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Abstract: - Osteoporosis is a condition of decreased bone mass. This leads to fragile bones which are at an 
increased risk for fractures, more often, it affects postmenopausal women. In this paper we propose a study of 
osteoporosis with the fractal dimension. After an introduction to the theory and fractal dimension, we use the 
box counting method for the segmentation of radiographic images, the study of the influence of range size 
boxes on the fractal dimension will be investigated, and the correlation between a reference dimension and 
bone mineral density. Other imaging techniques will be given in order to see the results of the application of the 
method on these types of images. 
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1 Introduction 

A fractal is generally "a rough or fragmented 
geometric shape that can be subdivided into parts, 
each of which is (at least approximately) a reduced 
size copy of the whole," a property called self-
similarity [1]. The term was coined by Benoît 
Mandelbrot in 1975 and was derived from the Latin 
fractus meaning "broken" or "fractured." A fractal 
often has the following features: 

• It has a fine structure at arbitrarily small 
scales. 

• It is too irregular to be easily described in 
traditional Euclidean geometric language. 

• It is self-similar (at least approximately or 
stochastically). 

• It has a Hausdorff dimension which is 
greater than its topological dimension 
(although this requirement is not met by 
space-filling curves such as the Hilbert 
curve). 

• It has a simple and recursive definition [2].  

Because they appear similar at all levels of 
magnification, fractals are often considered to be 
infinitely complex (in informal terms). Natural 
objects that approximate fractals to a degree include 
clouds, mountain ranges, lightning bolts, coastlines, 
and snow flakes. However, not all self-similar 
objects are fractals—for example; the real line (a 
straight Euclidean line) is formally self-similar but 

fails to have other fractal characteristics. In this 
paper we use the fractal dimension as tool to study 
the osteoporosis which is a disease of bone leading 
to an increased risk of fracture. In osteoporosis the 
bone mineral density (BMD) is reduced, bone 
microarchitecture is disrupted, and the amount and 
variety of non-collagenous proteins in bone is 
altered. Osteoporosis is defined by the World Health 
Organization (WHO) in women as a bone mineral 
density 2.5 standard deviations below peak bone 
mass (20-year-old sex-matched healthy person 
average) as measured by DXA; the term 
"established osteoporosis" includes the presence of a 
fragility fracture. To reduce the enormous costs 
associated with osteoporotic fractures, diagnostic 
techniques have to be optimized. The most widely 
used diagnostic technique in assessing osteoporosis 
is bone mineral densitometry with either dual-
energy X-ray absorptiometry (DXA) which 
measures areal density of the spine, hip and radius 
or quantitative computed tomography (QCT) which 
measures volumetric density of the spine, are 
routine diagnostic procedures for assessing and 
monitoring osteoporotic changes; These methods 
are accurate in determining bone mass, which has 
been shown to be a good predictor of fracture risk in 
osteoporosis. There is, however, a considerable 
overlap of bone mineral density (BMD) 
measurements for patients with osteoporosis and 
healthy subjects without fracture risk. Studies have 
indicated that the BMD alone may be insufficient to 
determine the strength of cancellous bone, and that 
the trabecular architecture is an important factor in 
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assessing bone strength [3]. Several imaging 
techniques have been described to examine 
trabecular bone structure, such as projectional 
radiography, high-resolution CT (HRCT) and high-
resolution MRI (HRMRI). Image and structure 
analysis schemes have been adapted to the 
individual imaging modalities. Recently, ultrasound 
has been established as a technique that assesses 
bone structure in addition to BMD. The fractal 
dimension is a powerful tool to detect and study the 
osteoporosis for all techniques of imaging, for this 
goal the box counting method is used. We have 
developed a new methodology based on fractal 
analysis of radiographic images. Our approach 
exploits a model reference bone. A fractal 
dimension with the box-counting method is used to 
estimate the osteoporosis. The fractal dimension of a 
reference bone model is calculated, where the image 
is taken from DXA technique. When a patient 
suffers from a pathology, an X-ray image is taken 
and the fractal dimension of this image is estimated, 
finally it’s compared to the fractal dimension of that 
calculated in the reference image (reference bone 
model), that leads us to conclude there is a 
correlation between the assessment of BMD and the 
fractal dimension. 

2 Material and methods 
 
2.1 Diagnostic of osteoporosis 

The diagnosis of osteoporosis is made on measuring 
the bone mineral density (BMD). The most popular 
method is dual energy X-ray absorptiometry (DXA 
or DEXA). In addition to the detection of abnormal 
BMD, the diagnosis of osteoporosis requires 
investigations into potentially modifiable underlying 
causes; this may be done with blood tests and X-
rays. Depending on the likelihood of an underlying 
problem, investigations for cancer with metastasis to 
the bone, multiple myeloma, Cushing's disease and 
other above mentioned causes may be performed. 
Dual energy X-ray absorptiometry (DXA, formerly 
DEXA) is considered the gold standard for the 
diagnosis of osteoporosis. Osteoporosis is diagnosed 
when the bone mineral density is less than or equal 
to 2.5 standard deviations below that of a young 
adult reference population. This is translated as a T-
score. The World Health Organization has 
established the following diagnostic guidelines 
[1][4]:  

• T-score -1.0 or greater is "normal" 

• T-score between -1.0 and -2.5 is "low bone 
mass" (or "osteopenia") 

• T-score -2.5 or below is osteoporosis 

When there has also been an osteoporotic fracture 
(also termed "low trauma-fracture" or "fragility 
fracture"), defined as one that occurs as a result of a 
fall from a standing height, the term "severe or 
established" osteoporosis is used. 

2.2 State of art 
 
Authors have published methods, one can cite for 
instance: 
-The texture analysis of proximal femur radiographs 
for osteoporosis assessment, Gabor filter is used to 
calculate features from trabecular pattern recorded 
on radiographs of proximal femur [5]. The extracted 
features represent the quality or structure of the 
bone, better quality represents better bone strength, 
lower quality leads to low bone strength and could 
be suspected as osteoporosis. Extracted features 
from trabecular pattern recorded in proximal femur 
radiographs by Gabor filter match with their 
predetermined Singh index. 
- A morphometric analysis system of digital 
radiographic images was constructed for the clinical 
evaluation of bone trabecular structural change [6]. 
This system consisted of computed radiography, a 
mathematical morphological filter, skeletal 
morphometric measurements, star volume analysis, 
and node-strut analysis. The computed radiographic 
data were morphologically processed, and the 
trabecular structure was extracted as binary skeletal 
images. Analyses were made with regard to the 
skeletal number, separation, perimeter, complexity, 
continuity, and connectivity. A trial study of this 
system was used to evaluate the therapeutic efficacy 
of vitamin K2 in the osteoporotic patients. 
- Another method can indicate a correlation 
between bone mass density and 2nd harmonic 
ultrasound generation [7]. In addition to the 2nd 
harmonic amplitude variation with the degree of 
the disease, there is a similar variation of the 
duration of this signal. A numerical estimation 
of this variation is proposed. 
- Lacunarity analysis has been used to 
determine relevant parameters to differentiate 
among three types of trabecular bone structure 
(healthy young, healthy perimenopaused, and 
osteoporotic patients) from lumbar vertebra MR 
images [8]. 
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2.3 Image Acquisition 
 
Since fractal dimension is a powerful yet simple tool 
and is widely used for analysis of the trabecular 
bone structure for all image techniques, we have 
taken the conventional radiography for its 
economical advantages. X-ray images of forearm 
distal bone were taken for a group of 50 subjects of 
different age. The same persons were measured the 
forearm bone mineral density using dual-energy X-
ray absorptiometry. The X-ray images were all 
taken at 53 kV and 4 mAs, and films were 
developed using the same chemical process. A 
calibration phantom Agfa Mamoray of specified 
absorption of X-ray radiation was placed in each 
image. The images were digitized at 7 bit/pixel 
using a CCD camera. The digital images were 
brightness-standardized by making the phantom 
average brightness the same in all images. A 
256x256-pixel region of interest (ROI) was defined 
in the field of every image, as shown in Figure 1[9]. 

 

 
 
Fig. 1. Example of an X-ray image of distal forearm 
bone with a square ROI. 
 
3. Image preprocessing 
 
3.1 Thresholding by histogram 
 
Before image processing, we prepare the image for 
better quality, for this reason we have to apply a 
thresholding to the image. There are lots of methods 
to choose the threshold; in this section we present it 
by using a histogram (Fig 2), in this case the 
threshold was chosen by calculating the average on 

the histogram; this is an important tool in image 
processing and is widely used [10]. 

 

 
Fig. 2. Histogram of the image of the figure. 1 

 
3.2 Filtering the image 
 
In Signal processing or image processing it is 
usually necessary to use filters [11][12][13]. To 
obtain the best image quality, it is vital to perform a 
high level noise reduction before performing the 
image processing steps. Always in the way to get a 
good quality of the image it’s necessary to perform 
high degree of noise reduction in an image before 
performing higher-level processing steps. The 
median filter is a non-linear digital filtering 
technique, often used to remove noise from images. 
The idea is to examine a sample of the input and 
decide if it is representative of the signal. This is 
performed using a window consisting of an odd 
number of samples. The values in the window are 
sorted into numerical order; the median value, the 
sample in the center of the window, is selected as 
the output. The oldest sample is discarded, a new 
sample acquired, and the calculation repeats. 
 

4. Image processing 
 
4.1 The dimension and fractals 

 
A known method to measure a length, surface or a 
volume consists in covering sets with paving stones 
(then its only a question of counting the number of 
paving stones to obtain the length, surface or 
volume of the set), of which the length, surface or 
volume is taken as measuring unit. If ε is the side 
(length standard) of a paving stone, measurement 
obtained is [14]: 

M = N . ε d = N µ              (1) 

ROI 
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Where µ is the unit of measure (length, surface or 
volume). Mandelbrot postulates that there are curves 
of intermediate size between 1 and 2 of surfaces of 
size higher than 2, and that these objects precisely 
have the property to have no length or a precise 
surface, not more than one volume does not have a 
surface or a square does not have a length. This 
dimension, intermediary between the integer values, 
was baptized neologism “fractal” so that no 
confusion is made between a traditional surface (of 
D = 2 dimension) [15]. One is brought to believe 
that a geometrical object, about scale, can also 
generate as well the small as the big details. Such an 
object will be known as to have an internal 
homothety, or to be self-similar. It is known that if 
one transforms a line by a homothety of arbitrary 
ratio, whose centre belongs to it, one finds this same 
line, and it is the same for any plane and entire 
Euclidean space. In fractal geometry, the fractal 
dimension, D, is a statistical quantity that gives an 
indication of how completely a fractal appears to fill 
space, as one zooms down to finer and finer scales. 
There are many specific definitions of fractal 
dimension and none of them should be treated as the 
universal one. From the theoretical point of view the 
most important are the Hausdorff dimension, the 
packing dimension and, more generally, the Rényi 
dimensions. On the other hand the box-counting 
dimension and correlation dimension are widely 
used in practice, partly due to their ease of 
implementation. Although for some classical 
fractals all these dimensions do coincide, in general 
they are not equivalent. For example, what is the 
dimension of the Koch snowflake? It has 
topological dimension one, but it is by no means a 
curve-- the length of the curve between any two 
points on it is infinite. No small piece of it is line-
like, but neither is it like a piece of the plane or any 
other. In some sense, we could say that it is too big 
to be thought of as a one-dimensional object, but too 
thin to be a two-dimensional object, leading to the 
question of whether its dimension might best be 
described in some sense by number between one 
and two. This is just one simple way of motivating 
the idea of fractal dimension. There are two main 
approaches to generate a fractal structure. One is 
growing from a unit object, and the other is to 
construct the subsequent divisions of an original 
structure, like the Sierpinski triangle (Fig. 3) [2]. 
Here we follow the second approach to define the 
dimension of fractal structures. If we take an object 
with linear size equal to r residing in Euclidean 
dimension, and reduce its linear size to be r in each 
spatial direction, it takes N(r) number of self similar 

objects to cover the original object. However, the 
dimension defined by:  

 

r

rN
D

1
log

)(log=                  (2) 

is still equal to its topological or Euclidean 
dimension [1]. By applying the above equation to 
fractal structure, we can get the dimension of fractal 
structure (which is more or less the Hausdorff 
dimension) as a non-whole number as expected. 

       

where N(ε) is the number of self-similar structures 
of linear size ε needed to cover the whole structure. 
For instance, the fractal dimension of Sierpinski 
triangle (Fig.3) is given by: 
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Fig. 3. Sierpinski triangle 

Closely related to this is the box-counting 
dimension, which considers, if the space were 
divided up into a grid of boxes of size ε, how does 
the number of boxes scale that would contain part of 
the attractor? Again: 

(3) 

(4) 
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Other dimension quantities include the information 
dimension, which considers how the average 
information needed to identify an occupied box 
scales, as the scale of boxes gets smaller: 

 

and the correlation dimension, which is perhaps 
easiest to calculate, 

 

where M is the number of points used to generate a 
representation of the fractal or attractor, and gε is the 
number of pairs of points closer than ε to each other. 
It should be checked that the curves do not have 
double points. It is not the same with other curves 
which have a double infinity of points. It follows 
that for them, the concept of paving changes 
significance and that the definition of the homothety 
dimension becomes debatable. 

4.2 The box counting method 
 

Linear fractal images are the outcome of absolute 
generating processes and the information related to 
each step of the process can be calculated exactly 
[16][17]. For instance, in a linear fractal image like 
Koch boxes, seven new segments, three times 
smaller than the previous segment, are generated at 
each step in the generating process. Therefore, an 
exact mathematical calculation procedure follows. 
After the first step, the image contains seven 
segments whose size is 1/3 that of the initial value; 
after the second step, the image contains 49 
segments of size 1/9; and so on. In linear fractals, 
even after two steps of the generating process, the 
fractal dimension can be calculated exactly. In non-
linear fractal images, because of the existence of 
random elements there is a statistical (i.e., not 
deterministically mathematical) generating process 
and the information available at each step of the 
generating process is not exact [15][17]. Natural 
fractals fall into this category of fractals. For this 
reason, an appropriate method is needed to estimate 
the fractal dimension of non-linear images.  Among 

the techniques discussed by Mandelbrot, the box 
counting method is found like the most adapted for 
the estimate of fractal dimension [1][18]. Voss, 
Keller and Sarkar carried out a box counting method, 
the purpose of which is to consider the average 
number, noted N (r), of cubic boxes with fixed side 
length r, necessary to cover the image, considered as 
a surface in R3 space [19][20][21]. For that we 
estimates P (m, r), the probability that one box of 
size r, centered on an arbitrary point of surface, 
contains m points of the set. We have thus [22]: 

                ∑
=

=∀
Np

m

rmPr
1

1),(,                       (8) 

Where, Np is the number of possible points in the 
cube. The estimate of the average number of 
disjoined boxes necessary to cover surface is : 
 

     ∑∑
==

==
Np

m

Np

m m

rmP
rmNrN

11

),(
),()(         (9) 

 
The estimate by the least squares method of the 
slope of the group of dots (log (r), - log (N (r))), 
obtained with boxes of increasing size r, and gives 
the estimate of fractal dimension. The algorithm 1 
presents this calculation [16]: 

 
Initialization: 
FOR r =1 to rmax and m = 1 to r3 DO 
 P(m,r) = 0 
FOR any site s of the image DO 
 BEGIN 
 For r = 1 to rmax DO 
  BEGIN 
       - Center a cube with           
                               dimension r on [s, A[s]] 
       - Count the number m of  
                               pixels of the image  
                               which belong to this cube 
       -  Increment P (m,r) by 1 
  END 
 END 
FOR  r = 1 to rmax DO 

        ∑
=

=
Np

m m

rmP
rN

1

),(
)(  

Estimate by the method of least squares the slope D 
of the curve (log (r), -log (N(r)) ) 
 
Algorithm. 1. The box counting method algorithm. 
 
The mathematical method (box counting method) is 
illustrated in the algorithm 1 for any image of 

(5) 

(6) 

(7) 
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dimension 3. After the application of the threshold 
and the filter of the image, one initializes the 
probability to find a box of the side length ‘r’ and 
contains m pixels to 0. After that, for any pixel ‘s’ 
of the image, we centre a cube (box) with dimension 
‘r’, as a result one counts the number ‘m’ of pixels 
which belong to this box and increments the 
probability P(m,r) by 1 , i.e. if a box containing m ≠ 
0 is found, the number of boxes is incremented. We 
repeat this operation from r = 1 to rmax (chosen), 
after that for each r, we calculate N(r) = sum(P(m,r) 
/ m). Finally by the method of least square we 
calculate the slope ‘D’ which is the fractal 
dimension of the curve (log (r), -log(N(r)). 
We can explain this method as follow: 
We apply a grid on the image where the side length 
of the boxes = r, for each operation (fig .4), we 
calculate ‘m’ pixels belonging to each box, then we 
increment P(m,r) if m ≠ 0. Finally, we calculate N(r) 
for each grid, which will result in r = 1 up to rmax 
(chosen) N(r) = sum (P (m,r) / m); therefore, to 
calculate the fractal dimension D, we use the 
definition, i.e. The slope of the curve (log (r), -
log(N(r)). 
 
 

 
(a) 

 

 
(b) 

 

 
(c) 

 
Fig. 4. Example of calculate the fractal dimension of 
the Box Fractal. 

 
This is an example of using box-counting method; 
we put the fractal on a sheet of graph paper (grid). 
For this fractal, we use boxes with sizes 1/3 and 1/9. 
In the first case, 5 boxes are not empty. In the 
second case, there are 25 boxes and in the third 
there are 125. Using these numbers, we find that in 
the first case D = log 5 / log [1/(1/3)] = 1.46. If you 
do it for the second case, you will find that the 
answer is the same, which means that our dimension 
is accurate. 

 
5. Result    
 
Before using the Box counting method in 
radiographic images of patients who are suffering 
from the disease, we have to estimate the fractal 
dimension of a reference or an ideal bone. The 
concept to find the fractal dimension using the box 
counting method in radiographic images is not 
simple, and the assessment of BMD with this 
dimension is complex because many factors could 
affect the calculation/results (region imaging, side 
length box, rmin and rmax,……). To compare the 
fractal dimension of a radiographic image with that 
of the reference model, we take a radiographic 
image of a healthy bone, or an artificial bone similar 
to the technique in absorptiometry, (so-called 
reference or ideal bone model), we calculate its 
fractal dimension, and the corresponding BMD is 
known (T-score). When a patient is present for the 
estimation of a BMD, a radiographic image is made 
and the new fractal dimension is calculated. The 
bigger fractal dimension is, or the bigger the gap 
between the patient’s fractal dimension and the 
reference fractal the higher the severity of the 
disease. Altogether, 50 X-ray bone images were 
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digitally recorded. The images represented forearm 
bones of different BMD level that was 
independently measured for each subject by means 
of the DXA technique. Based on the densitometry 
results, the whole group of subjects was divided into 
3 categories: 
Normal (16 subjects), of physiological loss of 
calcium (beginning osteoporosis or osteopenia, 16 
subjects), and of abnormal loss of calcium, i.e. 
severe osteoporosis (18 subjects). For every texture 
parameter, its mean and standard deviation were 
computed within each of the three groups of patients 
(Table 1). 
 
Table 1. T-score – result of DXA examination 
(difference to population BMD mean of young 
people, normalized to standard deviation), µ(σ) - 
mean value (standard deviation) of a given 
parameter. 
# 
subjects 
 

T-score 
 

 BMD 
g/cm2 

µ 0,50 16 Sd > -1 
 σ 0,2 

µ 0,35 16 -1≥ Sd < -2.5 
σ 0.06 
µ 0,14 18 Sd ≤ -2.5 

 σ 0.11 
 
 

         
(a)       (b) 

 

 
(c) 
 

Fig.  5. Sample X-ray images of bone tissue for 
different BMD coefficients (a) BMD = 0.50 g/cm2, 
(b) BMD = 0.35 g/cm2, (c) BMD = 0.14 g/cm2. 
 

In what follows we will apply the method for the 
images X-ray test (Fig. 5) of size 125x125 pixels in 
grayscale, and see the results of the calculation of 
fractal dimension. For that, we propose to plot 
curves giving the number of boxes versus their side 
length r, then the straight regression line which 
estimates as well as possible the log (N(r)) versus 
log (1/r); the plot will be done on all the points and 
outdistances it between the size of boxes is equal to 
1. 

  

 

(a) 

 

(b) 
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(c) 

Fig. 6. The plot of the number of boxes versus the 
side length r for the figure 5, (a) BMD = 0.50 
g/cm2, (b) BMD = 0.35 g/cm2, (c) BMD = 0.14 
g/cm2. 
 
The Figure 6 represents the number of boxes 
according to their sizes (r), in this case r = 1 to 28. 
We notice that the smaller the r the more the number 
of boxes, and inversely, the more we increase r the 
smaller the number of boxes. In addition we see a 
sharp fall of number of boxes after length r = 1, this 
explains the existence of a significant number of 
boxes if we fix the side length r at 1. When r reaches 
20 or beyond, it becomes increasingly challenging 
to count the number of boxes, for this we give a 
table of some values to see what happens for boxes 
which side length r  = 1 to 28 (Table 2). 

 
Table 2. Some values of a number of boxes 
according to the side length r. 
 
r 
 

N(r) Fig. 6(a) N(r) Fig. 6(b) N(r) Fig. 6(c) 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
15 
20 
25 
28 

1540 
312 
116 
64 
39 
24 
15 
11 
11 
7 
3 
2 
1 
1 

2402 
115 
115 
50 
31 
16 
13 
9 
7 
5 
3 
2 
1 
1 

2727 
362 
109 
44 
25 
17 
10 
7 
6 
4 
3 
2 
1 
1 

 

 

(a) 

 

(b) 

 

(c) 

Fig. 7. The plot regression of the curve log N(r) 
versus log (1/r) by the method of least squares, (a) 
BMD = 0.50 g/cm2, (b) BMD = 0.35 g/cm2, (b) 
BMD = 0.14 g/cm2. 
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In this experiment we obtained a dimension Da = 
2.61 applied to the figure 5 (a), Db = 2.83 applied to 
the figure 5 (b), and Dc = 2.95 applied to the figure 
5 (c), for r = 1 to 28 according to their BMD. The 
only parameter which can influence the calculation 
of fractal dimension is the actual range of the sizes 
of the windows (boxes). This point will be expanded 
in the next section.  

 
5.1 The range of box sizes 

 
In using the box-counting method, challenges 

arise when the range of box sizes is to be 
determined. In particular, defining the largest and 
smallest box sizes to use requires extreme care. In 
addition, the positioning of the grid to superimpose 
on the image has a critical effect on resulting 
estimate of fractal dimension. Therefore, both 
factors should be verified [23][24]. To find fractal 
dimension, it is challenging to choose the sizes of 
the boxes for complex images, like the radiographic 
images. Several tests were carried out on different 
sizes and the values of fractal dimension were 
obtained.   
 

 
(a) 

 

 
(b) 

 

 
(c) 

 
Fig. 8.  The box counting method with rmin = 2, rmax 
= 27, applied to the image of figure 5, (a) BMD = 
0.50 g/cm2, (b) BMD = 0.35 g/cm2, (c) BMD = 
0.14 g/cm2. 
 
The change in range is illustrated in figure 8, and we 
notice that the number of boxes change. 
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(a) 

 

(b) 

 

(c) 

Fig. 9. The regression of the curve log N(r) by the 
least squares method, (a) BMD = 0.50 g/cm2, (b) 
BMD = 0.35 g/cm2, (c) BMD = 0.14 g/cm2. 
 

The change in range resulted different results for the 
same images compared to the previous range, the 
fractal dimensions in this case are: Da = 2.22, Db = 
2.32, Dc = 2.39 and this for rmin = 2 and rmax = 27, 
Therefore we can conclude that there are 4 
possibilities: 

- rmin small, rmax small 
- rmin small, rmax large 
- rmin large, rmax small 
- rmin large, rmax large 

Of course it is necessary that they are sufficiently 
isolated to avoid the effect of overlapping. 
We give in table 3 certain values of fractal 
dimension corresponding to the range of the box 
sizes. This last informs us about the influence of 
range of the box size on the calculation of fractal 
dimension. 
 
Table 3. Some examples of  the fractal dimension. 
rmin    -  
rmax 

Da (BMD 
= 0.50 
g/cm2) 

Db (BMD 
= 0.35 
g/cm2 ) 

Db (BMD 
= 0.14 
g/cm2 ) 

1 – 28 
1 – 27 
2 – 27 
2 – 28 
1 – 25  
2 – 25  

2.61 
2.63 
2.22 
1.68 
2.56 
1.54 

2.83 
2.91 
2.32 
1.85 
2.69 
1.65 

2.95 
2.94 
2.39 
1.96 
2.92 
1.82 

 
5.2 Choice of box sizes 
 
If we see table 3, we notice a variability of values 
for the fractal dimension, an improvement of the 
original method can be implemented, it is the choice 
of rmin and rmax [25]. Up to now it is difficult to 
choose the side length r of the boxes considering the 
complexity of the images, but we can always 
compromise between rmin and rmax, these two 
parameters are not only influential to one another, 
but more importantly on the calculation of the 
fractal dimension. For the choice of rmin and after 
several tests carried out, it is safe to say that we can 
choose r from 2; this will give us a greater 
probability of finding at least one box; so, for rmin = 
1, we are confronted with the problem of the pixel 
size, where a 1x1 box cannot be centered due to its 
single pixel point. The isolated pixels at rmin = 1 
should not be taken into consideration, so rmin = 2, is 
a good choice to find a box and to detect pixels 
going up to 4 (2x2). For rmax, it is fixed in the 
following way: 
As soon as N(r) get too close or overlap each other, 
we stop the process; from there, an extraction of the 
maximum value of r is carried out. We can also fix 
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it from the moment when the number of windows 
(boxes) decreases towards zero (this number must 
stop at 1); from this moment it is not necessary to 
repeat the iterations for larger sizes. In addition, the 
value of rmax should not exceed the framework of the 
image, where: 

- If the horizontal size of the image (x) ≤ to 
the vertical size of the image : rmax < x/2. 
- If the vertical size of the image (y) ≤ to the  
horizontal size of the image :   rmax < y/2. 

 
6. Discussion 
 
The fractal dimension reflects roughness of the bone 
image texture that is related to the bone 
microarchitecture (Table 4). It is of high importance, 
because mechanical endurance of the bone tissue 
depends largely on the state of the bone internal 
structure. For a subject suffering from osteoporosis 
(BMD = 0.14 g/cm2, T-score = -6.63), the fractal 
dimension (Db = 2.95). As seen in Table 3, the 
values of fractal dimension are lower for healthy 
subjects in this study. Image brightness shows the 
highest correlation to BMD. This can be explained 
by the fact that lower calcium contents results in 
lower attenuation of X-rays in the bone, so the 
photographic film becomes darker and digital image 
brightness is reduced. This applies to brightness-
equalized images. It is evident that image brightness 
standardization is a necessary preprocessing step for 
reliable analysis of the study of the mineral bone 
density. We have seen in the previous section that 
the choice of range of r affected the measure of the 
fractal dimension in the radiographic images; the 
same problem is located in the images of the ideal 
bone model or reference bone model. So for 
instance we choose a box range (from rmin to rmax) as 
an example, and see the correlation between the 
BMD and both of the fractal dimensions (reference 
image and image of a patient respectively). We 
know that the fractal dimension of an ideal bone is 
very low, because its’ microarchitecture density is 
very high. 
 
Table 4. Correlation the both fractal dimension with 
BMD.  
patients 
 

T-score 
 

BMD 
 

rmin-rmax D Dref 

16 Sd > -1 
 

0,50 1 - 28 2.61 2.0 

16 -1≥Sd<-
2.5 

0,35 1- 28 2.83 2.0 

18 Sd ≤-2.5 
 

0,14 1 - 28 2.95 2.0 

As discussed previously, the reference fractal 
dimension is known by its calculation, in reference 
of the radiographic image of healthy subject, or an 
ideal bone. If we take Dref = 2.0 as an example, we 
can see the difference between the fractal 
dimensions in the ROI at different ages. We know 
by definition the higher the fractal dimension the 
more the osteoporosis increase. If we look at table 4, 
this definition is verified: for BMD = 0.50 g/cm2, 
the fractal dimension = 2.61, for BMD = 0.35 
g/cm2, this fractal dimension = 2.83 and it’s equal 
to 2.95 for BMD = 0.14 g/cm2, so there is a 
correlation between the fractal dimension and the 
BMD (Fig. 10). An alternative way to confirm the 
disease is to do a simple arithmetic operation: 
Final fractal dimension = D - Dref 
We calculate this final fractal dimension and we 
compare it with the others, for BMD = 0.50 g/cm2, 
final fractal dimension = 0.61 and for BMD = 0.14 
g/cm2, final fractal dimension = 0.95; 0.61 < 0.95, 
thus we can conclude in this case, the osteoporosis 
is severe, i.e. the subjects with BMD of 0,50 g/cm2 
are more healthier than those with BMD of 0.14 
g/cm2 because their fractal dimension is closer to 
the reference fractal dimension than the other one. 

D = f (BMD)

2,95
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Fig 10. The Fractal Dimension correlated to the 
bone mineral density. 
 
One can conclude that by measuring changes in 
fractal dimensions parameters of X-ray images it is 
possible to monitor changes in calcium contents and 
internal structure of the bone. Fractal dimension by 
the box-counting method analysis shows potential 
usefulness as an aid to the diagnosis of skeletal 
diseases. Recent studies on the fractal dimension 
using the box counting method in the radiographic 
images were made, which have conducted a fractal 
analysis (with the box-counting method for a binary 
images) of low-dose digital chest phantom 
radiographs and calculate fractal-feature distance 
using the fractal dimension. This method uses more 
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resources than the method offered [26]. Several 
methods of fractal mathematics have been applied 
for analysis of cancellous bone [27][28][29][30]. 
These include a surface area technique, a boundary 
tracking algorithm combined with box counting 
dimension, In those studies, a certain discrimination 
of the degree of osteoporosis was possible 
[27][28][30]. The calculation of the fractal 
dimension in dependency of the binarization 
threshold value further improves the classification, 
in our method we calculate the threshold by 
histogram, and it differs from an image to another, 
this method calculates the best threshold for the 
image in the preprocessing step. Also in other 
studies using box counting methods, the influence of 
the side length has never been carried out, in our 
case we have shown that the range of the side length 
influence the calculation of the fractal dimension 
and how to choose this parameter 
[31][32][33][34][35]. The originality of our method 
is the use of the reference fractal dimension, and the 
correlation with the BMD, we have optimized our 
method in all points of view, i.e. its ease of 
implementation and economical properties, yet 
keeping the powerful tool to study the disease. 

 
7. Some Examples 
 

In this section we would like to present some other 
techniques of imaging and apply our method to 
study osteoporosis. Imaging techniques have been 
used at different skeletal sites: (a) conventional 
radiography at the calcaneus, the distal radius, the 
phalanges, the spine and the femur [36][37][38][39]; 
(b) magnification radiography at the spine [40]; (c) 
high-resolution CT at the spine [41]; and (d) high-
resolution MRI at the calcaneus (Table 5) [42]. 
 
7.1 Magnification radiography 
 
Magnification radiography  is a radiography using a 
micro focal X tube and increased subject-film 
distance to provide geometric magnification of the 
subject without unacceptable loss of sharpness and 
resolution or an undesirable increase in radiation 
exposure caused by increasing the distance between 
the subject and the film. 
 
 
 
 
 
 
 
 

Table 5. Imaging techniques used at different skeletal sites 
Imaging technique Texture, structure analysis technique 
Conventional radiography 
In vitro: femur-, spine- and calcaneus specimens [42] 
 
In vivo: lumbar spine [37] 
Metacarpals and phalanges [38][39] 
 
 
Distal radius [38] 
Calcaneus 
Magnification radiography 
In vitro: spine specimens [40] 
 
 
 
In vivo: lumbar spine [40] 
High-resolution CT 
In vitro: spine, femur and ilium specimens [41] 
 
 
In vivo: lumbar spine and distal radius [43] 
 
 
High-resolution MRI 
In vitro: femur and spine specimens [41] 
 
In vivo: distal radius [44] and calcaneus [45] 

 
Morphological parameters, fractal dimension 
Fast Fourier transform, fractal dimension 
Digital skeletons, mathematical filter techniques (« white top 
hat », Co-occurrence matrices 
 
 
Morphological parameters, digital skeletons 
Fractal dimension 
 
Morphological parameters, fractal dimension, digital skeletons, 
mathematical filter techniques (« white top hat »), Co-
occurrence matrices 
 
Fractal dimension 
 
Fractal dimension, 2D and 3D parameters analogous to 
histomorphometry 
 
Digital skeletons, « Run-length » method, fractal dimension, 2D 
and 3D parameters analogous to histomorphometry 
 
2D and 3D parameters analogous to histomorphometry, fractal 
dimension, digital skeletons, autocorrelation 
 
Morphological parameters, fractal dimension, digital skeletons, 
autocorrelation, tubularity 
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(a) 
 

 
(b) 

 
Fig. 11. Magnification radiographs of two vertebral 
spine specimens with (a) a high and (b) with a low 
maximum compressive strength. Note the 
differences in trabecular structure, with a more 
vertical orientation of the trabeculae in the weaker 
specimen, which also appears more coarse. 
 
The Results gives 2.42 for fractal dimension in 
figure 11 (a), and 2.44 in figure 11 (b), the BMD in 
this last figure is important, we can see that the 
fractal dimension gives good result and is correlated 
to the BMD in this case. 
 
7.2 High-resolution CT 
 
Using HRCT in vivo an in-plane spatial resolution 
of up to  400 µm  and  a  slice  thickness  of  1 mm  
are  obtained with  clinical  scanners;  thus,  
trabecular  architecture  is subjected to partial 
volume effects, and individual trabeculae are not 
depicted. However, the “pseudo-trabecular” 
structure depicted by images obtained (Fig. 12) 
correlates with biomechanical measures of bone and 
the trabecular architecture [41].  Micro-CT systems 
are under development with spatial resolutions of 
28±250 µm. Most of these systems can only be used 
in vitro for small tissue samples, but some can be 

applied to the peripheral skeleton (distal radius) in 
vivo with a spatial resolution of 170 x 170 x 480 µm 
[43]. 
 

 
(a) 
 

 
(b) 

 
Fig. 12. High-resolution CT of two bone cube 
images obtained from the spine (spatial resolution 
400 x 400 x 1000 µm) with (a) a dense trabecular 
structure and a high elastic modulus, and (b) with a 
scarce trabecular structure and a low elastic 
modulus, and. Note the « pseudo-trabecular 
structure » due to partial volume effects. 
 
In this experiment, the results are 1.63 for fractal 
dimension in figure 12 (a), and 1.85 in the Figure 12 
(b), we can notice the degree of BMD is more 
important in High-resolution CT. 
 
 
7.3 High-resolution MR imaging 
 
Modern high-field (1.5-T) clinical scanners with fast 
gradients and optimized coil design provide spatial 
resolutions of up to 150 µm in plane and slice 
thicknesses as low as 250 µm; these spatial 
resolutions have been obtained in vitro in bone 
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specimens and in vivo in the phalanges, the distal 
radius and the calcaneus [44]. Using small bore 
scanners with higher field strengths, even  higher  
spatial  resolutions  can  be  obtained  up  to 
isotropic  voxel  sizes  of  50 µm  [42]. Using 
HRMRI, however, imaging problems inherent to 
MRI and technical parameters have to be considered.  
Due to susceptibility effects between bone and bone 
marrow, the trabeculae may appear thicker in 
gradient-echo images compared with spinecho 
images. In order to obtain images that are 
comparable, imaging parameters have to be 
standardized. Since most of the texture parameters 
require binarized images, a thresholding technique 
with a high reproducibility has to be used. Intensity-
derived thresholding techniques based on the 
histogram of signal intensities and internal 
calibration techniques have been used [46]. 
 

 
(a) 

 
(b) 

 
Fig. 13. High-resolution MR image obtained from 
humain cadaver spines (resolution 117 x 156 x 300 
µm) with a ascarce trabecular structure and a low 
elastic modulus, and b with a dense trabecular 
structure and a high elastic modulus. Compared 
with the CT image (Fig 12) the trabecular structure 
is depicted with fewer spatial volume effects and 
thus reflects the true histomorphological structure 
better. 

It seems quite possible to use the method on MR 
data, thus avoiding the radiation dose associated 
with HRCT or DXA, although optimum 
parameters (e.g. the pulse sequence) have still to 
be determined. Investigation of the impact of the 
new structural parameter as a replacement for the 
morphological analysis is in progress. By 
combining several parameters, such as BMD in the 
cortical and the tranecular area, and the fractal 
classification. 
For this last test of images, the results obtained are 
1.27 for fractal dimension in figure 13 (a), and 1.80 
in figure 13 (b).  
The technique of fractal dimension is very 
powerful and accurate, and this has been 
demonstrated by comparison with other methods, 
the difference in healthy bone and osteoporotic 
bone gives a different fractal dimensions 
(Dosteoporotic-Dhealthy). We can conclude that our 
method has given good results in the detection of 
osteoporosis in all techniques of imaging. 
 
Future research can be directed to study the 
evolution of the disease; in this case the 
osteoporosis can be improved significantly by its 
medical treatment which can be divided into tree 
classes: 

1- Medication: by prescribing the most 
common drugs which are bisphosphonates, 
strontium ranelate and teriparatide. 
2- Nutrition: calcium is required to support 
bone growth, and some studies have shown 
that a high intake of vitamin D reduces 
fractures in the elderly. 
3- Physical Exercise: multiple studies have 
shown that aerobics, weight bearing, and 
resistance exercises can all maintain or 
increase BMD in postmenopausal women. 

Also we can direct the research to predict the 
osteoporosis and to find the exact degree of the 
disease with the fractal dimension, in this case one 
takes several images from a patient's bone 
according to different age (time) and calculates the 
fractal dimension; therefore, by using the 
comparative method of fractal dimension, we can 
predict the state of the osteoporosis, i.e. we can 
estimate the time when the disease began, this is 
one way to monitor the onset of osteoporosis. 
Some research can be carried out regarding the risk 
of bone fracture. There is a correlation between the 
latter and the BMD; when a risk of bone fracture is 
presented, we take a radiographic image and 
calculate its fractal dimension, and this value is 
taken as a reference to predict the probability of 
bone fracture.     
Also further work is needed to select optimum 
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texture parameters from a variety of known 
approaches, including wavelet analysis and 
mathematical morphology derived features. Also, 
high-resolution flat bed transparency scanner is 
being used at present for image digitization with an 
increased accuracy compared to the CCD camera. 
First experiments show that fractal dimensions 
computed for scanned radiographic films 
demonstrate significantly higher correlation to 
BMD compared with CCD-recorded images. 
 
   
8.  Conclusion  

 
Throughout this paper we studied the bone mineral 
density with the fractal dimension in radiographic 
images of two dimension, after an introduction on 
the theory of the fractals and its dimension, we have 
introduced the radiographic images, we discussed 
that these images was complex and non-linear, for 
the calculation of their fractal dimension it would 
have been necessary to find a method that can be 
freed from the existence of the phenomenon of the 
statistical random elements that these images 
present. For that, the box counting method is up to 
the task and gave good results. We did not only 
calculate the fractal dimension, we also noticed that 
the range of the box sizes influenced much of the 
calculation for this dimension. For that we presented 
some calculations of fractal dimension 
corresponding to certain range of r, however, 
extreme care must be taken in the choice of this 
range for the analysis. The choice of size for these 
boxes is worked out for better calculation of the 
fractal dimension. We have seen the fractal 
dimension is a very powerful tool for the detection 
of BMD; we found a new approach that reduces the 
cost of the estimation of BMD. This method uses a 
simple X-ray which has been preprocessed to 
improve the quality; the calculation of the fractal 
dimension of a subject is achieved compared to a 
reference fractal dimension of a healthy bone. 
Finally the method has been tested in other imaging 
techniques and gave positive results. The 
importance and usefulness of the fractal concept can 
be summarized as follows: 
1. Fractals possess mathematically strange 
properties and imply very interesting novel physical 
phenomena. 
2. Fractals are suitable to model complicated real 
systems. 
3. Fractals allow for the application of rigorous 
scaling and renormalization methods without 
approximations. 
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