented as  
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As a result, the rows of matrix contain the 
delayed versions of the same wavelet vector as 
shown in fig (2).  

A

Whitening by 
incorporating 
sparsity of 
mixing matrix 

Demixing the mixing matrix by 
proposed a new logistic    
function for information 
maximization algorithm 

Formulate   
    ICA 
   Model ∑ −=

j
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ASX =    

i
~
X = ZTN TT

i     

Recover both Wavelet 
and reflectivity signal 

Where and  are the reflectivity sequence vector 
and the seismic trace vector respectively. is the 
number of reflectivity sequence samples 

xs
n
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[ ])()()()( 321 ntxtxtxtx LLL=x     (6) 
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 Figure 2.  Delayed versions of the seismic wavelet 
that the mixing matrix contained  Fig. 1. Block diagram of the proposed algorithm 
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From (3) and (7) the seismic trace vector can be 
rewritten as a matrix  with dimension x n so it 
can be shown from the figure (4) that the observed 
seismic trace matrix contains shifted versions of the 
same seismic trace vector. 

In other words, the single input single output (SISO) 
convolution model in equation (1) is transformed to 
(SISO) instantaneous ICA model (2). 

X l2

 
The ICA model in equation (2) provides only one 
realization of each of the reflectivity sequences and 
seismic wavelet. This is insufficient to characterize 
the corresponding statistics and hence it is 
inadequate for ICA. However, the available 
information can be rearranged such that organizing 
the reflectivity sequence vector of s as a matrix S  
with dimension x , as shown in figure (3) 
,where the first row contains all the values of the 
reflectivity vector and the second row contains the 
delayed version of the same reflectivity vector by 
the delay operator and so on until we reach to 
the delayed version by [4] 
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                                                                               (8) 
In other words the single input single output 
convolution model (SISO) in equation (1) can be 
represented as multiple input multiple output 
(MIMO) instantaneous mixing model  

)(z
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Consequently the blind seismic deconvolution 
problem of single channel is presented in a way that 
it can be solved using instantaneous ICA; so that the 
time delayed arrival of the captured signal at the 
geophones can be handled more efficiently. 
 

                                                                        (7) 
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Figure 4. Shifted versions of the seismic trace that 
the observed seismic trace matrix contained 

 
Figure 3.  Shifted versions of the earth signal that the 
source matrix contained  
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3 Proposed Parameter Estimation  
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   Algorithm  
 
The proposed algorithm consists of two main steps. 
The first step is the preprocessing step. The Second 
step is the application of the information 
maximization algorithm to whitened seismic trace.  
 
 
3.1 Preprocessing step 
 
Whitening the observed seismic trace X using 
Eigen-value decomposition (EVD) of the covariance 
matrix by incorporating the zero padding 
matrixes  is proposed as a pre-processing 
strategy to exploit the sparsity of banded matrix A 
before applying the information maximization 

algorithm. a new observed seismic trace  can be 
obtained which is white, this means that its 
components are uncorrelated and their variances 
equal unity. In other words, the covariance matrix 

equals the identity matrix [13]. 

xxR

iN

 ~
X  

    Figure  5. Whitened seismic trace 
 
3.2 Information maximization algorithm 

xxR I  
 
               =xxR nTXX = I                             (10)                             

                                                                       

Applying the information maximization algorithm 

[1] to the whitened mixture  will result in 
demixing matrix . This algorithm which is 
modified by Amari [5] using a natural gradient 
method to avoid matrix inversions during ICA 
training, does not assume any knowledge of input 
distribution. However, in our case it is well known 
that the distribution of input reflectivity sequence 
can be modelled as Bernoulli Gaussian distribution 
[2] as follows 

~
X

W
From [4] the whitened seismic mixture matrix 
can be written as  

                    (11)          
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Where  and =   are the 
eigenvectors and eigenvalues respectively of 
covariance matrix ,so the whitened mixture can 
be considered as a new set of seismic mixtures with  

x  dimension matrix also it can be seen from (12) 
that the zero padding matrix enforces the sparse 
property of the mixing matrix during the whiting 
pre-process step. In other words is prior 
information. As shown in figure (5) incorporating 
the zero padding matrices in the preprocessing step 
will result in reducing the dimension of the 
whitening seismic trace to l x . 

E D ].,,.........[ 1 ndddiag

In which is the probability that reflection occurs, 
if =0 it indicates the position of high reflector 
and small reflector position is given by =1. 

Where both  and the variance can be 
estimated using maximum likelihood approach. 

ip
xxR
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Incorporating the prior information in (13) into 
information maximization algorithm [1] will result 
in a new blind seismic deconvolution algorithm. 

n
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When the whitened seismic mixture is to be passed 
through a logistic function, maximum information 
transmission can be achieved when the sloping part 
of the logistic is optimally lined up with the high 
density part of the input distribution.  

A new logistic  function is proposed to match the 
sparsity of the input signal. This function can be 
modelled as the integral of the input distribution. 
 

∫== dupg )()( UUY                                       (15)                                        
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Where the whitened seismic trace is multiplied 
by a weight matrix  and added to a bias 
weight , the above evaluate as 
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From integration table [6],It can be shown that  
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Fitting in the proposed logistic function  into 
Information maximization algorithm [5] will result 

in a new blind seismic deconvolution algorithm. So 
a weight matrix can be proposed as  
 

i
T

iiiiii WUUUYIWW )( −−+=                  (21)                 
 a bias vector can be written as  .Given 
only the recorded seismic trace, the proposed blind 
deconvolution algorithm produces the demixing 
matrix  which contains l  rows, each of them 
represent an estimated wavelet as shown in figure 
(6), in other words l  wavelets are recovered , 
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The best estimated wavelet is extracted from the 
pool of   candidate solution according to the 
following criteria. 
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independent component, . It is easily 
verified that equation (22) has it is extreme points 
when  
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Y Figure 6.  The estimated wavelets that the demixing 
matrix contained  
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4 Simulation and results analysis  
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Consider the seismic trace signal in figure (15), 
which can be generated by convolving 16 points of 
seismic wavelet with the 500 points of reflectivity 
sequence, as input to our proposed algorithm 
without any knowledge of both seismic wavelet and 
reflectivity sequence except that the earth signal 
distribution can be modelled as Bernoulli Gaussian 
process. The proposed algorithm is successfully able 
to recover both the earth signal (reflectivity 
sequence) and the seismic wavelet. This ability of 
the recovering seismic wavelet can be confirmed by 
comparing the estimated seismic wavelet with 
original source wavelet in figure (7) where it can be 
noticed that the 16 samples of the wavelet have been 
recovered accurately. Comparing this with the Fast 
ICA algorithm result in figure (8) and with JADE 
algorithm result in figure (9), the proposed 
algorithm yields an improvement by 88.5% over 
Fast ICA algorithm and 93% over JADE algorithm 
in terms of accuracy, shaping and scaling of 
estimated seismic wavelet. This means that our 
novel methodology solves scaling problems can be 
found in most ICA algorithms. From figure (11) it 
can be seen that four tests have been conducted and 
the results prove that the minimum square error of 
the recovered wavelet using the proposed algorithm 
has been minimised compared with Fast ICA and 
JADE algorithm, by exploiting the sparsity of both 
mixing matrix and reflectivity sequence. It is worthy 
to know that the threshold of MSE for wavelet 
estimation is 0.01 and any values above this 
threshold are considered poor. The enhanced 
resolution of recovered earth signal can be clearly 
seen in figure (12), which presents the comparison 
between the estimated and original reflectivity 
sequence (earth signal) using our proposed 
technique where it can been seen that the earth 
signal has been accurately recovered and matches 
the scaling of the original earth signal. By 
comparing the results in figure (12), (13) and 
(14),Our proposed algorithm shows an increased 
performance of estimating earth signal by 73% over 
the Fast ICA and up to 86.5% over JADE algorithm 
in terms of mean square error ,scaling and shaping. 
Results from figure (10) prove that the minimum 
square error of estimated reflectivity sequence by 
proposed technique has been statistically minimised 
compared to the FastICA algorithm and JADE 
algorithm.  

Figure.7 original and estimated wavelet using 
proposed 
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Figure.8 original and estimated wavelet using Fast 
ICA algorithm 
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Figure. 9 Estimated wavelet using JADE algorithm                
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Figure. 10 MSE of estimated reflectivity sequence 
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Figure. 11 MSE of estimated wavelet 
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Figure. 12 Original and recovered earth signal using new algorithm 

Figure. 13 original and recovered earth signal using FastICA
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Figure.14 estimated earth signal using JADE 
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5 Conclusion 
 
A new technique for blind deconvolution of seismic 
signal has been proposed and developed. 
Simulations results of the blind estimation of the 
source wavelet and earth signal given only by the 
seismic trace signal as input has expressed the 
effectiveness of the new algorithm over the FastICA 
algorithm. The technique differs from many blind 
deconvolution algorithms as it uses independent 
component analysis to solve blind deconvolution 
problem by exploiting the sparsity of both the 
reflectivity sequence and the mixing matrix. 
Although it is computationally intensive our novel 
algorithm gives significant performance efficiency 
over FastICA in terms of shape and scaling. As a 
result the proposed technique has the ability to be 
used as a post stack improvement process to offer 
datasets for use in combination with the typically 
processed reflectivity data. 
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