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Abstract: - This paper introduces the surface electromyogram (EMG) classification system based on statistical and 
entropy metrics. The system is intended for diagnostic use and enables classification of examined subject as normal, 
myopathic or neuropathic, regarding to the acquired EMG signals. 39 subjects in total participated in the experiment, 
19 normal, 11 myopathic and 9 neuropathic. Surface EMG was recorded using 4-channel surface electrodes on the 
biceps brachii muscle at isometric voluntary contractions. The recording time was only 5 seconds long to avoid muscle 
fatigue, and contractions at five force levels were performed, i.e. 10, 30, 50, 70 and 100 % of maximal voluntary 
contraction. The feature extraction routine deployed the wavelet transform and calculation of the Shannon entropy 
across all the scales in order to obtain a feature set for each subject. Subjects were classified regarding the extracted 
features using three machine learning techniques, i.e. decision trees, support vector machines and ensembles of support 
vector machines. Four 2-class classifications and a 3-class classification were performed. The scored classification 
rates were the following: 64±11% for normal/abnormal, 74±7% for normal/myopathic, 79±8% for normal/neuropathic, 
49±20% for myopathic/neuropathic, and 63±8% for normal/myopathic/neuropathic. 

 
Key-Words: - surface electromyography, neuromuscular disorders, neuropathy, myopathy, isometric voluntary 
contraction, entropy, wavelet transform 
 
1 Introduction 
Electromyography (EMG) plays an important role in 
clinical neurological diagnosis and can confirm or 
exclude clinical diagnoses, indicate the site and type of 
an abnormality or expose disorders that are clinically 
uncertain [1]. In clinical practice, needle EMG 
evaluation, in combination with nerve conduction 
studies, is the standard method for assessing 
neurophysiologic characteristics of neuromuscular 
diseases [2]. Surface EMG (sEMG) is not used 
extensively, because analysis of sEMG made by various 
research groups aiming to discriminate normal from 
abnormal subjects have produced poor results and have 
hence been generally neglected or approached with 
suspicion [3]. 

The motivation for our study came from paper [7], 
where entropy of sEMG was used to distinguish subjects 

with low-back pain from those without pain. Recorded 
sEMG signals were first low-pass filtered using moving 
average by non-overlapping windows having width of 10 
samples. The mean was subtracted from signals and the 
Shannon entropy was calculated on 1000 partitions and 
used as a measure of the signal complexity. The analysis 
of entropy values from subjects with and without low-
back pain showed significant difference. 

After the features of the sEMG signals are obtained, 
they can be classified. Various classification systems for 
differentiation of neuromuscular disorders were 
introduced, applying mainly neural networks [4] and 
support vector machines (SVM) [8]. The most common 
classifications are two-class (normal/abnormal), where 
myopathic and neuropathic patients are joined in one 
abnormal group, and three-class (normal/myopathic/ 
neuropathic) [4], [8]. 
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In this paper, we present our approach based on 
wavelet transform of sEMG and the entropy. A subject 
classification was performed using decision trees, SVM 
and SVM ensembles. The method performance was 
evaluated on real sEMG signals obtained from 19 
normal subjects and 20 patients, 11 of them myopathic 
and 9 neuropathic. 

The work is organized as follows. In Section 2, 
main characteristics of the neuromuscular diseases are 
introduced and previous work in the field is overviewed.  
Section 3 describes methods used in our experiment, 
namely the data acquisition, feature extraction and 
classification techniques. In Section 4, the experimental 
results are shown, while the last section discusses and 
concludes the paper. 

 
 

2   Overview of the field 
 
2.1 Main characteristics of the neuromuscular 

diseases 
Myopathies are neuromuscular disorders in which the 
primary symptom is muscle weakness due to dysfunction 
of muscle fibres [12]. Other symptoms of myopathies 
can include muscle cramps, stiffness, and spasm. 
Different types of myopathies exist, i.e. congenital 
myopathies, muscular dystrophies, mitochondrial 
myopathies, glycogen storage diseases of muscle, 
myoglobinurias, dermatomyositis, myositis ossificans, 
familial periodic paralysis, polymyositis, including body 
myositis and related myopathies, neuromyotonia, etc 
[12]. 

Neuropathies describe damage to the peripheral 
nervous system which transmits information from the 
brain and spinal cord to every other part of the body. 
More than 100 types of neuropathies have been 
identified [12]. The impaired function and symptoms 
depend on the type of nerves (motor, sensory, or 
autonomic) that are damaged.  Some people may 
experience temporary numbness, tingling, and pricking 
sensations, sensitivity to touch, or muscle weakness. 
Others may suffer more extreme symptoms, including 
burning pain (especially at night), muscle wasting, 
paralysis, or organ or gland dysfunction.  

 
 

2.2 Previous work 
In the diagnosis of neuromuscular disorders the needle 
EMG techniques are dominant, but attempts to use 
sEMG for the diagnostic purposes are appearing as well 
[4], [8], [10]. Because of the vast differences between 
sEMG and conventional electrodiagnostic techniques, 
the American Association of Electrodiagnostic Medicine 
published a review of clinical utility of sEMG [3]. They 

compared conventional techniques that are used in 
needle EMG examination and tried to find their sEMG 
equivalents. Procedures that can be conducted using both 
EMG techniques include: single MUAP analysis 
(amplitude, duration and configuration) and studies of 
muscle fibre conduction velocity. The procedures that 
cannot be done using sEMG include: measuring an 
insertional activity of the needle, fibrillation potentials 
and precise localization of the lesion. 
 Regardless to the type of EMG used, the 
relationship between various kinds of pathological 
changes of the motor units and the shape of the EMG 
signal is difficult to establish [11]. This is affecting 
computer-based diagnosis the most, because in order to 
obtain good classification results each group should have 
distinct features that would enable to distinguish among 
them easily. In a search for such features, various sEMG 
parameters have been investigated.  
 Many studies relied only on one group of patients, 
i.e. only myopathic or neuropathic, but in order to make 
a complete method evaluation, both groups as well as a 
control group should be included, like in [4] and [8]. 
 An overview and comparison of different EMG 
methods for the myopathy evaluation are presented in 
[1]. Different EMG methods can be helpful when 
diagnosing myopathies, whereas the most useful are: 
manual analysis of the individual motor unit action 
potentials (MUAPs) and turns–amplitude analyses. 
Analysis of the firing rate of motor units, power 
spectrum analysis, as well as multi-channel surface 
EMG may also be used in the diagnostics, but are not so 
common [1]. 
 In the muscles of patients with myopathy, both the 
degeneration and regeneration of muscle fibres are 
reflected by short-duration, low-amplitude and 
polyphasic shape of individual MUAPs [1]. Another 
parameter to be analysed is the motor unit firing rate. 
With myopathy, early recruitment may be seen, i.e. too 
many MUAPs are present for the level of muscle 
contraction compared to normal subjects, due to the 
weakness of the muscle. The frequency spectrum of 
EMG can also be used, but it was shown the analysis of 
individual MUAPs was more sensitive for detecting 
myopathy than the analysis of the EMG signal frequency 
spectrum [1].  
 In [10], the MU size parameter was investigated. It 
was hypothesised that the size of a MU, defined as the 
number of muscle fibres innervated by a single motor 
neuron, is an important parameter in differentiating 
neuropathic from myopathic properties. Multi-channel 
sEMG was used to asses the MU size. Single MUAPs 
were extracted from sEMG signal with the help of a 
decomposition technique, and the properties of 
individual MUAPs were compared. They found out the 
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MUAP amplitude is significantly higher in neuropathic 
patients. 
 The next parameter studied for sEMG was muscle 
fibre conduction velocity. It was shown that myopathic 
patients can be separated from healthy subjects using 
mean muscle fibre conduction velocity and propagation 
of MUAPs [9]. Signals of myopathic patients didn’t 
show propagation behaviour of MUAPs. Also the centre 
of the innervation zone couldn’t be delimited as 
distinctly as in the normal case. Another study reported 
disturbance of MUAP propagation at myopathy [13].  
 In [4], the authors tried to discriminate between 
normal, myopathic and neuropathic subjects using 
sEMG signals of biceps brachii muscle. Five parameters 
were obtained, two from the time domain (turns and zero 
crossings per second), two from the frequency domain 
(median frequency and total power per second) and one 
from the bi-frequency domain (bispectrum peak 
amplitude). The k-nearest neighbour classifier with the 
leave-one-out method was used for classification. 
Results have shown a separation of normal subjects from 
neuromuscular diseased patients is possible with a 
success rate of 83%, whereas the separation of 
myopathic and neuropathic patients is obtained at 77%. 
  The complete system for the classification of 
neuromuscular disorders was presented also in [8]. The 
fast Fourier transform (FFT) was applied to sEMG 
signals of biceps brachii muscle. The amount of FFT 
coefficients was further reduced with principle 
component analysis (PCA). PCA coefficients were then 
applied to multilayer perceptron and SVM. It was shown 
that SVM has high anticipation level in the diagnosis of 
neuromuscular disorders, i.e. 85 % of correct 
classification.  
 Let us summarize the most important features that 
enable the discrimination of different pathologies. A 
neuropathic pattern is characterized by EMG activity at 
rest, with elongated duration and high MUAP 
amplitudes, increased polyphasicity and weakened 
interference pattern. A myopathic pattern is 
characterized by short duration and low MUAP 
amplitude, increased polyphasicity, and enriched 
interference pattern, the so called pathological 
interference. 
 
 
3 Methods 
 
3.1 Data acquisition 
SEMG signals were recorded from the biceps brachii 
(BB) muscle of 19 non-diseased subjects and 20 patients 
(11 myopathic and 9 neuropathic). 
 Recordings were taken using a four-bar sEMG 
active probe with an interelectrode distance of 10 mm 

and a bar width of 1 mm. The electrode block was placed 
on the BB (see Fig. 1), in such a way that the second 
electrode was at a distance equal with 1/3 of the BB 
length towards the shoulder. 
 

 
 
 

 
 

 
Fig. 1: Positioning of the sEMG electrodes on the BB 
muscle: x stands for the total electrode length, which was 
45 mm. 

 
A bar configuration was preferred from the well-
accepted circular configuration, because the former 
intersects with more fibres than the latter. By 
intersecting more fibres higher amplitudes will be 
recorded. From the four bars of the electrode, the second 
was used as an allocation index. Its predefined 
placement ensures that all four electrodes lay between 
the innervation zone of the motor unit and the tendon.  
The single differential (SD) recordings were recorded 
simultaneously one from each pair of the electrode bars. 
Recordings were performed for 5 seconds at 10%, 30%, 
50%, 70% and 100% of the maximum voluntary 
contraction (MVC). Band-pass filer [20÷500Hz] was 
applied on the recorded signals, which were then 
sampled with a sampling frequency of 1000 Hz at a 12-
digitization resolution.  

 
 

3.2 Data analysis 
At the beginning, all recorded signals were inspected 
visually for the presence of various artefacts, such as 
inadequate skin-electrode contacts. The channels with 
loose contacts were removed from the subsequent 
analysis. Visual signal inspection showed also the 
significant difference in amplitudes between the two SD 
channels of each person, therefore only the channel with 
higher amplitude was taken into consideration. In most 
cases, that was the channel located further away from the 
muscle innervation zone. 
 As the first step of signal processing, the mean 
value was subtracted from all signals to eliminate the 
offset, ( ) ( )s t s t μ= − , where s(t) stands for the recorded 
sEMG signal and μ for its mean value. Fig. 2, Fig. 3 and 

1st electrode 
4th electrode 

x 
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Fig. 4 depict time plots of typical representatives of 
normal, myopathic and neuropathic groups. 
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Fig. 2: Recorded sEMG signals at 5 force levels for a 
typical representative of normal group. 
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Fig. 3: Recorded sEMG signals at 5 force levels for a 
typical representative of myopathic group. Early 
recruitment is obvious at all force levels. 
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Fig. 4: Recorded sEMG signals at 5 force levels for a 
typical representative of neuropathic group. Large 
MUAPs can be seen, in particular at higher force levels. 
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Fig. 5: Amplitude distribution for a typical 
representative of normal group (Fig. 2). 
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Fig. 6: Amplitude distribution for a typical 
representative of myopathic group (Fig. 3). 
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Fig. 7: Amplitude distribution of typical representative 
of neuropathic group (Fig. 4). 
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The amplitude distributions of all recorded sEMG 
signals were fitted by normal distribution using the 
’dfittool’ in Matlab. Since all sEMG signals are zero 
mean, only the standard deviation (σ) parameter of the 
normal distribution is averaged for all groups in Fig. 8. 
Examples of fitted distributions for typical signal 
representatives are depicted in Fig. 5, Fig. 6 and Fig. 7. 
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Fig. 8: Distribution of standard deviations (σ) for the 
three groups: normal, myopathic, and neuropathic. The 
lower and upper line of the box represent upper and 
lower quartile, the notch represents median. The lines 
extending out of the box represent other data. 

 
 

3.3 Feature extraction technique 
For each subject we used one single differential sEMG 
channel and 5 different force levels (10 %, 30 %, 50 %, 
70 % and 100 % MVC), obtained as described in 
Subsection 3.1), i.e. 5 signals per person in total (see 
Fig. 2, Fig. 3 and Fig. 4). The signals were further 
processed in order to extract some important features. 
Each of the signals was first transformed using 
continuous wavelet transform (CWT) [6]. 

Let s(t) be the signal and ψ  the mother wavelet. 
The wavelet coefficient ,a bC  of s(t) at scale a and 
translation b is defined by Eq. (1): 

 

 ,
1( ) ,a b

t bC s t dt
aa

ψ
+∞

−∞

−⎛ ⎞= ⋅⎜ ⎟
⎝ ⎠∫  (1) 

 
where ψ  is the complex conjugate of ψ  and b = 1,..., 
length of s(t). In our experiment, the Haar wavelet was 
chosen and each signal was transformed at 8 dyadic 
scales ( 2 , 1,2, ,8j j = … ) (see Fig. 9). At lower scales, 
signals have higher frequencies, while higher scales pose 
lower frequencies (smoothed signals).  
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Fig. 9: Time-scale representation: a sEMG signal at 30% 
MVC contraction transformed by CWT. 
 
At each scale, the transformed signal is further used to 
calculate the Shannon entropy:  

 

2
1

( ) ( ) log ( ),
M

i i
i

H X P X x P X x
=

= − = =∑  (2) 

 
where H(X) is the entropy for random variable X, where 
X takes discrete values ix  with probability 

( )i ip P X x= = , and M is the number of partitions of 
peak-to-peak amplitude interval. In our case the 
logarithm with base 2 was used. The range of entropy 
values depends on the number of partitions and the base 
of the logarithm used. The lowest entropy (H=0) is 
scored when the random variable has one certain 
outcome, and all other outcomes have zero probability. 
The maximum entropy ( logH M= ) is achieved, when 
all outcomes of the random variable have equal 
probability. We implemented M = 1000 partitions and 
the base 2 logarithm, so the maximum possible entropy 
in our case is 9.97. 

After the feature extraction, a set of 40 features per 
subject was formed, i.e. 5 sEMG signals were 
transformed at 8 scales totalling in 40 signals on which 
the entropies were calculated, yielding finally 40 scalar 
values. The classification of subjects was based on the 
obtained feature set. Fig. 10 depicts average feature set 
for normal group with standard deviation. 
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E
nt

ro
py

10 30 50 70 100
Force 
level (%MVC)

Mean/std of multiscale entropy for normal group

 
 
Fig. 10: A feature set is depicted for the normal group; 
solid line represents the average value for the group, 
while error bars delineate standard deviation. 

 
 

4 Experimental results 
From the feature set calculated by the proposed 
technique (40 features per person) we created five 
datasets, where subjects were labelled based on their 
type as: 

• normal / abnormal (myopathic and neuropathic), 
• normal / myopathic, 
• normal / neuropathic, 
• myopathic / neuropathic, 

• normal / myopathic / neuropathic. 
To obtain best classification results, we used three 

different techniques from the WEKA machine learning 
package [5], i.e. decision trees, support vector machines 
(SVM) and SVM ensembles. We resorted to 3-fold 
cross-validation using 50 iterations for each machine 
learning technique. 3-fold cross-validation was 
performed, so that the complete database was divided 
into 3 equal parts, two of them then used as learning sets 
and one as testing set. In our example with a total of 39 
subjects, one part consisted of 13 subjects. For the 
learning purposes, 26 subjects were used, and 13 for 
testing the classification.  

Classification correctness and deviation of 150 
classifiers for each dataset and machine learning 
technique are shown in Table 1, where cells with the 
highest classification score for given dataset are shaded. 
It can be seen that two classification methods performed 
the best, i.e. SVM and SVM ensemble, although  the 
decision trees with human readable knowledge 
representation were only slightly less accurate then 
SVMs. Since datasets decision classes are biased, we 
applied Receiver Operator Characteristic (ROC) as the 
classifier quality measure. From Table 2, it is clearly 
visible that the best results were obtained by SVM 
(highest ROC). 

The highest success was scored by 
normal/neuropathic classification, so this indicates that 
normal and neuropathic groups are the most 
distinguishable, while myopathic and neuropathic groups 
are hardly distinguished. 

 
 

 
Table 1: Classification results obtained on real sEMG signals 

Classification rate ± standard deviation [%]  Classification of  
subjects as 

Number of 
subjects 
per class 

No. 
of 

classes Decision  
trees 

SVM SVM ensemble 

normal / abnormal 19 / 20 2 56.36± 8.80 63.90±11.02 63.18±10.22 
normal / myopathic 19 / 11 2 68.69±11.20 73.33± 6.60 71.85± 9.71 
normal / neuropathic 19 / 9 2 73.52±11.19 79.03± 7.71 78.09±10.08 
myopathic / neuropathic 11 / 9 2 48.67±19.17 47.47±19.94 43.07±19.90 
normal / myopathic / neuropathic 19 / 11 / 9 3 51.69±11.06 62.50± 7.42 60.26± 8.89 
 
Table 2: ROC of classifications 

ROC ± standard deviation  Classification of  
subjects as 

Number 
of 

subjects 
per class 

No. 
of 

classes Decision  
trees 

SVM SVM ensemble 

normal / abnormal 19 / 20 2 0.59±0.13 0.72±0.11 0.64±0.11 
normal / myopathic 19 / 11 2 0.52±0.13 0.67±0.16 0.60±0.14 
normal / neuropathic 19 / 9 2 0.48±0.09 0.76±0.15 0.60±0.11 
myopathic / neuropathic 11 / 9 2 0.50±0.16 0.43±0.19 0.40±0.13 
normal / myopathic / neuropathic 19 / 11 / 9 3 0.58±0.13 0.69±0.12 0.63±0.11 
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In the next experiment, we tried out whether an 
individual force level exist that yield better classification 
rates as other levels. Instead of using all five force levels, 
we tested classification by using only the signals at 10 % 
MVC, then only at 30 % MVC, etc. 2-class 
normal/abnormal classification was performed. No 
greater differences were detected between the average of 
all the force levels together and only one level, but better 
classification is obtained at lower contractions (10% 
MVC) for all classification techniques. The results are 
presented in Table 3. 
 

Table 3: Classification results for individual force levels.  
Classification rate ± standard deviation [%] Force 

level 
% MVC 

Decision trees SVM SVM 
ensemble 

10 64.18±9.90 57.27±12.68 65.67±11.08 
30 61.42±10.57 49.73±7.66 62.03±12.41 
50 50.21±14.04 47.30±7.08 51.42±13.88 
70 46.97±9.75 45.76±6.85 50.18±11.64 

100 45.24±13.47 46.06±4.58 46.45±14.06 
 
We also investigated dependencies of classification rates 
on different scales. Again, we ran 3 classification 
techniques, but this time only on the entropies for single 
scales. 2-class normal/abnormal classification was 
performed. Results are shown in Table 4. They indicate 
the classification results do not depend on the scale. 
However, better results are obtained if averages across 
all the scales are used. 
 
Table 4: Classification results for individual scales. 

Classification rate ± standard deviation [%]  
 
Scale 

Decision  
trees 

SVM SVM 
ensemble 

2 54.42±11.80 53.24±8.69 57.70±10.86 
4 50.97±11.19 55.30±11.43 59.52±10.52 
8 50.97±6.65 56.45±10.42 57.30±9.64 

16 50.09±6.55 55.52±11.07 58.64±12.98 
32 55.09±11.42 60.00±11.84 61.24±11.66 
64 49.15±5.64 58.97±12.56 63.27±12.94 

128 49.45±5.68 58.70±11.49 59.64±13.78 
256 49.79±6.00 60.30±13.86 61.85±12.70 

 
 
5 Conclusion 
A major drawback of all the sEMG electrodes used 
nowadays is that only the electrical activity of superficial 
muscles is accessible. Moreover, the sEMG electrodes 
cannot record positive sharp waves, fibrillation 
potentials or other abnormal spontaneous activities that 
can be measured using needle electrodes. These are the 

issues that are limiting the use of sEMG in the clinical 
diagnosis. But sEMG can provide other useful 
information, only the right features must be found. 

Our experiments show that the amplitudes of 
recorded sEMG signals vary over a large range for both 
the normal and ill subjects. This is probably owing to the 
different thickness of the individual fat layers, which 
acts like a low-pass filter. The sEMGs of patients show 
higher average amplitudes than those of normal subjects. 
This could be attributed to the suboptimal electrical 
properties of the muscles [14]. 

The sEMG signals in patients with the 
neuromuscular diseases can vary evidently depending on 
the stage of the disease. In the beginning stages of the 
disease the changes in sEMG can hardly be detected, 
while at an advanced stage the symptoms of disease are 
easily detectable. To correctly classify all the patients 
regardless to the stage of their disease, sEMG recording 
and processing is not enough. Other tests, such as muscle 
biopsies, blood tests, genetic testing, etc., should be 
carried out to determine the disease. 

Another important issue, in particular when  
tracking myopathic changes in muscles, is that myopathy 
can affect only individual muscles, while the properties 
of other muscles can remain unchanged. Therefore, it is 
also important to measure sEMG of the muscle which is 
affected by the disease. In the case of myopathy only 
some of the MUs can be affected by the disease, while 
other MUs remain unchanged. Since sEMG measures 
the integrated electrical activity of all MUs within the 
surface-electrode uptake volume, deviating MUs can be 
hidden among healthy ones. But this problem cannot be 
resolved only with sEMG amplitude processing. Another 
step has to be performed prior to classification of 
subjects, i.e., the extraction of individual MUAPs form 
the sEMG, which is attainable by using suitable 
decomposition techniques. 

The decomposed MUAPs give a better insight in 
the muscle and also the conventional classification 
methods based on the MUAP duration and amplitude 
can perform well in such a case. But also it has to be 
taken into account that the superficial MUs contribute to 
the sEMG much more than others, so deeper MUs 
cannot be detected easily and their changes are hardly 
detectable. 

As it was mentioned in Section 2, some 
investigations have been performed on the diagnostic use 
of sEMG [4], [8]. A direct comparison of these methods 
can be done as follows. The authors in [8] focused on the 
frequency domain parameters only, as they were using 
FFT, but they did not report any typical values for the 
groups, so it is not clear how the frequency content was 
changing between the groups. They only reported 
detailed classification results, which are 84.16 % using 
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multilayer perceptron and 85.42 % using SVM for 3-
class classification. 

Another work [4] addresses the same topic in the 
time (turns and zero crossings per second), frequency 
(median frequency and total power per second), and bi-
frequency (bispectrum peak amplitude) domains. They 
reported typical parameter values and their changes 
versus force levels. All 5 reported parameters were used 
in classification obtaining the following results: 69 % for 
2-class and 61% for 3-class classification using k-nearest 
neighbours. These results are very similar to our 
findings, which can be explained by the fact that we 
experimented with the same signal set as the authors of 
[4]. The signals in [8] were taken from different subjects 
in different circumstances not known to us in details. 
This fact can be considered crucial for different 
classification results. At the same time, it is evident that 
the orthogonalisation used in [8] improved the class 
separability significantly; therefore it is worthwhile to 
consider it.  

At the end we would like to point out the open 
issues to be investigated in order to estimate additional 
classification improvements. This includes the use of 
other types of entropy, such as Tsallis, and the use of 
other types of wavelets, such as Gaussian, Daubechies, 
etc. 
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