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Abstract:-Blind source separation is an advanced statistical tool that has found widespread use in many signal 
processing applications. However, the crux topic based on one channel audio source separation has not fully 
developed to enable its way to laboratory implementation. The main idea approach to single channel blind 
source separation is based on exploiting the inherent time structure of sources known as basis filters in time 
domain that encode the sources in a statistically efficient manner. This paper proposes a technique for separating 
single channel recording of audio mixture using a hybrid of maximum likelihood and maximum a posteriori 
estimators. In addition, the algorithm proposes a new approach that accounts for the time structure of the speech 
signals by encoding them into a set of basis filters that are characteristically the most significant. 
 
Key-Words: - Single Channel Separation, Blind Source Separation, Characteristic Filters, ML, MAP 
 
1 Introduction 
Separating mixture of different signals has been 
focused by many researchers in computational 
auditory scene analysis (CASA) and Independent 
Component Analysis (ICA) [1]. Blind source 
separation (BSS) is a powerful methodology and a 
family of algorithms has already been developed 
[2-5]. Extension of BSS to solving nonlinear 
mixtures has also been introduced [6-11]. Parallel 
with this, recent advances have been made in blind 
source separation in the area of single channel signal 
analysis. The mixture of sources can be separated by 
given only single channel recording. The main idea 
for single channel blind source separation (SCBSS) is 
based on exploiting the inherent time structure of 
sources to generate basis functions in time domain. 
The basis functions imply inherent types of 
non-Gaussian characteristic signals. Maximum 
likelihood algorithm and Maximum a posteriori 
estimators are exploited for source separation.  
 
The key point of SCBSS is to exploit a priori 
knowledge of sources such as the basis functions to 
generate sparse coding. The training sources are then 
projected onto a set of basis functions whose 
coefficients are as sparse as possible. The proposed 
separation algorithm use hybrid of maximum 
likelihood and maximum a posteriori estimators [12, 
13]. to recover the independent components. If the 
basis functions are not chosen correctly, this will 
significantly deteriorate the performance of signal 
separation. 
 

In this paper, the single channel mixing problem is 
considered and the objective is to provide optimal 
estimation of the source signals, the contribution of 
this paper is to provide a novelty method to extract 
the most significant characteristic features especially 
in terms of separating speech mixture source such a 
crux project based on the general ICA [14] and 
cross-correlation algorithms. In addition, the main 
affective factors are discussed and analogized based 
on separation results. The generalized hybrid of 
maximum likelihood and maximum a posteriori 
algorithm is then derived where to estimate original 
sources. In the proposed method, the real audio 
sources are exploited to test the performance of the 
algorithm. 

 
Suppose the observed signal  mixed with two 
independent sources.  

ty
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Here 1λ  and 2λ  are the gain of independent source 

 and  separately. Alternatively, one could use a 
constrained gain given by 
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1λ + 2λ =1. The 
superscripts indicate sample indices of time-varying 
signals. The gain is affected by many factors, for 
example attenuation of propagation between sensor 
and independent source.The independent component 
can be constructed as the product of basis functions 
and their coefficients which can be shown as: 
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Here small length P with TP <<  from independent 
source is employed to analysis. The time duration 
from t to t+P-1, an P dimensional column 
vector , here the vector 
symbol T means transpose. M=P means that the delay 
samples of independent source equal to the number 
of basis functions. i refers to the source number (there 
are totally two independent sources). k expresses the 
type of basis function while basis function’s 
coefficients can be expanded as . 
Since M=P, the matrix A  has full rank so that the 
vector  and  are reversible in both directions.  
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The inverse of basis matrix , then the 
expression 2 is transformed as: 

1−= ii AW

                                                             (4) t
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t
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Hence the generated model satisfies the typical ICA 
linear combination model. In this paper, algorithms 
derived from maximum likelihood (ML) and 
maximum a posteriori (MAP) [2-5] estimators are 
exploited to solve the single channel blind source 
separation problem.  
 
2 Separation Algorithms 
Firstly, the following figure shows an example of 
basis functions of real music signal. These basis 
functions are known a priori or obtained as part of 
the solution to the SCBSS [12, 13]. In this paper, it is 
assumed that the basis functions have already been 
obtained using any standard ICA algorithm.  

 
Fig. 1: Real music basis functions A  (36 basis are 
shown) 
In Figure 1, it is obvious that each of basis functions 
has non-Gaussian characteristics. This is the stage 
where we could find out the how of original source 
signals have been mixed. Since the set of basis 

functions can be obtained before source separation, 
the variables as expression 2 are known. In 
addition, the basis coefficient  density can be 
estimated by exploiting non-Gaussian density 
function [15]. It is a very natural measure for 
independence if the joint density  equal to its 
marginal densities. The method which decreases the 
mutual information is by maximizing the marginal 
densities of the transformed coordinates for the given 
training data. 
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where Wdet   is the absolute value of Jacobian of 
the transformation. In this case the transformation is 
linear and basis coefficients are assuming 
independent, therefore the log likelihood can be 
expressed as: 
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Our interest is in adapting basis functions of source 
for [ ]Tt ,1∈∀ , for convenience 1+−= PTTP . The 
gradient-based learning rules for updating ICA 
model can be derived by evaluating the appropriate 
derivatives of log likelihood function. The basis filter 
gradient  can be evaluated as follows: W
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where the ‘nature gradient’ in expression 7 is 
obtained by post-multiplying the gradient by WW ′ . 
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ϕ  and s′  denotes the matrix transpose 

of .  is the identity matrix. The s I )(sϕ  can be 
obtained by evaluating the derivatives of Generalised 
Exponential Source (GGD) density function which 
expressed as follows: 
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The sources densities were assumed to be 
inverse-cosh densities in traditional ICA formulation 
[2]. However more current ICA algorithm shows that 
the inverse-cosh densities can’t adequately model 
sub-Gaussian densities. The more general densities 
which can model super-Gaussian, Gaussian and 
sub-Gaussian form is the ‘Generalised Exponential 
(GE)’ density [15].where  is the gamma 
function. u expresses the mean of coefficient and 
variance can be determined by 

(.)Γ

β . { qu ,, }βθ = . Here 
the exponent q denotes the varying of distribution. In 
the simulation section, this aspect will be discussed in 
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details regarding the affects of the exponent q on the 
performance of separation. 
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Gradient-based learning rules for updating )(sϕ then 
can be expressed as: 
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∂
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s
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1−= ii AW .This expression is exactly from 
Generalized Gaussian density function. Thus the 
specific process approach to SCBSS can be 
concluded as: The observed mixture data  and the 

current estimation individual source  are given. At 

each time point, firstly, . Current 
estimated independent source pass through basis 
filter to generate basis coefficients. Secondly, 

 each basis coefficients are 
statistically independent by exploiting Maximum 
likelihood estimator. Thirdly, Maximum a posterior 
estimator to obtain likelihood of  which basis 
coefficient’  pdf are derived from Generalized 
Gaussian density function. 
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 If T samples are independent, then we can 
decompose the above expression into: 
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The gradients-based learning rule for updating the 
estimated source can be derived by evaluating the 
appropriate derivatives of the log likelihood: 
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Variables  and  are selected to replace  
and . Finally, the newest individual gradients are 
added back to the current estimate source till the 
separation process converges. For evaluating mixing 
gain 

tz1
tz2

tx11 ˆλ
tx22 ˆλ

iλ , it can be estimated by MAP estimator 
when given the current estimated individual 
sources. 
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The gradient-based rule then can be obtained as: 
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3 Performance Analysis -General basis 
Figure 2 shows the flow of the simulations 
investigated in this paper and the analysis taken place 
for estimating the specific variables. 
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Fig. 2: Simulation structure (independent source 

)(txi  are generated by Jazz music and speech 
source.) 
 
In this section, all simulations and analysis are 
conducted using a PC with Inter Core 2 CPU 6600 @ 
2.4GHz 2.4GHz and 2GB RAM. The proposed 
experiments are devised to test the performance of 
proposed method on the single channel where the 
mixtures are exploited by different models (female 
and male speech, Jazz music and speech sources). 
3.1 Separation results by exploiting 4 basis 
 

 
(a) 
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(b) 

 
Fig. 3:  Basis Functions. (a) Male basis functions. 
  (b) Female basis functions. 
  
Figure 3 (a) and (b) show the different non-Gaussian 
sources have specific characteristic of the basis 
functions.  
 

 
(a) 

 

 
(b) 

Fig. 4:  (a) The original sources and mixture 
  (b) The estimated sources and iλ  
 

By contrasting the original and recovered speech 
sources (the down sampled data were exploited 
11697 out of 46785 from male-female speech)., it is 
computed that the mean square error of estimated two 
speech signals equal to 0.78064 and 0.62653, 
respectively.  
 
3.2 Affective factor q 
Here the q factor is derived from expression 8. The 
question we would like to address in this section is 
how will the q affect separation results? The theorem 
proves when exponent value decrease, the 
distribution of basis coefficients become more 
sparsity [12]. This is the reason why the value of q is 
set to a small number (in Figure 4 q=0.2) for 
separation process. Here is a comparison of 
separation results which q=1 as the same original 
sources. 
 

 
Fig. 5:  The estimated sources and iλ when q=1 
 
Table 1: Comparison results of different q 

Recovered male speech 
q MSE λ 
0.2 0.78064 0.62653 
1 1.4087 0.46589 

Recovered female speech 
q MSE λ 
0.2 0.6979 0.37347 
1 1.5085 0.53411 

MSE: Mean Square Error 
 
In Table 1, as exponent q is getting smaller, the 
estimation values of individual sources are more 
close to the original models according to MSE. The 
problem is the estimation value of λ. It’s hard to 
maintain a correct value when decrease q. 
 
 
 

WSEAS TRANSACTIONS on SIGNAL PROCESSING Bin. Gao, W. L. Woo and S. S. Dlay

ISSN: 1790-5052 176 Issue 4, Volume 4, April 2008



3.3 Affective factor: basis functions 
There exists another affective factor in separation 
process. As previous experiments utilized that the 
numbers of basis functions are exploited as 4. This 
experiment will test the results when increase the 
number of basis functions. The origianl sources are 
invariant. 
 

 
(a) 

 
(b) 

 
(c) 

Fig. 6:  (a) Male basis functions (N=9). 
  (b) Female basis functions (N=9). 
             (c) The estimated sources and λ. 
 
 
 
 
 

 

Table 2: Comparison results of different basis  
Recovered male speech 

Number of 
Basis function 

MSE λ 

4 0.78064 0.62653 
9 1.0548 0.40019 

Recovered female speech 
Number of 
Basis function 

MSE λ 

4 0.6979 0.37347 
9 1.088 0.59981 

MSE: Mean Square Error 
 
The separation results which number of basis equal to 
4 is estimated more accurately than N=9. The 
problem is also the same as exponent q factor: the 
estimation value of lamda occur more errors when 
decrease number of basis functions. 
 
In Figure 4, it is seen that the estimation value of 
male and female speech may not perform the best 
separation results with mean square error 0.78064 
and 0.6979 respectively. The following experiments 
will focus on selecting different audio mixture 
sources to test the performance on the types of 
mixture which can obtain the best estimation results. 

 
3.4 Different mixture: Jazz and male speech 

 
(a) 

 
(b) 
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(c) 

Fig. 7:  (a) Jazz music basis functions. 
  (b) The original sources and mixture 
  (c) The estimated sources and λ 

 
Table 3: Comparison results of different mixture  

Male and female speech 
Mixture MSE λ 
Male speech 0.78064 0.62653 
Female speech 0.6979 0.37347 

Jazz music and male speech 
Mixture MSE λ 
Male speech 0.56422 0.63274 
Jazz music 0.08961 0.36726 

MSE: Mean Square Error 
 
In terms of MSE the mixture which contains music is 
separated more clearly than male-female mixture. 
Separation of Jazz music and male speech is the best. 
The reason why separation results of male-female 
mixture is worse than Jazz-male mixture can be 
explained by exploiting their power spectral to 
analysis. The following two figures show both 
mixtures’ power spectral. 
 

 
(a) 

 
(b) 

Fig. 8:  (a) Power spectral of Jazz (dot line) and              
male speech (solid line) 

 (b) Power spectral of female (solid line) and 
male speech (dot line) 

 
In Figure 8, power spectral density is used to describe 
the frequency contents of the speech or music signals. 
The figure shows the frequency components that are 
present in process and how much power they posses. 
It is seen that the structures of male-female speech 
power spectral are very similar. As for the Jazz-male 
mixture, although there are plenty of overlaps 
between Jazz music and male speech, the inherent 
structure of both signals are different due to the basis 
functions. Thus, the separation results of Jazz-male 
mixture give the better results.  
 
4 Best Characteristic Speech Basis 
The best characteristic basis functions [16] requires 
that each basis be incomplete in the general space of 
all possible signals but complete in the subspace of a 
single class of signal, and that the classes are disjoint 
in signal space. Based on separation results, there is 
too much overlap in signal space between two 
speakers when decrease number of basis functions 
(e.g. the separation results in table 2 by exploiting 4 
basis functions). One way around this obstacle would 
be to do the separation in some feature space where 
there is both better class separation, and the 
possibility of transformation back to signal space. 
This proposed method based on cross-correlation 
function to extract most similar features from various 
male basis functions and female basis functions. 
Figures 9 and 10 show some feature extraction from 
general basis functions. 
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(a) 

 
(b) 

Fig. 9:  (a) First female basis functions. 
             (b)Second female basis functions. 
 

 
(a) 

 
(b) 

Fig. 10:  (a) First male basis functions. 
              (b)Second male basis functions. 
 
In determining, the best characteristically basis 
functions for the source signals will first be 
determined. In this paper, cross-correlation is used to 
identify the characteristically most similar features 
inherent in the speech signals. This is carried out by 
firstly normalizing a set of basis functions (as shown 

in Fig. 9 and 10) which are obtained using standard 
signal separation algorithm. The two general basis 
functions are cross-correlated and largest N values 
(represent two basis functions are most similar) from 
the cross-correlation matrix is used to obtain the most 
characteristically similar features (e.g. the dot line 
marked basis from both male-female speech basis 
function). The cross-correlated model can be 
expressed as: 
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where B and A denotes the second and first speech 
basis functions respectively (e.g. B represents the 
second male basis and A represents the first male 
basis). The best characteristic features (largest values 
of) then can be extracted from the cross-correlation 
matrix and reconstructed as 4 out of 16 characteristic 
basis functions (less number of basis get better 
separation results) from male-female speech. In 
figure 11 shows the extracted basis functions from 10 
training male and female speeches respectively 
which download from TIMIT database. 

 
(a) 

 
(b) 

Fig. 11: (a) Male characteristic basis. 
              (b) Female characteristic basis. 
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We update the new basis filter to obtain the most 
probably estimate of the source coefficients density. 
According to Mean Square Error, the separation 
results especially in terms of recovered female source 
have been substantially improved by exploiting the 
most characteristic features. The following figures 
show the separation results of recovered speech signal 
by exploiting best characteristic basis. 

 
                                              (a) 

 
                                               (b) 

 
             (c) 

 
Fig. 12: (a) The original sources and mixture 

(b) Recovered male-female speech by using 
the hybrid ML-MAP estimator and general 
basis functions  
(c) : Recovered male-female speech by using  
the proposed estimator with characteristic 
features. 

 
In terms of Mean Square Error, the following table 
concludes how improvements the recovered speech 
signal are by using characteristic speech basis filters. 
 
 

Table 4: Performance comparisons 
Recovered male-female  by general basis 
Mixture Mean Square Error 
Male speech          0.6496          
Female speech          1.4241 
Recovered speech by characteristically basis 
Mixture Mean Square Error 
Male speech          0.645 
Jazz music          0.4669 

 
In Table 4 and Figure 12 the separation results of 
both male and female speeches are tabulated which 
shows an improvement of 0.355% and 50.62% 
respectively. 
 
5 Comparison to other SCBSS methods 
Resent proposed solutions of Single Channel Source 
Separation (SCSS) [17] problem are categorized into 
three branches: firstly, model-based SCBSS, 
secondly, underdetermined blind source separation, 
and finally, computational auditory scene analysis 
(CASA). Model-based SCSS [18-20] techniques are 
similar to model-based single channel speech 
enhancement techniques. In other words SCSS can 
be considered as a speech enhancement in which both 
the target and interference. In underdetermined BSS 
techniques [21, 22], the sources are projected onto a 
set of basis functions whose coefficients are as sparse 
as possible. By using independent component 
analysis (ICA) nonnegative matrix factorization, or 
sparse coding, In CASA-based techniques [23, 24], 
the goal is to replicate the process of human auditory 
system by exploiting signal processing approaches. 
The main idea is based on an appropriate transform 
(such as the short-time Fourier transform (STFT)), 
the observation signal is segmented into 
time-frequency cells; then using some criteria to 
group one source. We now briefly describe and 
compare two latest novelty techniques approach 
single channel audio source separation with our 
proposed method. 
 
First technique SCBSS by using subband filters [25] 
which exploiting frequency domain to decompose 
the mixture before separation procedure (the 
observed mixed signal is converted in to subband 
with a filter bank so that we can choose a moderate 
number of subbands and maintain a sufficient 
number of samples in each subband. In separation 
process the empirical mode decomposition (EMD) 
and time domain ICA are exploited to separate each 
subband mixture. The drawbacks of this method 
include: firstly the mixture is directly constructed by 

WSEAS TRANSACTIONS on SIGNAL PROCESSING Bin. Gao, W. L. Woo and S. S. Dlay

ISSN: 1790-5052 180 Issue 4, Volume 4, April 2008



mixing two original sources but not considering the 
mixing gain of each source (the gain constants are 
affected by several factors, such as powers, locations, 
directions and many other characteristics of the 
source generators as well as sensitivities of the 
sensors). Secondly this method exploits spectral 
techniques. The spectral techniques assume that 
source signals are disjoint in the spectrogram, which 
frequently result in audible distortions of the signal in 
the regions where the assumption mismatches. 
 
The second technique SCBSS by using soft mask 
filtering [17] make somewhat revise of frequency 
domain. It exploits the log spectral vector of the 
mixture which approximated well by the maximum 
element-wise comparison of the log spectral vector of 
the sources. In other words at each frequency band 
the weaker log spectral amplitude is masked by the 
strong one. The advantage of this method compare 
with binary mask and wiener filter show that the 
proposed soft mask filter outperforms both binary 
and wiener filters. 
 
The advantages of proposed method include: firstly, 
it avoids strong assumptions by virtue of higher-order 
statistics. Secondly, there is no longer orthogonality 
constraint of the subspaces, as the basis functions 
obtained by the ICA algorithm are not restricted to 
being orthogonal. Finally the proposed method 
automatically generates the prior information while 
other SCBSS methods also require the prior 
information. 

 
6 Conclusions 
A new algorithm based on the hybrid of ML and 
MAP estimator combined with the encoding of the 
best characteristic features of the speech has been 
developed. Real time speech recording has been 
conducted and the obtained results show significant 
performance of male-female speech separation using 
the proposed algorithm. The separation results in 
both recovered male and female speech improve 
0.355% and 50.62% respectively. The separation 
algorithm of SCBSS was conducted successfully by 
using to mean square error criterion. Each type of 
basis function has different characteristics (e.g. 
speech and music). The relationship between 
separation results and affective factor q (i.e. the 
exponent value decrease, the distribution become 
more super-Gaussian) has been established. The best 
separation results from different mixtures (separation 
of Jazz music and male speech is found to be the best. 
The reason could be explained by exploiting their 
power spectral density. The relationship between 

separation results and affective factor number of 
basis functions (i.e. the number of basis functions 
decrease, the separation results are getting better) has 
also been investigated and it is shown that it is not 
necessary to have very large number of basis 
functions.  
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