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Abstract: - In this paper, we present a supervised statistical-based cerebrovascular segmentation method from 
Time-Of-Flight MRA. The novelty of this method is that rather than model the dataset over the entire intensity 
range, we at first use a low threshold to eliminate the lowest intensity region, and then use two uniform 
distributions to model the middle and high intensity regions, respectively. Subsequently, in order to overcome 
the intensity overlap between subcutaneous fat and arteries, a high order multiscale features based energy 
function is introduced to enhance the segmentation. Comparing with those sole intensity based segmentation 
method the newly proposed algorithm can solve the problem of the regional intensity variation of TOF–MRA 
well and improve the quality of segmentation. The experimental results also show that the proposed method can 
provide a better quality segmentation than sole intensity information used method. 
 
Key-Words: Statistical segmentation, Bayesian method, Maximum a posteriori (MAP) estimation, Markov 
Random field, High-order multiscale features. 
 
 
1 Introduction 
The human cerebrovascular system is a complex 
three-dimensional anatomical structure and a three-
dimensional (3D) representation of vasculature can 
be extremely important in image-guided 
neurosurgery, pre-surgical planning and clinical 
analysis. 

Magnetic resonance angiography (MRA) is a 
noninvasive medical imaging modality that 
produces three dimensional (3D) images of vessels 
and cavities. Three major groups of MRA 
techniques are time-of-flight (TOF) MRA, contrast 
enhanced (CE) MRA and phase contrast (PC) MRA. 
TOF exploits the difference in the amplitude of 
longitudinal magnetization between flowing and 
static spins. The TOF technique is not quantitative 
but it is widely used clinically because it is fast and 
provides high contrast images, which is the main 
motivation behind our study. Although its 
importance is well-known, a three-dimensional 
representation of blood vessels is not available 
directly. A common approach is to use a maximum 
intensity projection (MIP) where three-dimensional 
(3D) data is projected onto a 2D plane by choosing 
the maximal intensity value along that projection 
direction. However, a major drawback of this 
method is that the background artefacts and other 
tissues may occlude vascular structures of low 
contrast and small width. Thus, it is desirable to 
extract the vasculature tree before it is visualized. 

A variety of the methods have been developed for 
extracting blood vessels [1,2] and all of these 
methods can be classified into three main categories: 
deformable model [3,4,5,6,7,8,], statistical models 
[9,10,11,12] and multiscale filtering [13,14,15,16].  

Since statistically based parametric techniques are 
efficient and easy to implement，they have been 
widely used to classify vessels in magnetic 
resonance angiography. Several researchers have 
demonstrated that, with a proper statistical mixture 
model for the observed intensity distribution of an 
angiogram, the expectation maximization (EM) 
algorithm followed by an estimator can be used to 
segment vascular structures [9,10,12,17]. Model 
selection is an important issue in this kind of 
statistical segmentation techniques. According to the 
intensity range, three major classes can be found in 
a TOF MRA dataset: the lowest intensity region 
corresponds to cerebrospinal fluid (CSF), bone, and 
the background air. The middle intensity region 
corresponds to brain tissues, including both the grey 
and white matter, and parts of the eyes. The third 
high intensity region corresponds to subcutaneous 
fat and arteries. 

In [9], a normal distribution is used to model each 
of the low and middle intensity regions, while a 
uniform distribution is used to model the vessels 
class as shown in Fig. 1(a). Chung et al. introduced 
a Rician distribution for background noise 
modelling [10]. Hassouna et al. found that Rayleigh 
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distribution provides an accurate fit when compared 
with the normal distribution, and use an additional 
normal distribution to describe the overlap the 
background and the brain tissues. And using a 
normal distribution instead of the uniform 
distribution describes the distribution of the blood 
vessels [12], the histogram and mixture fit are 
shown in Fig.1 (b). 

 

  
           (a)                                           (b) 
 
 

To the best of our knowledge, in the literature, the 
researchers have been laying a strong emphasis on 
the model selection over the entire dataset and 
pursuing automatic segmentations. However, after 
inspecting over different TOF MRA datasets, we 
found that the distributions of the background and 
the overlap between background and the brain tissue 
are not always fitted very well. So, there is none a 
FMM can be applicable to all different clinical 
datasets. Furthermore, for the purpose of binary 
segmentation, there is not necessary to find a FMM 
over the entire dataset which is complex, time 
consuming and may not get an accurate 
segmentation. At the same time, due to the overlap 
between subcutaneous fat and arteries, certain 
postprocessings are indispensable for reclassifying 
them. Thus, such an automatic global thresholding 
is not automatic yet. 

In our research, we at first use a low threshold to 
eliminate the lowest intensity region, and then use 
two uniform distributions to model the middle and 
high intensity regions, respectively. Subsequently, 
in order to reclassify the subcutaneous fat and 
arteries, a high order multiscale features based 
energy function is introduced into the Bayesian 
framework to get the complete cerebrovascular 
segmentation. 

 
2 Problem Formulation 
Traditional Markov random field (MRF) based 
segmentation algorithm requires modeling two 
random fields. Let  where N is the total 
number of voxels.  is unobservable 
MRF, also called the label field and x is a realization 
of X. The image to be segmented y is a realization of 

the observed random field . Let 
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segmentation of the image y, and then each element 
in the x can be regarded as a mapping from S to L. A 
feasible segmentation x is, therefore, in a Cartesian 
product xΩ of label sets. The set  is known as the 
configuration space.   

xΩ

The process of segmentation is to find  which 
represents the correct tissue class at each voxel site 
given by image y. we attempt to find the MAP 
estimation from the MRA dataset. 
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Model by Hassouna (2006) 

where is the posterior probability of y 
conditioned on x, denotes the probability 
distribution of x conditioned on y. is a priori 
probability of y, and p is the probability 
distribution of x. Because the prior probability of 
image  is independent of the segmentation x, so 
above equation can be rewritten as 

)|( xyp
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The likelihood and the prior probabilities are also 
known as the observation and the prior models in 
the Bayesian segmentation framework. 
 
2.1 Observation Model 
In practice, due to high complexity of the random 
variables X and Y, an assumption is made that 
intensity values in the image are independent and 
identically distributed, and can be modeled by a 
FMM[[18]. 

For every l L∈  and Ss∈  
ls lXp ω== )(                                      (4) 

 is independent of the individual sites s S∈  and 
lω ( Ll ∈ ) called mixing parameter. We take Φ as 

the model parameter set with  
}|;{ Llll ∈=Φ θω                                      (5) 

Consider two configuration x and y. The joint 
probability distribution of x and y dependent on the 
model parameters can be written as  
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we can compute the marginal distribution of y 
dependent on the parameter set  Φ

∏
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This is the so-called finite mixture model (FMM). 
In this section, we first use a low threshold to 

eliminate the low intensity region, and then use two 
normal distributions to fit the rest histogram. The 
histogram of the processed dataset and the mixture 
fit are shown in Fig.2.  Thus, the mixture 
distribution of two Gaussian distributions is defined 
by 
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where the function  are the normal 
density functions. The quantities 

）xfl ( ]2,1[=l

1ω and 2ω  are the 
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Expectation Maximization (EM) can be used to 
estimate the parameters of a chosen distribution for 
a set of data by maximizing the likelihood of the 
distribution [19]. In the EM algorithm the 
distribution parameters are iteratively estimated by 
updating initial parameter estimates under the 
constraint that the difference between the log-
likelihoods of the mixture distribution is to be 
minimized. 

 

 
2.2 Prior Model 
The spatial property can be modelled through 
different aspects, amongst which the contextual 
constraint is a general and powerful one. MRF 
theory provides a convenient and consistent way to 

model context-dependent entities such as image 
pixels and correlated features. 

An MRF is characterized by its local property 
(the Markovianity) whereas a GRF is characterized 
by its global property (the Gibbs distribution). The 
Hammersley-Clifford theorem [20] establishes the 
equivalence of these two types of properties. The 
theorem states that X is an MRF on S with respect 
to N if and only if X is a GRF on S with respect to 
N.  Hence, if X is a MRF, its joint probability can be 
given by 

T
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is a normalizing constant called the partition 
function, T is a constant called the temperature 
which shall be assumed to 1 unless otherwise stated, 
andU is the energy function. The energy )(x

c

)(x

∑
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is a sum of clique potentials V  over all possible 
cliques C. The value of V depends on the local 
configuration on the clique c. 
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c

In this paper, isotropic Multi-level Logistic (MLL) 
Model is adopted as MRF model and only pair-wise 
cliques are considered. The potential function for 
pair-wise cliques is written as  

∑
∈

=
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where sη is the neighbourhood of s and the 
potential functions are defined as  
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 The parameter srβ describes the strength of the 
interaction between pair-wise neighbouring voxels.  

Classification of the blood vessels is equivalent to 
find the optimal labelling using the maximum a 
posteriori (MAP) estimator:  

))()|((minarg* xUxyUx
xx

+=
Ω∈

                  (15) 
Fig. 2 Histogram and Mixture fit of processed dataset. 

where )|(log)|( xypxyU −= represents the 
likelihood energy function and ∑

∈

=
Cc

C xVxU is 

the prior energy function. 

)()(

Although this type of statistically based parametric 
techniques have been widely used to classify vessels in 
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magnetic resonance angiography (MRA) and gotten a 
great success. There are still some misclassified voxels 
because of the overlap between background and 
arteries. For example, some vessel voxels may be 
classified as non-vessel class in regions with 
significant vascular signal loss due to complicated 
flow conditions including slowly and turbulent blood 
flow. On the other hand, some background voxels may 
be classified as blood vessels class, when the noise has 
high intensity value.  

However, a spatial representation of small vessels 
and their branches which exhibit much variability 
are most important in planning and performing 
neurosurgical procedures. The more minute the 
information is, the more precise the navigation and 
localization of computer guided procedures. Present 
representations do not yield this kind of information. 
A more precise spatial representation of this 
complex anatomic structure is needed. 

In the first step of classification, the two functions 
and are not sufficient to reclassify the 

tiny vessels and high intensity background noise 
because of the intensity overlap between them. It is, 
therefore, necessary to introduce other information 
to deal with this problem. In fact, the high-order 
differential image information provides a rich 
description of the brain tissue and blood vessels in 
the medical imagery and therefore we have added a 
third term into the energy function, which is 
obtained by high order information analysis.  

)|( xyU )(xU

The speed image of TOF MRA provides 
information of the patients’ blood flow. The 
intensity values in the image are proportional to the 
flow velocity. Because of the blood viscosity, 
frictional force slows down the blood flow near the 
vascular wall. As such, the intensity profile is 
nonuniform within the vascular structures. 
Analyzing the intensity values distribution of 
structures in TOF MRA, images within a local 
neighborhood play an important role. Many 
different techniques have been proposed for analysis 
the local structure of the image [3, 6, 7, 8]. The 
differential invariants constitute a complete and 
irreducible set of differential operators appropriate 
for the description of the local image structure up to 
any desired order. 

For a point s in the image, a feature vector  is 
assigned  

)(sf
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where each  is the vector of differential 
invariants computed at scale 
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where and  represent the fist and second 
order Gaussian derivatives computed at scale 

σ1I nI σ2

nσ .The parameters nσλ1 , nσλ2 and nσλ3  represent the 
eigenvalues of the Hessian matrix of the image I, 
ordered by increasing magnitude. R  differentiates 
between plate and line like structures, R  accounts 
for deviation from a blob like structure, and S  
differentiates between vessel and background 

A

B

Once the vector of differential invariants is 
computed on each voxel, the K-nearest neighbor 
algorithm (KNN) can be used to estimate the 
probability function for a voxel to belong to a class. 
In pattern recognition, kNN is a method for 
classifying objects based on closest training 
examples in the feature space. Thus, the probability 
for a voxel x to belong to a class  is computed for 
the formula 
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where δ  represents the Euclidean distance.  is 
the K nearest neighbours and  is the set of voxels 
of the training set that belongs to the class . For 
blood vessel segmentation application and  
stand for background and blood vessels, 
respectively. 

)(sNK

iL

iC

0C 1C

In general, the selection of the candidates for 
training is of great importance in the learning stage 
of any supervised pattern recognition method and 
the overall performance of the method strongly 
depends on the selection of these candidates. In our 
application, there are only two types of training 
points, namely, background (including of brain 
tissues and subcutaneous fat) and blood vessels. 
TOF MRA images have large regional variations in 
intensity and the thin blood vessels have low 
contrast between vessels and the background. 
Furthermore, in some case, aneurysm may be 
occurred. Hence, when we select the training points 
for blood vessels, all of the above conditions should 
be considered. After selected, the corresponding 
feature vectors are computed and stored. 
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By now, high-order multiscale features based 
energy function can be defined as: 
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where λ  is a positive weighted coefficient. 

Optimal labeling of the MRA data is obtained 
through the condition 

))(|(()()|((minarg* 0 sfCspUxUxyUx
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The deterministic relaxation iterated conditional 
modes (ICM) is used for the MAP estimation [21]. 
Although the ICM usually converges to a local 
minimum of the energy function, this loss of 
optimality may be compensated for by an 
appropriated initial guess. In our experiments, we 
use maximum likelihood (ML) estimate [22]. The 
initial binary segmentation  is obtained as follows: 0x

)}||(max{arg0 Ssxypx ss
Lxs

∈∀=
∈

           (24) 

 
3 Parameters Estimation 
The mixture-density parameter estimation problem 
is probably one of the most widely used applications 
of the EM algorithm in the computational pattern 
recognition community, where the distribution 
parameters are iteratively estimated by updating 
initial parameter estimates under the constraint that 
the difference between the log-likelihoods of the 
mixture distribution is to be minimized. By 
minimizing that difference, the equations become: 
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where N is the total number of voxels being 
considered and ys is the intensity of voxel at location 
s. The function  is the conditional 

probability of voxel s belonging to class l at current 
iteration and is defined as  
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The common approach is to run the EM algorithm 
more than once, starting from different sets of initial 
parameter values and then selecting the estimated 
set and maximizing the conditional expectation, 
which is computationally expensive and the 
convergence is still not guaranteed. In this research, 
we adopt a histogram analysis based initialization 
method to find a good initial estimate to above 
parameters. 

On the other hand, in the MRF prior model, there 
are two free parameters, srβ and λ . There are several 
MRF parameter estimation techniques such as the 
coding method [23], the least square error method 
[24] and the maximum pseudo likelihood estimator 
(MPLE) method. In this work, the MRF parameters 
are found empirically. The sensitivity of the MRF 
parameters in the segmentation is analyzed. In order 
to find the optimal parameters, we have tested each 
combination of parameters by changing srβ from 
zero to 1 with an incremental step of 0.1 and λ  
from zero to 10 with an incremental set of 1. 
 
4   Experimental Results 

Since a complete vasculature is very complex, the 
manual segmentation by experts is unavailable. 
Therefore, in order to validate our method, we 
applied our algorithm to synthetic 3D volume with 
data volume 256x256x9 voxels. Furthermore, our 
algorithm has also been exerted on several real 
clinical datasets.  

To compromise between the computational speed 
and the accuracy of the algorithm, in the following 
experiments, only three different scales have been 
used, namely, 8.00 =σ , 21 =σ and 42 =σ ,which 
cover most of the objects from the thinnest arteries 
of interest to the thickest arteries in the datasets. In 
each experiment, 100 points have been selected for 
vessels and backgrounds.The number of the nearest 
neighbors is set as 10=K . 
 
4.1   Synthetic Image Volume  

In this experiment, a synthetic image volume 
containing several blood vessels was built.  A slice 
of the volume is shown in Fig. 3(a). All the blood 
vessels are generated using a parabolic intensity 

old
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profile and 8 voxels width. The noisy image with 
SNR= 4 and its truth segmentation is presented in 
Fig. 3(b) and (c), respectively. Fig. 3(d) gives the 
probability image derived from Equ(21). The 
segmentation results using sole intensity 
information and both information are illustrate in 
Fig. 3(e) and (f). A quantitative analysis of 
misclassified error for each slice in the volume is 
illustrated in Fig.3 (g). The misclassified error of 
our method and intensity information alone is 
3.32947% and 4.38046%, respectively. Notice that 
all segmentation results in this experiment are 
obtained without spatial contextual information. 

The segmentation error is calculated by counting 
the number of misclassified voxels, which is given 
by 

%100
image in the  voxelsofnumber  Total

 voxelsiedmisclassif ofNumber 
×=Error          

(29) 

                      

4.2 Clinical Data Sets 
In order to evaluate performance of our algorithm, 
we have tested our algorithm on several 3D TOF 
clinical datasets. For real clinical images, a 
quantitative assessment is very difficult because the 
complete vasculature is very complex and the 
manual segmentation by experts is unavailable. 
Even the manually-obtained segmentations cannot 
be considered “ground truth” since many vessels is 
not obtained and bright areas not corresponding to 
vessel are included in some cases. In the following 
experiments, qualitative comparisons are shown 
only due to the difficulty of obtaining ground truth 
segmentations for datasets.  

To show the accuracy of the segmentation, a 
comparison is done with the maximum intensity 
projection (MIP) [25] and Hassouna’s method [12], 
which is a recent unsupervised sole intensity based 
segmentation algorithm for blood vessel 
segmentation. 

The first dataset used here was acquired on a 1.5T 
scanner with voxel size of 0.859×0.859×1.017 mm3 
and image size of 256x256x115 voxels. 

In Fig.4, the influence of parameter λ  has been 
tested. From (c) to (g) we can find that with the 
increment of λ  more and more high intensity 
backgrounds such as eye and subcutaneous fat are 
eliminated f the segmentation results. Fig.4 (b) and 
(c) give the segmentation results using Hassouna’s 
method and our proposed preprocessing based two-
Gaussian mixture model. Note that the noise in 
Fig.4. (b) is not filtered using largest connected 
components. Segmentation result using proposed 
method is shown in Fig. 5 from different viewpoints. 

To validate our algorithm, the algorithm has been 
exerted on another two clinical datasets. The data 
volume in the second dataset is 256 ×256 ×79 
voxels with a voxel size of 0.938 ×0.938 ×2 mm3

.  
The second dataset contains 256 ×256 ×129 voxels 
and with a voxel size of 0.859×0.859×1mm3. 

In the following two experiments, the parameter 
configurations were: 5.0=srβ  and 5=λ . MIP 
images, segmentation results using Hassouna’s 
method (without postprocessing) and our proposed 
method are present in Fig 6 (a), (b) and (c), 
respectively. 
 
5 Conclusion 
In this paper, we have introduced a Bayesian image 
segmentation method for cerebrovascular 
segmentation from TOF MRA.  The novelty of this 
method is that rather than relying on the intensity 
feature alone, high-order feature is used to enhance 
the segmentation result.  In particular, the use of 
high order multiscale information provides a richer 
description of the different tissues in medical 
imagery than the description solely provided by the 
intensity distributions. 

In order to evaluate the algorithm, the proposed 
methodology has been applied to both the synthetic 
and real clinical image volumes. In synthetic image 
experiment, the segmentations produced by the 
newly proposed algorithm are in high degree of 
agreement with the ground truth.  However, due to 
the complexity of the whole cerebrovascular tree, 
the ground truth is unavailable by manual 
segmentation. To compensate for the loss of ground 
truth, we have compared our algorithm with both 
MIP and Hassouna’s method [12]. The comparison 
results illustrate that the proposed method can 
provide a better quality segmentation than sole 
intensity information used method. 
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Fig.3. Synthetic image segmentation. 
(a)A middle slice of synthetic volume.(b)Noisy image with SNR=4;(c)Ground truth 
(d) Probability for tube. (e). Segmented image using intensity information alone. 
(f) Segmented image using intensity and high order multiacle information. 
(g) Segmentation error on each slice. 

(a) (b) (c) (d) 

(g) (e) (f) 

Fig. 4 (a) MIP image; (b) Segmentation using Hassouna’s method;(c) Segmentation result using two 
Gaussian model.; From (c) to (g) Three-dimensional surfaces of the segmentation results with 
parameter 0= 2= 5= 8= 10=λ ,λ , λ ,λ and λ ,respectively. 

WSEAS TRANSACTIONS on SIGNAL PROCESSING Jutao Hao, Minglu Li

ISSN: 1790-5052 494 Issue 12, Volume 3, December 2007



 

 

 Fig.5. Segmentation result using proposed method is shown from different viewpoints. 

 (a) (b) (c) 

 Fig.6.  Comparison of segmentation results .(a) MIP; (b) Segmentation result using Hassouna’s method; 
(c) Segmentation result using our method. 

 

 

WSEAS TRANSACTIONS on SIGNAL PROCESSING Jutao Hao, Minglu Li

ISSN: 1790-5052 495 Issue 12, Volume 3, December 2007


	 



