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Abstract: Strong geomagnetic activity is a hazard to electronics and electric power facilities. Assessment of
the actual geomagnetic activity level from local magnetometer monitoring therefore is of importance for risk
assessment but also in earth sciences and exploration. Wavelet based signal processing methods are applied to
extract meaningful information from magnetic field time series in a noisy environment. Using a proper feature
vector a local geomagnetic activity index can be derived under not ideal circumstances using computer intelligence
methods. Locally linear radial basis function nets and self organizing maps are discussed in this context as data
based process models.
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1 Introduction
Monitoring geomagnetic activity is a task of consid-
erable interest for earth sciences but also for predict-
ing hazards for electronics, communication, naviga-
tion and mains power failure. Along with global
activity measurements averaged from a number of
worldwide distributed magnetometer sites and satel-
lites, local measurements are necessary for assessing
local conditions - e.g. geomagnetically induced cur-
rents in electrical power grids - but also for the ap-
plication of geophysical exploration methods [3] re-
lying on magnetic field measurements (practical ex-
amples: directional drilling for oil and archeolog-
ical prospection). Geomagnetic storm risk assess-
ment, real-time activity monitoring and surface in-
duced electric field modelling are topics of recent sci-
entific studies of national geophysical institutions as
for example the British Geological Survey (BGS, see:
www.geomag.bgs.ac.uk).

Such recordings often cannot be done in a noise
free environment and therefore call for advanced sig-
nal processing methods. After some remarks with re-
spect to the magnetic field monitoring process we dis-
cuss statistical and transform based parameters that
prove to be useful for characterising local deviations
from a ’qiet’ earth magnetic field condition and allow
to quantify geomagnetic activity using neuro fuzzy
and self organizing map classifiers.

2 Geomagnetic Activity
The space around earth that is influenced by the
magnetic field of the earth is called magnetosphere.

This domain interacts with the solar wind, i.e. a
hot dilute plasma with frozen in magnetic fields con-
stantly ejected by the sun. Solar activity phenomena
as sunspots, prominences, flares, coronal holes and
coronal mass ejections (CMEs) may strongly increase
solar wind. These activities are controlled by the suns
magnetic field and its instabilities. Especially coro-
nal holes (corresponding to open solar magnetic field
lines) and CMEs (massive, i.e. 1011 . . . 1014 kg, bursts
of plasma ejected from closed magnetic field regions)
are responsible for solar plasma storms escaping into
the interplanetary space. Geomagnetic storms lasting
for hours up to several days are the reaction of the
earths magnetic field to these invasions. The flow of
injected ions and electrons within the magnetosphere
and the ionosphere form current systems, causing
variations in the intensity of the Earth’s magnetic
field. Strong geomagnetic activity, i.e. magnetic field
variations can trigger transients on electrical power
lines, communication channels and pipelines causing
severe failures in these systems. The actual activity
amplitudes however vary massively with location, es-
pecially with (geomagnetic) latitude, being strongest
near the (geomagnetic) poles.

Magnetic indices are measures of geomagnetic ac-
tivity. Often used indices are: the planetary range in-
dex Kp, the polar cap index PC, the auroral electrojet
index AE, and the equatoial ring current index DST
(Disturbance Storm Time).

In this paper we concentrate on the analysis of a lo-
cal activity range index K related to the local variation
of the E-W magnetic field component. The By or ge-
omagnetic EW field component is zero under undis-
turbed conditions. Deviations from zero are activity
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caused. Note that in this paper directions are defined
with respect to the (local) geomagnetic and not the
geographic coordinate system.

Figure 1: Strong geomagnetic activity at medium lat-
itude (52N, 8.5E) at Dec. 15th 2006 caused by solar
plasma ejection: 24 hour variation of the horizontal
EW magnetic field component.

3 Magnetic Field Monitoring
Basically the local geomagnetic disturbance level is
quantified by the 3 hour range of the horizontal mag-
netic field components Bx, By- with Bx as the N-S, By
the E-W (and Bz the vertical) component. The range
being understood as the difference between maxi-
mum and minimum values within this time span. The
activity level a for a 3h time interval is defined by
a = max(range)/2 (unit: nT, nano-Tesla), with ’max’
taken over the horizontal field components. Usually
not a, but a nearly logarithmic function of it, the
K-index is used. Globally the K-indices of a number
of geomagnetic observatories are combined to yield
a global (planetary) index Kp with values from 0 to
9 for the 3h intervals starting at 0, 3, 6, 9, 12, 15,
18, 21 UTC (Universal Time Coordinated). In a not
perfect environment the local 3h-range of magnetic
field values is detoriated by temperature drift of the
sensor and manmade field disturbances. They can
be dealt with to a certain extent, but not completely
removed. Therefore some additional features gained
from the field time signal are proposed for a more
secure local geomagnetic activity assessment.

The following discussion uses By(t) time series
gained with a fluxgate magnetometer with a resolu-
tion of 2nT .

Signal processing is based on the magnetic field
value relative to its value at 0 UTC: By,rel(t) = By(t)−
By(t = 0 UTC).

3.1 Preprocessing
Despite heat isolation of the fluxgate temperature
varies over the day (fig. 3). A temperature sen-

Figure 2: Monitor program with 24 hour display.
Lower part: FFT and DWT analysed 3 hour range to-
gether with the RBFN and SOM classifications of the
geomagnetic activity.

sor therefore under the same isolation conditions is
placed near the field sensor. A linear temperature drift
correction is applied according to:

By,rel,corrected = By,rel + a ∗ (T − T0) (1)

With T0: temperature at 0 UTC and a: sensor
specific constant.

Figure 3: Typical temperature variation over the day
relative to 0 UTC at the sensor.

As the activity level in the 3h interval basically
is defined via the maximum field value difference
within the time interval, artificial offsets have to be
eliminated. A mass of magnetizable material, as for
example cars, changes the local field at distances of
several tens of meters, i.e. produce a constant offset
as long as they are in place. The offset changes sign,
if they are removed again. These kinds of offsets can
be dealt with in by continuously logging step jumps
in the signal with the appropriate sign (fig. 4).
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Figure 4: Offset compensation. Left: without, right:
with compensation. The horizontal lines in the right
figure indicate how the total offset level develops in
time.

4 Data Features

The basic analysis interval is T = 3 hours with
n = 1024 = 210 By-samples (this is a sample rate
of nearly 0.1 Hz). Fig. 5 shows typical examples
with a certain geomagnetic activity level in an undis-
turbed and - what is more typical - disturbed signal
trace. We now want to extract features that are able
to discriminate between the natural and noise part.

Figure 5: Geomagnetic activity within 3 hours inter-
vals. Left: mostly undisturbed example right: signal
with superimposed manmade disturbances.

Inspection of the wavelet decomposition
(Daubechies4, [5], [14]) in combination with
the Fourier transform of 3h-intervals shows that
the wavelet energies in the scales 5, 6, 7, i.e.
e(5), e(6), e(7) are most characteristic for the geo-
magnetic activity in this period. The energy e(s)
on scale s simply is the squared sum of the DWT
coefficients of that scale. Using the equivalence
s = lb(4 f T ) (see fig. 6) a scale s corresponds to
center frequencies fcenter = 1/T 2s−2 in the range
0.5 · · · 5 mHz (i.e. periods roughly from 3 to 30 min-
utes). In this frequency band geomagnetic pulsations
of class Pc5 and Pi3 can be found. Geomagnetic
field variations are categorized by their period and
structure into classes Pc1 to Pc5 for continuous
structured pulsations and Pi1 to Pi3 for irregular
structures [4].

As a feature vector for the activity classification of
a 3h interval we therefore choose the 4 components:
By,max − By,min, e(5), e(6), e(7).

Figure 6: Example for a T = 3h By signal (n = 1024
samples, normalized with respect to mean and stan-
dard deviation,top) and its DAUB4 wavelet decompo-
sition (scales = 2 · · · 10, below).In parallel (right) the
DWT scale energies together with the Fourier decom-
position are displayed. The information of the Fourier
power spectrum log(Re(FFT )2 + Im(FFT )2) around
frequency f corresponds to a wavelet scale energy at
scale s = lb(4 f T ) in the ranges f = 1/T · · · (n/2)/T
and s = 1 · · · lb(n).

5 Neuro Fuzzy Data Model
For the derivation of a local K-index quantifying ge-
omagnetic activity we use a neuro fuzzy data model
and alternatively a self organizing map (chapter 6).
Radial Basis Function Neural Nets (RBFNs) and
fuzzy logic extensions have been successfully used
in very different applications ([15],[16],[17],[18]). In
this chapter we describe a locally linear radial basis
function network (LL-RBFN) with fuzzy interpreta-
tion possibility.

Each training vector consists of p = 4 features
and a classification value y. The matrix of training
vectors is normalised with respect to the mean and
the standard deviation of each component. With
normalised feature vector ~x, weights w0 j and ~w j, N
basis function centers ~t j and width vectors ~c j the nor-
malised classification output y(n) for a (normalised)
input ~x is

y(n)(~x) =
1

s(~x)

N∑
j=1

(w0 j + ~w j · (~x − ~t j)) φ j(~x) (2)

with gaussian basis functions

φ j(~x) = e−
∑p

i=1((xi−t ji)/c ji)2
(3)

and
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s(~x) =
N∑

j=1

φ j(~x) (4)

normalizing the basis functions. In total we have
N(3p + 1) parameters.

Training of a LL-RBFN can be done with gra-
dient descent algorithms [6] or optimisation proce-
dures that are simplex (Nelder-Mead [5]) or evolu-
tionary based or are tree construction oriented like the
LOLIMOT (LOcally LInear MOdel Tree) algorithm
[10]. For our application a line search (numerical gra-
dient descent) algorithm proved efficient.

As starter parameters for a training process we
select N basis function centers ~t j from the training set
(input vectors). This can be done totally at random
or better by assuring that each relevant index range
y is represented by a center. We use a k-means
cluster algorithm to this end. An upper limit for
a meaningful number of centers N can be found
by repeated k-means runs on the input vectors and
looking for an about equally distributed number of
input vectors in each cluster.

Width parameters are intitialised according to

c ji :=
dmax

N
(5)

with the maximum center distance

dmax = maxi, j ~ti − ~t j (6)

The initial weights we get from

w0 j :=
m∑

i=1

g+ji y(n)
i (7)

with m training vectors (~xi, y
(n)
i ), and g+ being the

pseudoinverse matrix of gi j = φ j(~xi)/s(~xi).
The linear coefficient weights ~w j are initialized to 0.
So the LL-RBFN is initialized as a usual RBFN.

Weights, centers and width parameters are opti-
mised (trained) using a numerical gradient descent
(line search) algorithm with respect to the mean
squared classification error. A training data set with
400 vectors was modelled by the trained net with a
rms error of 0.4 with respect to an K-index ranging
from 0 to 6. The rms error with respect to 100 test
vectors was about 0.6. A difficulty with getting train-
ing and test data for a site is that bigger K-values oc-
cur exponentially less frequent.

The local linear RBFN approach allows to reduce
effectively the number N of basis functions, i.e. hid-
den neurons, because of the additional free linear pa-
rameters. This is an important point with regard to

execution speed, but especially with regard to inter-
pretability. N typically is of the order of integer K-
values, i.e. N = 7 for K = 0 · · · 6 (the RBFN output
being continuous however).

5.1 Fuzzy Rule Interpretation of the LL-
RBFN

One of the reasons for choosing a LL-RBFN was,
that it has a structure allowing a straightforward
Takagi-Sugeno fuzzy rule interpretation [7], [8] It
is therefore sometimes called Locally Linear Neuro
Fuzzy Model (LLNFM).

Within the Takagi-Sugeno framework a rule has
fuzzy input and crisp output and can be formulated
as:

IF ~x is in the domain of basis function j THEN
y(n) = w0 j + ~w j · (~x − ~t j)

So, the LL-RBFN output (equ. 2) can equivalently
be looked at as the output of a system with N rules,
each having fuzzy premises and crisp consequences.
In this context w0 j + ~w j · (~x − ~t j) is the weight of rule
j and φ j(~x)/s(~x) the relevance of rule j for an input
~x.

Because of the identity

e−
∑p

i=1((xi−t ji)/c ji)2
= Π

p
i=1 e−((xi−t ji)/c ji)2

(8)

for a p-dimensional input the premise part of rule j
can be read as

IF ~x is in the domain of basis function j ≡

IF x1 is in d j1 AND .. AND xp is in d jp

where d ji =
1

s1/p(~x) e−((xi−t ji)/c ji)2
is the gaussian

membership function for input component i centered
at t ji with width parameter c ji.

Fuzzy rule based interpretation of a LL-RBFN
with a low number of basis functions allows for some
more direct insight into the classification process than
a pure RBFN (usually needing more basis functions
for the same fit accuracy) or backpropagation net-
works. In this way domain analysis of the basis func-
tions using the trained centers, widths and weights re-
veals correlations between feature combinations and
signal characteristics and allows for rule extraction
under certain prerequisites discussed in [9]. The
RBFN training process generates for each input vari-
able (p = 4 in our case) as many membership func-
tions as there are rules, i.e. N. Figure 7 with graphic
display in fig. 7 shows the centers and widths of the
membership functions for 6 rules from an example
training run. Having more than 5 or 6 membership
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functions for a fuzzily interpreted variable usually
hinders interpretability. Inspecting the table and es-
pecially the function plots we find that the member-
ship functions are not equally distributed over the in-
put value domain and some of the functions are quite
similar. A retraining under the described constraints
(not too many rules, more or less equally distributed
and shaped membership functions) is usually neces-
sary to gain some really interpretable and nontrivial
rules. This however often diminishes the modelling
accuracy of the retrained system.

Figure 7: Centers and widths of the gaussian member-
ship functions for the 4 features a = By,max−By,min and
DWT-energies e(5), e(6), e(7) and the main weights
w0 j. Each row corresponds to one rule. For each fea-
ture there are 6 membership functions according to
the N = 6 rules.

Figure 8: Plot of the gaussian membership functions
according to fig. 7 for the p = 4 input variables (nor-
malized with respect to mean and standard deviation).
From top to bottom: a = By,max − By,min and DWT-
energies e(5), e(6), e(7)

With respect to these drawbacks we consider an al-
ternative data modelling approach: the self organiz-
ing map.

6 Self Organizing Map (SOM)
A self organizing map (SOM) [11], [12] maps a high
dimensional feature vector space into a one or two
dimensional space in a topology preserving manner.

This means it preserves mutual relationships in the
feature space of input data by clustering mutually
similar feature vectors in neighboring nodes. We use
a two dimensional image space in this paper. Each
node of the two dimensional topological feature map
holds a codebook vector together with the output
class defined for it. An input vector then is charac-
terized by the output class of the nearest codebook
vector, see figure 9. Neighbourhood (similarity) is
usually defined with respect to the Euclidean norm.

Beyond pure classification of input vectors the
two dimensional representation gives insight into the
topological structure of the higher dimensional data
basis and the relative position of each new input. The
SOM even allows for rule extraction [13].

Figure 9: 10 x 10 self organizing map (SOM) with
classification result (cross) with respect to an input
vector identified as K-index = 3. Each node holds
a four dimensional codebook vector. Their output
class is indicated by the colorbar. By the nature of
the self organizing construction process of the SOM
some nodes might be empty, i.e. do not classify an
input (here labeled as −1).

As the output of a SOM is a class and not a con-
tinuous value we loose some modelling accuracy by
accepting outputs as natural numbers K = 0, 1, 2, ...

It is obvious from fig. 10 that a high output class K
is related to high values of the input varable a and low
values of e(5), e(6), e(7). The DWT energies e(5),
e(6), e(7) show similar clusterings. Medium to high
e-values are related to medium to low K-classes.

7 Conclusion
Signal processing and computational intelligence
methods are discussed that proved successful in de-
riving a local geomagnetic activity index from mag-
netic field time series in a noisy environment. To
this end a feature vector with mainly wavelet based
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Figure 10: The SOM and its p = 4 feature planes.
From upper left to lower right: a = By,max − By,min

and DWT-energies e(5), e(6), e(7).

components is used with a locally linear radial ba-
sis function net (LL-RBFN) and a self organizing
map (SOM). The LL-RBFN yields a superior mod-
elling accuracy. However knowledge discovery by
exploiting the interpretation of the LL-RBFN within
a Takagi-Sugeno fuzzy rule framework is possible in
principle but difficult in detail. Exploiting the cluster
topology of a SOM proved to give some more insight
into the data model. The extension of the data based
process model from pure classification to predicting
local geomagnetic activity is the subject of ongoing
work.
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