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Abstract: - Decomposition of multi-exponential and related signals is generalized as an inverse filtering 
problem on a logarithmic time or frequency scale, and discrete-time filters operating with equally spaced data on 
a logarithmic scale (geometrically spaced on linear scale) are proposed for its implementation. Ideal prototypes, 
algorithms and types of filters are found for various time- and frequency-domain mono-components. It is 
disclosed that the ill-posedness in the decomposition originates as high sampling-rate dependent noise 
amplification coefficients arising from the large areas under the increasing frequency responses. A novel 
regularization method is developed based on the noise transformation regulation by filter bandwidth control, 
which is implemented by adaptation of the appropriate sampling rate. Algorithm design of decomposition 
filters is suggested joining together signal acquisition, regularization and discrete-time filter implementation. 
As an example, decomposition of a frequency-domain multi-component signal is considered by a designed 
filter. 
 
Key-Words: - Decomposition, Multi-Component Signals, Distribution of Time Constants, Functional Filters, 
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1 Introduction 
Many areas of science and technology, such as 
material science, mechanics, biology, nuclear and 
electrical engineering, etc. face the problem of 
analysing monotonic and locally monotonic signals. 
The multi-component signals with the real decaying 
exponentials are probably the most studied case, 
although similar problems arise for many other 
monotonic mono-components, such as integrals, 
derivatives, real and imaginary parts of the Fourier 
transforms of the real exponentials, etc. 
     Although the problem of analysis of monotonic 
signals is not new, let remember the works [1-6] 
became already the classical ones, and is widely 
studied in various fields, and especially in relaxation 
spectroscopy [7-9], the problem remains a 
challenging signal processing task. The principal 
reasons are the exceedingly non-orthogonal 
behaviour of the monotonic signals no constituting 
an orthogonal base, and the fundamental ill-
posedness in the sense that small perturbations in 
input signal can yield unrealistic high perturbations 
in the results of decomposition. 
     Motivation of this work is to analyze the problem 
from the up-to-date signal processing perspective 

[10] and to derive accurate, robust and 
computationally efficient algorithms. 
 
2 Monotonic Multi-Component 

Signals 
Multi-exponential decays are described by the 
following model 

∫
∞

−=
0

)/exp()()( τττ dtgtx , (1) 

where g(τ) is a function of distribution of time 
constants (DTC) or spectrum of time constants. For 
the discrete (line) spectrum, g(τ) takes the form 

∑ −=
n

nngg )()( ττδτ ,   

where δ(τ) is the Dirac delta function. 
     In some fields, e.g. in relaxation studies [7-9], Eq. 
(1) is modified in the form 

∫
∞

−=
0

/)/exp()()( ττττ dtftx ,  (2) 
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where new – so-called  logarithmic DTC function 
τττ )()( gf =  is introduced. 

     To generalize model (2) for other monotonic and 
locally monotonic signals, we modify it into the form 

∫
∞

=
0

/),()()( ττττ duKfux , (3) 

where variable u is time or frequency, and kernel 
K(u,τ) represents a family of the time-domain and 
frequency-domain mono-components being of great 
importance in various fields 
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Kernel (4a) is the basic real decaying exponential, 
while (4b) and (4c) represent its derivative and 
integral, respectively. In its turn, kernels (4d) and 
(4e) embody the real and imaginary parts of the 
Fourier transform of kernel (4b). A pair of kernels 
(4f) and (4e) describes the frequency response of the 
system inverse to that characterized by a pair of 
kernels (4d) and (4e). 
 
 
3 Decomposition Filters 
 
 
3.1 Background  
Since kernels (4a) – (4f) depend on the ratio or 
product of arguments u andτ, multi-component 
signal (3) may be converted in the form of the Mellin 
convolution type transform 

∫
∞

==
0

/)/()()(*)()( ττττ dukfukufux
M

, (5) 

where 
M

*  denotes the Mellin convolution and k(u/τ) 
are kernels (4a) – (4f) modified in the form needed 
for converting Eq. (3) into Eq. (5) (so-called 
canonical kernels [11]). 
     In the spectral domain, convolution (5) is 
described as  

)()()( μμμ jKjFjX = ,  (6) 

where X(jμ), F(jμ) and K(jμ) represent the Mellin 
transforms of appropriate functions x(u), f(u) and 
k(u)  

=)( μjX  M ∫
∞

−−=−
0

1)(]);([ duuuxjux jμμ . 

     The monotonic multi-component signals extend 
typically over long intervals of time or broad ranges 
of frequency [7-9], which is a reason for considering 
them on a logarithmic scale 

,/log 0
* uuu q=   (7) 

where u0 is an arbitrary normalization constant. For 
logarithmic arguments (7), to remember that 

*
0

uquu = , Eq. (5) alters into the appropriate Fourier 
convolution type transform ( 10 =u ) 

)(*)()( *** u
F

uu qkqfqx = ,   

which also has spectral presentation (6), however, in 
this case, X(jμ), F(jμ) and K(jμ) represent the 
Fourier transforms of )( *uqx , )( *uqf  and )( *uqk , 
i.e. functions with logarithmically transformed 
arguments. Thus, parameter μ, named the Mellin 
frequency [12], may be interpreted as a frequency of 
a signal (function), whose independent variable (time 
or frequency) is logarithmically transformed. 
     From (6) follows equation 

)(/)()( μμμ jKjXjF =   (8) 

describing DTC determination in the spectral 
domain. Equivalent representations of (8) in the time 
domain are the Mellin deconvolution 

)(*)()( 1 ukuxuf
M

−=  

or the Fourier deconvolution 

)(*)()( *1** u
F

uu qkqxqf −= ,  (9) 

where )(1 uk −  and )(
*1 uqk −  are inverse kernels for 

linear and logarithmic arguments, respectively. The 
inverse kernels exist in the sense of generalized 
functions and the analytic expressions of )(1 uk −  and 

)(
*1 uqk −  for kernels (4a) – (4f) are not known. 

However, one according to (8) can derive the 
appropriate spectral counterparts of the inverse 
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kernels as the reciprocals of the Mellin or Fourier 
transforms of k(u) or )( *uqk  

/1)( =μjH M =− ]);([ μjuk  

  /1 ⎞ ]);([ * μjqk u − .   (10) 

     Spectral representation (8) is a basis of the 
classical methods of Gardner [1], Schlesinger [2] and 
Roesler [3,4] implementing the decomposition by the 
following general scheme  

)]}(DFT[/)](IDFT{DFT[)( ** uu qkqxf =τ , (11) 

where IDFT and DFT are abbreviations of direct and 
inverse discrete Fourier transforms. Similarly, 
spectral representation (8) is used in the method 
Prost and Goutte [5,6] implementing the 
decomposition by the direct and inverse discrete 
Mellin transforms ((DMT) and (IDMT)) 

)]}(DMT[/)](IDMT{DMT[)( ukuxf =τ . (12) 

     On the other hand, deconvolution (9) may be 
considered as a linear shift-invariant system [10] or 
an ideal decomposition filter on a logarithmic time or 
frequency domain having impulse response )(

*1 uqk −  
and frequency response H(jμ). Therefore, our idea is 
to implement deconvolution (9) in direct way by a 
discrete-time filter operating with equispaced 
samples on a logarithmic scale  

∑
∞

−∞=
−=

n
nmm uxnhuf )(][)( ** ,  (13) 

where impulse response or a set of filter coefficients 
h[n] represents a discrete-time version of kernel 

)(
*1 uqk − . In practice, of course, number of filter 

coefficients or filter length must be finite. 
     To take into consideration that equispaced 
samples on a logarithmic scale manifest as the 
logarithmically sampled data on linear scale where 
distance between samples increases according to the 
geometric progression 

...2,1,0, = m    ,qu = u m
m ±±0
* ,   

algorithm (13) modifies into the following general 
form [11-13]: 

( )∑
∞

−∞=

−=
n

nmm quxnhquf 00 ][)( . (14) 

Here, progression ratio q specifies the sampling rate 
in the sense that lnq plays formaly a role of sampling 

period on a logarithmic scale, whereas its reciprocal 
represents the appropriate sampling frequency. 
     Up to now, discrete-time filters [10] are used 
primarily for removing unwanted parts of a signal, 
such as random noise, or extracting useful parts of a 
signal, such as the components lying within a certain 
frequency range. Here, discrete-time filters with the 
logarithmic sampling perform a new function – carry 
out functional (integral) transformation of signals 
needed to implement decomposition (3). Due to this 
they have been named functional filters [11]. The 
specific target of the functional filters requires the 
design and application philosophy [11-15], which 
differs from that of conventional discrete-time filters. 
     The following general advantages may be listed 
[10] for the filtering approach: 
(i) discrete-time filters have well-developed 

theory,  
(ii) discrete-time filters are computationally 

efficient algorithms working without 
employing numerical integration,  

(iii) they have uniform structure and 
implementation in software and hardware,  

(iv) the problem solved by a discrete-time filter 
can be modified very easy by changing 
coefficients without modification of the 
common structure or implementation of the 
filter in hardware and software, 

(v)  correctly designed discrete-time filters have 
the guaranteed performance, such as accuracy 
and noise transformation, and no stability 
problems occur for them. 

 
 
3.2 Algorithms of Decomposition Filters 
Equation (3) with kernels (4a) and (4c) forms exactly 
the Mellin convolution type transform (5), for which 
algorithm (14) can be directly applied to. For kernel 
(4b), general algorithm (14) modifies into the form 

∑
∞

−∞=

−=
n

nmmm quxnhququf )(][)( 000 , (15) 

while for kernels (4d) –  (4f), i.e. for the frequency-
domain data, it modifies into the form 

∑
∞

−∞=

−−=
n

nmm uqxnhquf )/(][)( 00 .    (16) 

     Usually [11-13] the functional filters are used 
with the equal number of coefficients about their 
origins. Then, for odd number of filter coefficients 
N, general algorithm (14) takes the form 
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( )∑
−

−−=

−=
2/)1(

2/)1(
00 ][)(

N

Nn

nmm quxnhquf , 

where  the origin of impulse response coincides with 
zero sample h[0]. For even number of filter 
coefficients, the origin of impulse response may be 
located in the middle between the samples h[–1] and 
h[0], then algorithm (14) modifies into the form 

( )∑
−

−−−=

−−=
2/)2(

12/)2(

5.0
00 ][)(

N

Nn

nmm quxnhquf . (17) 

 
Fig. 1. Magnitude responses of three ideal 
decomposition filters. Vertical lines and upper  
X-axis show the bandwidths corresponding to 
different progression ratios q. 
 
 
3.3 Types of Decomposition Filters 
For six kernels (4a) – (4f), Eq. (10) gives the three 
following ideal frequency responses  

for (4a) – (4c) (18a)
for (4d) and (4f) (18b)

⎪
⎩

⎪
⎨

⎧
±

−−
=

ππμ
ππμ

μ
μ

/)(ch2
/)(sh2

)(Γ/1
)( j

j
jH

 
for (4e) (18c)

where (18a) relates to the time-domain data, (18b) – 
to the real parts, and (18c) – to the imaginary parts, 
respectively. Consequently, only three independent 
sets of coefficients h[n] are necessary for 
implementing decomposition (3) for six kernels  
(4a) – (4f). Frequency responses (18a) – (18c) are 
similar – very fast growing functions (Fig. 1) 
indicating their inverse nature [11]. 
     Frequency response (18a) of the ideal filter 
decomposing the time-domain data is a complex 
function. From the symmetry property of the Fourier 

transform [10], it follows that the appropriate 
impulse response has no symmetry, or, in other 
words, the filters recovering DTC from the time-
domain data belong to so-called non-linear phase 
systems. 
     In contrast, frequency response (18b) is a pure 
imaginary function, while response (18c) is a real 
function. This indicates that the filters decomposing 
the frequency-domain data represent linear phase 
systems [10]. 
     In Fig. 2(a, b), schematic approximation of ideal 
frequency response (18b) is shown by the 
appropriate frequency responses of a discrete-time 
filter 

( ) ∑ −=
n

j qnjnheH )lnexp(][ μμ  (19) 

with odd and even number of coefficients.  
     In the case of an odd number of coefficients, the 
decomposition filter represents type III linear phase 
system [10] having the frequency response, which 
crosses zero at the ends of bandwidth qln/πμ ±=  
and at zero frequency (Fig. 2(a)). It has an anti-
symmetric impulse response ][][ nhnh −−=  with 

0]0[ =h  (Fig. 2(c)). In the case of an even number 
of coefficients, the filter represents type IV linear 
phase system having the frequency response crossing 
zero at zero frequency and having non-zero values at 
the ends of the bandwidth qln/πμ ±=  (Fig. 2(b)) 
with an anti-symmetric impulse response 

]1[][ −−−= nhnh  (Fig. 2(d)). 
 

 
Fig. 2. Schematic approximation of frequency 
response (18b) with an odd (a) and an even (b) 
number of filter coefficients, and examples of the 
appropriate discrete impulse responses (c) and (d). 
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     In Fig. 3, the similar plots are shown for the filter 
with frequency response (18c) decomposing the 
imaginary parts. In this case, the filter with an odd 
number of coefficients represents type I linear phase 
system with a symmetric impulse response 

][][ nhnh −=  (Fig. 3(c)), while the filter with an even 
number of coefficients represents type II linear 
phase system with the following symmetric impulse 
response ]1[][ −−−= nhnh  (Fig. 3(d)).  

 

 
Fig. 3. Schematic approximation of frequency 
response (18c) with odd (a) and even (b) number of 
filter coefficients, and examples of the appropriate 
discrete impulse responses (c) and (d). 
 
 
4 Ill-posedness,  sampling rate and 

noise transformation 
The noise behaviour of a decomposition filter may 
be characterized by noise coefficient S transforming 
input noise variance 2

xσ  into the output noise 
variance 2

yσ   

22
xy Sσσ =   

being equal to sum of the square filter coefficients   

][
1

nh = S 2
N

n
∑
=

.  (20) 

     The Parseval theorem [10] allows determining 
noise coefficient S also through frequency response 

∫
−

=
q

q

dHqS
ln/

ln/

2(.))2/(ln
π

π

μπ , (21) 

where ideal frequency responses (18a) – (18c) give 
inherent to the decomposition theoretical noise 

coefficients theorS ,  while frequency response (19) of 
a discrete-time filter provides actual experimental 
noise coefficient (20) for the given progression ratio. 
     As it follows from Eq. (21), increasing the 
sampling rate (decreasing q) extends bandwidth 

]ln/,ln/[ qq ππ−  of a filter (see Fig. 1), and, 
consequently, the appropriate squared area under the 
frequency response quoting the value of the noise 
coefficient. Due to the increasing frequency 
responses the theoretical noise coefficient Stheor 
increases with decreasing progression ratio q and 
tends to ∞, when q approaches 1 (Fig. 4). Thus, the 
ill-posedness of the decomposition manifests as the 
large noise amplification coefficient coming from the 
large area under the frequency response, which, in its 
turn, results from the wide bandwidth. Several useful 
conclusions may be drawn from the above that 
degree of the ill-posedness:  
(i) may be related to and characterized 

quantitatively by the noise coefficient, 
(ii) depends strongly on the sampling rate and 

arises only at small progression ratios q (fast 
sampling rates), and  

(iii) may be controlled or the decomposition may 
be regularized by choosing the appropriate 
sampling rate, which through establishing the 
bandwidth regulates its noise transformation 
coefficient. 

 

 
Fig. 4. Theoretical noise coefficients of three ideal 
inverse filters (18a) – (18c). 
 
     The last conclusion substantiates an alternative to 
the traditional regularization strategies based on 
reducing the sensitivity to measurement errors by 
limiting the areas under the frequency responses 
“vertically” (Fig. 5(a)) by suppressing them, for 
example, by adding special functional )(μα  in 
reciprocating frequency response (10)  
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/{1)( =μα jH  M )}(]);([ μαμ +− juk , 

which distorts the shape of the frequency response of 
an inverse filter, but achieves that 

∞≠∞= −

±∞→
)()(lim 1αμαμ

jH  and, so limits the noise 

coefficient. 
 

 
Fig. 5. Regularization methods based on limiting 
frequency response (a) and bandwidth control (b). 
Arrows show the direction of variation of area 
(shaded) under the frequency response. 
 
     We propose to limit the areas under the frequency 
responses “horizontally” (Fig. 5(b)) – by controlling 
the bandwidths of filters by choosing the appropriate 
value of q, i.e. by employing a natural – inherent 
regularization capability of a linear discrete-time 
algorithm []. The proposed approach has two 
advantages: (i) it does not distort the shape of 
frequency response, and, therefore, promises 
eventually the higher accuracy; and (ii), as it will be 
shown further in the next Section, the approach 
allows to determine explicitly regularization 
parameter q and to relate it to the specification of an 
algorithm, while there no strong criterion for 
determination of regularization parameters for the 
traditional regularization methods limiting the 
frequency responses “vertically”.  
 
 
5 Algorithm Design 
The conventional two-step signal processing 
approach [10] consisting of separate (i) discrete 
signal acquisition step, where the signal is sampled 

uniformly above its Nyquist rate, and (ii) discrete-
time algorithm implementation step, is not 
applicable. In the decomposition, on the one hand, 
choice of the sampling rate (signal acquisition) 
melds with the regularization because the needed 
noise immunity must be ensured. On the other hand, 
the filter length (implementation of algorithm) 
cannot be chosen free because possible combinations 
of q and N are limited by the time or frequency 
ranges of the available input data. 
     Thus, algorithm design of the decomposition 
filters  is a complex problem, which must integrate 
together signal acquisition, regularization and 
discrete-time algorithm implementation steps and, 
additionally, take into account the time or frequency 
ranges of the available input data. To link q and N 
with the input data, a parameter – dynamic range of 
time or frequency of input signal portion used for 
computing an output sample (further ‘input window 
range’)  

1/ −
−+ == N

x quud ,  (22)    

is introduced, which determines the combinations of 
q and N allowable for the filter design. 
 

 
Fig. 6. Finding a combination of progression ratio q 
and number of filter coefficients N for the 
regularization based on filter bandwidth control. 
 
     The appropriate algorithm design method is 
described in [14]. The procedure is based on the 
typical decrease of noise coefficient S with 
progression ratio q (see Fig. 4). Trial filters are 
designed for the combinations of q and N allowed by 
Eq. (22) starting with one operating at explicitly 
large q1 corresponding to small number of 
coefficients (normally 4or31 =N ) and giving low 
noise coefficient accSS <  (Fig. 6) by subsequent 
iterative increase of number of coefficients 

21 +=+ ii NN  and the appropriate decrease of q. 
When Sacc is exceeded the iterative process is 
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terminated. After that the final values of minqq ≈  
and, may be dx are specified. 
     For the stated q and N, the decomposition filters 
are designed by the identification method [11] where 
a pair of theoretical functions interrelated with each 
other by transform (3) is used as input and output 
signals in the filter design. An advantage of the 
identification method executing the time-domain 
optimization is that it effectively disposes of various 
secondary effects such as data truncation, rounding-
off, etc. and allows designing filters of various types 
(e.g. with linear and non-linear phase). 
 
 
6 Example of Decomposition Filter 
Below, as an example, type IV linear phase 
functional filter (even N) will be considered for 
decomposition of frequency-domain multi-
component signals with mono-components (4d) and 
(4f), which must ensure noise coefficient 10<S  and 
employ input window range 500<xd  [16,17]. 
 

 
Fig. 7. Theoretical and experimental noise 
coefficients of decomposition filters having even 
number of coefficients for various input window 
ranges dx. Horizontal and vertical arrows show the 
values of S and q corresponding to acceptable noise 
coefficient Sacc = 10. 
 
     To estimate the relationship between sampling 
rate and noise transformation, the functional filters 
have been designed by the identification method and 
their noise coefficients have been investigated for the 
combinations of q and N allowed by a selected set of 
input window ranges dx (32, 100, 1000, 10000) 
covering fairly fully the relevant cases for practice. 
The obtained results are shown in Fig. 7, where noise 
coefficient S is shown as a function of progression 

ratio q for the examined cases. As it is seen, the 
identification method gives filters having the noise 
coefficients, which are lower than theoretical ones. 
To ensure noise coefficient 10≈accS  progression 
ratio must be within the interval 9.3...9.2=q . We 
choose q = 3.3. Then 6=N  according to (22) gives 

500391<=xd . By the identification method, the 
following coefficients have been obtained [16-18]: 

}033296.0,129207.0,05880.1
,05880.1,129207.0,033296.0{]6[

−
−−=h

. (23) 

     According to (20) the designed filter has noise 
coefficient S = 2.28, which means that the noise 
variance for recovered DTC is amplified 2.28 times 
or the standard deviation of DTC noise is amplified 

51.128.2 =  times to compare with that of the input 
signal. 
     In Fig. 8, some examples of DTCs are shown for 
discrete spectra recovered from noiseless input data 
by filter (23). DTCs are calculated by algorithm (16) 
modified by introducing substitution mqu0=τ  and 
summation according to (17) into the form 

)/3.3(][)(
2

3

5.0∑
−=

−−=
n

nxnhf ττ . 

Notice that the designed filter gives DTCs without 
non-physical oscillations. However, such smooth 
spectra and relatively high noise immunity are 
achieved at the expense of decreased resolution; the 
filter allows separating two spectral lines only, if 

2.0/1 <+ ii ττ  or 5/1 >+ ii ττ . 
 

 
Fig. 8. Recovered discrete DTCs from the noiseless 
input data: unity spectrum at 1=τ  (curve 1); two 
unity line spectra at 42.01 =τ  and 37.22 =τ  (curve 
2) and at 1.01 =τ  and 102 =τ  (curve 3). 
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Fig. 9. DTCs for two unity line spectra at 4201 .=τ  
and 3722 .=τ  recovered from the noiseless input 
signal (fat solid curve) and noisy input signal (24) 
with 05.0=e  (thin solid curve) and smoothed DTC 
(dotted curve). 
 
     In Fig. 9, DTCs are compared recovered from the 
noiseless input signal and from the noisy signal 
corrupted by additive random noise 

)()()( mneuxux mexactmnoisy ⋅+= , (24) 

where n(m) is the pseudorandom sequence within 
interval [-1,1] with zero mean having the Gaussian 
probability distribution, and e is a factor specifying 
amplitude of the input noise. The simulation results 
confirm the above mentioned noise amplification. 
Thus, the recovered DTC from the noisy data (thin 
solid curve) indeed represents DTC obtained from 
the noiseless data (fat solid curve) with additive 
noise component )(076.0)( mnmneS ⋅≈⋅⋅ . The 
simulations show that the noise component can be 
effectively reduced by smoothing. The noisy DTC 
smoothed by simple 5-point averaging 

)(
5
1)(

2

2
∑
−=

+=
n

nmm ff ττ  

gives the result (dotted curve), which is in rather 
good agreement with DTC obtained from the 
noiseless input data. 
 
 
7 Why Decomposition Filters Work? 
Despite that the spectral methods (11) and (12), and 
the decomposition filters are mathematically 
equivalent techniques, the latter approach has some 
advantages. First, its realization with hardware or 

software is simpler, in particular, to take into account 
the short impulse responses.  
     Second, the proposed filtering approach 
integrating together signal acquisition, regularization 
and discrete-time algorithm implementation ensures 
superior performance over spectral approaches (11) 
and (12) in terms of accuracy and noise immunity.  
     The Mellin or Fourier transform of the noisy signals 
to be limited by a finite length window contributing 
the basic errors in the spectral approaches is not 
performed. Instead, the filters operating with optimal 
sampling rate securing the desired noise immunity 
and number of coefficients allowed by the available 
input data are designed by time-domain optimization 
[11] ensuring maximum accuracy of the recovered 
DTC.  
 

 
Fig. 10. Actual frequency response of filter (23)  
(curve 1) and reciprocal  )](DFT[/1 *uqk  for 8=N  
and 500=xd  (curve 2). 
 
     In Fig. 10, actual frequency response )( μjeH  of 
filter (23) and schematic formation of equivalent 
reciprocal )](DFT[/1 *uqk  for approach (11) are 
shown. As seen, the actual frequency response 
calculated by (19) from the coefficients obtained by 
time-domain optimization is a smooth curve, which, 
except the region around zero frequency, fits very 
poor the exact frequency response (18b). 
Nevertheless, filter (23) has the high performance in 
terms of accuracy and noise immunity. In the same 
time, DFT produces the exact frequency response at 
the points defined by N  (circles) with wild 
fluctuations between the points. As a result, the 
accuracy of DTC recovery for the spectral approach 
is considerable smaller, while the sensitive to noise 
or the degree of ill-posedness is incredibly larger. 
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7 Conclusions 
Discrete-time filters operating with equally spaced 
data on a logarithmic time or frequency scale 
(geometrically spaced on linear scale) are proposed 
for decomposition of multi-exponential and related 
signals, such as integrals, derivatives, real and 
imaginary parts of the Fourier transforms of the real 
exponentials. It is established that the decomposition 
for a variety of mono-components reduces to the 
three inverse filters, i.e. for the time-domain mono-
components, for the real and the imaginary parts of 
frequency-domain mono-components, respectively. 
The appropriate filter algorithms are derived. It is 
disclosed that decomposition of the time-domain 
mono-components requires non-linear phase filters, 
while linear phase filters are necessary for 
decomposition of frequency-domain mono-
components, namely type I and II linear phase filters 
are needed for the imaginary mono-components and 
type III and VI linear phase filters – for real mono-
components. 
     It is demonstrated that the ill-posedness in the 
decomposition manifests as high sampling-rate 
dependent noise amplification coefficients arising 
from the large areas under the increasing frequency 
responses of the inverse decomposition filters. A 
novel regularization method allowing to determine 
explicitly the value of the regularization parameter is 
developed based on noise transformation regulation 
by filter bandwidth control implemented by 
adaptation of the appropriate sampling rate. 
Algorithm design of the decomposition filters is 
suggested integrating together the signal acquisition, 
the regularization and the discrete-time filter 
implementation. As an example, decomposition of a 
frequency-domain multi-component signal is 
considered by a designed filter. 
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