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Abstract: Partial discharge (PD) measurement and recognition is a significant tool for potential failure
diagnosis of the high-voltage equipment. This paper proposes the application of fuzzy c-means (FCM)
clustering approach to recognize partial discharge patterns of cast-resin current transformer (CRCT). The PD
patterns are measured by using a commercial PD detector. A set of features, used as operators, for each PD
pattern is extracted through statistical schemes. The significant features of PD patterns are extracted by using
the nonlinear principal component analysis (NLPCA) method. The proposed FCM classifier has the advantages
of high robustness and effectiveness to ambiguous patterns and is useful in recognizing the PD patterns of the
high-voltage equipment. To verify the effectiveness of the proposed method, the classifier was verified on 250
sets of field-test PD patterns of CRCTs. The test results show that the proposed approach may achieve quite
satisfactory recognition of PD patterns.

Key-Words: Cast-Resin Current Transformer, Partial Discharge, Pattern Recognition, Fuzzy C-Means
Clustering, Nonlinear Principal Component Analysis

1 Introduction
Partial discharge measurement and pattern
recognition are important tools for improving the
reliability of high-voltage insulation systems. The
pattern recognition of PD aims at identifying
potential insulation defects from the measured data.
The potential defects can then be used for estimating
the risk of insulation failure of the high-voltage
equipment [1].

In the presence of a sufficiently strong electric
field, a sudden local displacement of electrons and
ions will lead to a PD if there exists a defect in an
insulator [2]. A PD event that occurs in the epoxy
resin insulator of high-voltage equipment would
have harmful effects on insulation that may finally
cause service failure. A defect in high-voltage
equipment, resulting in PD, will have a
corresponding particular pattern. Therefore, pattern
recognition of PD is significant for insulation
condition evaluation of high-voltage equipment.

Thanks to physical understanding of PD made
substantial progress in the last decade, it can now be
exploited to support interpretation of insulation
defects [1]. Recently, several methods have been
employed for the pattern recognition of PD,

including neural networks [3-5], genetic algorithm
[6], expert systems, self organizing map, wavelet
analysis, and fuzzy classification methods.

The application of neural networks to pattern
recognition and system identification has become a
major trend in the fault diagnosis. Neural networks
has been applied for spatial variability identification
of greenhouse [7], PD pattern recognition of current
transformers [8], and PD monitoring technique of
gas insulated substation [9]. Although the speed of
neural networks allows real-time operation with
comparable accuracy, the training process of
multilayer neural networks is often very slow, and
the training data must be sufficient and compatible.

The recognition of PD pattern and the estimation
of insulation performance are relatively complicated,
a task which is often completed by experienced
experts. Several expert systems for the diagnostics
of insulation systems have been developed [10]. The
expert system method acquires the knowledge of
human expertise to build knowledge base. However,
it needs to build and maintain the base with efforts.

The self organizing map is a typical unsupervised
neural network, which maps the multidimensional
space onto a two dimensional space by preserving
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the original order. It simulates the self-organizing
feature map’s function of the human cerebrum. The
self organizing map is a two-layer neural network
that consists of an input layer in a line and an output
layer constructed of neurons in a two-dimensional
grid.

Different from other clustering mapping methods
for unsupervised data, mapping relationship of SOM
can be highly nonlinear, directly showing the similar
input vectors in the source space by points close in
the two-dimensional target space [11]. Along with
the similarity of the input data, self organizing map
potentially leads to a classification result. It has
been applied for PD pattern recognition of CRCT
[12].

The wavelet analysis method has been used to
carry out time-frequency analysis in fault diagnosis
[13] and de-noising [14]. Wavelet analysis method
has also been applied to identify the PD
characteristics by decomposition of acoustic
emission signals [15] and PD signal de-noising [16-
18].

Genetic algorithm is a search method utilizing the
mechanism of natural selection and genetics. The
application of genetic algorithm to recognition has
become a useful tool in many fields [19]. It has been
applied for PD pattern recognition of gas-insulated
system [20].

Another method is the fuzzy clustering algorithm
[21]. The FCM clustering algorithm is one of the
most popular fuzzy clustering algorithms [22]. In
this paper, a novel FCM based pattern recognition
technique for the PD identification of CRCT is
proposed with more effectiveness and robustness
than the conventional pattern recognition methods.

This paper is organized as follows. Creation of
the PD pattern dataset and the extraction of phase-
related distributions are described in Section 2. The
development of the algorithm of statistical feature
extraction is described in Section 3. The NLPCA
features extraction algorithm is described in Section
4. The principles of FCM and the operation
flowchart of the proposed pattern recognition
scheme are given subsequently. The experimental
results and the analysis using 250 sets of field-test
PD patterns from five artificial defect types of
CRCTs are presented in Section 6. From the test
results, the effectiveness of the proposed scheme to
improve the recognition accuracy has been
demonstrated. The paper is concluded in the last
Section.

2 PD Pattern Dataset Creation

In order to investigate the PD features and to verify
the classification capabilities of the proposed FCM
based pattern recognition technique for different PD
types commonly occurring in CRCTs, a PD dataset
is needed. The PD dataset was collected from
laboratory tests on a series of model CRCTs. The
material and process used to manufacture the
CRCTs were exactly the same as that of making a
field CRCT. The appearance of the model CRCT is
shown in Fig. 1. The specifications of model CRCTs
are shown in Table 1. Five types of experimental
models with artificial defects embedded were made
to produce five common PD events in the CRCTs.

The five PD activities include (a) normal PD
activity (NM) in standard CRCT, (b) internal cavity
discharge (VH) caused by an air cavity inside the
epoxy resin insulator on the high-voltage side, as
shown in Fig. 2, (c) internal cavity discharge (VL)
caused by two cavities inside the epoxy resin
insulator on the low-voltage side, as shown in Fig. 3,
(d) internal fissure discharge (FH) caused by an air
fissure inside the epoxy resin insulator on the high-
voltage side, as shown in Fig. 4, (e) internal
discharge (MH) caused by a metal-line impurity
inside the epoxy resin insulator on the high-voltage
side, as shown in Fig. 5.

The PD events were detected by a PD detecting
system set up in our laboratory. The structure of the
PD detecting system is shown in Fig. 6. It includes a
step-up transformer, capacitor coupling circuit, PD

Fig. 1 The appearance of model CRCT

Table 1 The specifications of model CRCTs
Service
Voltage

Primary
Current

Secondary
Current Burden

12000 V 20 A 5 A 40VA
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detector, and the CRCT under test. Through the
testing processes, all the data measured were
digitally converted in order to save them in the
computer memory.

Then, the phase-related distributions of PD
derived from the original PD data are obtained in
relation to the waveform of the field test high
voltage. The high voltage in the field tests is
assumed to be held constant and the voltage phase
angle is divided into a suitable number of windows
(blocks). The PD detector, shown in Fig. 6, is used
for acquisition of all the individual quasi-integrated
pulses and quantifying each of these PD pulses by
their discharge magnitude (q), the corresponding
phase angle (), at which PD pulses occur and the
number of discharge (n) over the chosen block. The
analysis software (DDX DA3) plots these data as
functions of the phase positions [23].

The three phase-related distributions refer to the
peak pulse magnitude distribution Hqmax(), the
average pulse magnitude distribution Hqn(), and the
number of pulse distribution Hn(). The typical
phase-related distributions of PD patterns for the
four kinds of defects (VH, VL, FH, and MH) are
shown in Figs. 7 to 10, respectively. As shown in
Figs. 7 to 10, the PD patterns of deferent defects
display discriminative features.

3 Statistical Feature Extraction
Feature extraction is a technique essential in PD
pattern recognition to reduce the dimension of the
original data. The features are intended to denote the
characteristics of different PD statuses [11]. Several
statistical methods of feature extraction are
described in this section; five statistical operators
are extracted from phase-related distributions.
Definitions of the operators are described below.
The profile of all these discrete distribution
functions can be put in a general framework, i.e., yi

= f(xi) [23].
The statistical operators of mean () and variance

(2) can be computed as follows:
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Skewness (Sk) is extracted from each phase-
related distribution of PD to denote the asymmetry
of the distribution. It can be represented as:

Fig. 2 VH on the high-voltage side of CRCT

Fig. 3 VL on the low-voltage side of CRCT

Fig. 4 FH on the high-voltage side of CRCT

Fig. 5 MH on the high-voltage side of CRCT
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Kurtosis (Ku) is extracted to describe the
sharpness of the distribution as:
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In (1) and (2), xi is the statistical value in the phase
window i, pi is the related probability of appearance.

Skewness is a measure of asymmetry degree with
respect to normal distribution. If the distribution is
totally symmetric, then Sk=0; if the distribution is
asymmetric to the left of mean, Sk>0; and if it is
asymmetric to the right of mean, Sk<0. Kurtosis is
an indicator of sharpness of distribution. If the
distribution has the same sharpness as a normal
distribution, Ku=0; and if it is sharper than normal,
Ku>0; and if it is flatter than normal, Ku<0 [23].

Peaks (Pe) count the number of peaks in the
positive or negative half of a cycle of the
distribution.

Asymmetry (Da) represents the asymmetrical
characteristic of partial pulses in both positive and
negative cycles. It is given by:
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where N- is the number of PD pulses in the negative
cycle, N+ is the number of PD pulses in the positive
cycle. qi

- is the amplitude of the PD pulse at a phase
window i in the negative cycle, and qi

+ is the
amplitude of the PD pulse at a phase window i in
the positive cycle.

The cross correlation factor (Cc) can be expressed
as:
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where xi is the statistical value in the phase window
i of the positive half cycle, yi is the statistical value
in the corresponding window of the negative half
cycle, and n is the number of phase window per half
cycle.

Cross correlation factor indicates the difference in
the distribution sharps of both positive and negative
half cycles. Cc=1 means the sharps are totally
symmetric, Cc=0 means sharps are totally
asymmetric.

As Sk, Ku and Pe are applied to both positive and
negative cycles of Hqmax(), Hqn(), and Hn(), a
total of 18 features can be extracted from a PD

High Voltage
Control Plate

Step-up
Transformer

PD Detector
Data

Acquirement &
Analysis Unit

PD Pattern
Analysis Unit

Personal Computer

Capacitor
Coupling
Circuit

CRCT
Under Test

Fig. 6 System configuration of the PD detecting
system

Fig. 7 Typical phase-related distributions of PD
for the VH defect

Fig. 8 Typical phase-related distributions of PD
for the VL defect

Fig. 9 Typical phase-related distributions of PD
for the FH defect

Fig. 10 Typical phase-related distributions of PD
for the MH defect
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pattern. Da and Cc are applied to indicate the
difference or asymmetry in positive and negative
cycles of Hqmax(), Hqn(), and Hn(), and a total of 6
features can be extracted from a PD pattern.
Therefore, after the feature extraction procedure, a
feature vector of 24 statistical features is built for
each PD pattern.

The typical statistical features extracted by the
analysis software (DDX DA3) from PD patterns for
the four kinds of defects (VH, VL, FH, and MH) are
shown in Figs. 11 to 14, respectively.

The use of statistical featuring operators for the
patterns instead of the distribution profiles can
significantly reduce the dimension of the database.
To a certain degree, they can characterize the PD
patterns with reasonable discrimination [24].

4 NLPCA Feature Extraction Method
Feature extraction is necessary in the PD pattern
recognition to reduce dimension of original data and
make effective discrimination of the statistical
feature patterns for different PD status. In this paper,
the significant features are extracted from statistical
features by using NLPCA method [25-26]. The
NLPCA is based on the structure of dual multiplayer
neural networks model (DMNN), which contains
five layers of neurons, as shown in Fig. 15.

In Fig.15, the DMNN for NLPCA contains two
subnetworks of mapping and demapping networks.
The mapping from data space to feature space is
referred to as the mapping network and the reverse
mapping as the demapping network. The neurons at
layers 1 and 3 of the network have sigmoid
activation functions.

In training, the output vector ],.....,,[ 21 nxxxx  ,
where n is the number of the neurons at the output
and input layers, is anticipated to approach to the
input data vector ],.....,,[ 21 nxxxx  at the input
layer. As noted, the input layer of the mapping
network has neurons equal to the dimensionality of
the input data. In this paper n is set to be 24 which is
the number of statistical features. After the network
is trained, the m neurons at layer 2 represent lower-
dimensional nonlinear features ],.....,,[ 21 mffff 
extracted from the input data set.

The NLPCA attempts to find the mappings from
multidimensional data space to lower-dimensional
feature space. In the process, the reconstruction
error between input x and output x of the dual
networks is minimized [25].

2xxJ  (7)

Fig. 11 Typical statistical features of PD for VH

Fig. 12 Typical statistical features of PD for VL

Fig. 13 Typical statistical features of PD for FH

Fig. 14 Typical statistical features of PD for MH

Mapping Network

Demapping Network

Input Layer

Layer 1

Layer 2 (Feature Layer)

Layer 3

Output Layer

x

x

Fig. 15 Architecture of the DMNN in the NLPCA.
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The whole network, consisting of the dual
networks in the NLPCA, is an autoassociative
network where the output vector corresponds to the
input vector. The main advantage of NLPCA over
principal component analysis is that NLPCA has the
ability to stand for nonlinear relationships among
the data set of variables.

5 FCM-Based PD Pattern Recognition
Method

In this section, the algorithms of FCM and FCM-
based PD pattern recognition scheme are described.
The PD recognition through FCM in
multidimensional feature space is also validated on
the basis of the features extracted by NLPCA
method as mentioned above.

5.1 FCM Algorithm
The FCM has been successfully employed for the
data reduction task by providing a tool that
recognizes the inherent structure of a given set of
data. One of the most important benefits of applying
FCM to automate the data reduction task is its
mathematical basis for grouping data, rather than
subjective one [27].

The FCM algorithm is based on the following
objective function [28]:
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In which y = {y1, y2,……,yN }Rn is the data set, N
is the number of the data patterns, c is the number of
clusters, m is the weighting exponent on each fuzzy
membership, uik is the membership value of the k-th
feature vector to cluster i, U is a matrix whose
elements are uik, V = (v1,v2,…..,vc) is the vector of
cluster centres, vi = (vi1, vi2,……., vin) is the centre of
cluster i, ∥˙∥A is the A-norm on Rn , and A is
positive-definite (n n) weight matrix.

The FCM algorithm tries to minimize Jm, by
iteratively updating the partition matrix via the
following equations:
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The FCM has been applied to power system
coherency [22], automated dynamic strain gage data
reduction [27], and image segmentation [28]. In this
paper, FCM scheme is provided with the training set
of PD patterns. Each pattern is represented by a
feature vector. The set of feature vectors is clustered
for subsequent use in the PD pattern recognition
system.

5.2 FCM-based PD Pattern Recognizing
Procedure

The proposed FCM-based PD pattern recognition
scheme has been successfully implemented using
PC-based software (MATLAB) for the PD
recognition of CRCTs. The overall flowchart is
shown in Fig. 16. The proposed recognition scheme
is described briefly in the following steps:

Start

Stop

Prepare the Training Set

Initial Setting the FCM
Clusters

Training the FCM Clusters

PD Pattern Recognition
for CRCT

Training Procedure
Finished ?

Yes

No

Save the Centers of FCM
Clusters

Features Extraction
Using NLPCA Method

Statistical Features
Extraction

PD Patterns Data Base
Creation

Fig. 16 Flowchart of the FCM-based recognition
scheme
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Step1 Creating data base of the phase-related
distributions of PD patterns.

Step2 Extracting the statistical features from
phase-related distributions.

Step3 Extracting the significant features from
statistical features by using NLPCA method.

Step4 Prepare the training set for FCM.
Step5 Set the number of clusters c and the

weighting exponent m of FCM clusters, and
initialize U(0).

Step6 Calculate the centres of clusters vi
(l) using

equation (10).
Step7 Calculate U(l) using (11).
Step8 Iterate the training procedure from Steps 6

to 7, till ∥U(l) -U(l-1)∥<ε.
Step9 Save the centres of trained FCM clusters vi

(l),
as training procedure is finished.

Step10 Use (11) to calculate the membership value
to identify the defect types of CRCTs.

6 Experimental Results
To verify the proposed approach, a practical
experiment is conducted to demonstrate the
effectiveness of the PD pattern recognition scheme.
Five types of experimental models with artificial
defects are purposely embedded to produce five
common PD events in CRCTs.

The proposed method has been implemented
according to the field-test PD patterns collected
from our laboratory. The input data to a PD
recognition system are the peak pulse magnitude
distribution Hqmax(), the average pulse magnitude
distribution Hqn(), and the number of pulse
distribution Hn().

Associated with their real defect types, there are a
total of 250 sample data for different PD events.
Each PD event contains 50 patterns of sample data,
of which 30 patterns are training data and 20
patterns are testing data.

The statistical feature extraction methods are used
to extract 24 statistical features for each pattern. But,
some of the statistical features are futile for pattern
recognition. So, the features extraction of feature
vector from statistical features will influence the
accuracy of pattern recognition. In this paper, the
significant features are extracted from statistical
features by using NLPCA method. To evaluate the
optimal number of features for feature vector, we set
up three systems of feature vectors. In System 1, the
feature vector includes 10 features. In System 2, the
feature vector includes 12 features; and in System 3
the feature vector includes 14 features.

To extract different number of the features from
statistical features, the structure of NLPCA must be
determined. In Systems 1 to 3, the number of
neurons in the input layers and output layer of
NLPCA is designed to comprise the 24 statistical
featuring operators mentioned above. In System 1,
the number of neurons in the layer 2 of NLPCA is
set to be 10. The numbers of neurons in the layers 2
of NLPCA are set to be 12 and 14 for System 2 and
System 3, respectively. The structures of 3 types of
NLPCA are shown in Table 2. After feature
extraction process, all the features in the feature
vectors were normalized to set up the training sets.

After setting up the training sets of three systems,
the training procedure of FCM clustering starts. The
training data consist of 150 feature vectors, which
are randomly chosen from the 250 feature vectors of
sample data. The rest of 100 feature vectors were
used as the testing data. During the training process,
the number of clusters c was set to be 5 for five
types of defects, and the weighting exponent m was
set to be 1.6 based on experience. After the training
process, the centres of trained FCM clusters were
saved. The centres of 3 trained FCM clusters are
shown in Tables 3 to 5, respectively.

Table 2 The structures of 3 types of NLPCA

System
Neurons in

Input

Layer

Neurons

in Layer

1

Neurons

in Layer

2

Neurons

in Layer

3

Neurons in

Output

Layer

System 1 24 17 10 17 24

System 2 24 18 12 18 24

System 3 24 19 14 19 24

Table 3 The centres of trained FCM clusters for
System 1

Defect Types
Feature NM VH VL FH MH

#1 0.332 0.246 0.356 0.335 0.672

#2 0.021 0.358 0.201 0.447 0.012

#3 0.238 0.112 0.056 0.668 0.278

#4 0.452 0.569 0.012 0.447 0.732

#5 0.107 0.338 0.109 0.208 0.663

#6 0.545 0.721 0.443 0.443 0.432

#7 0.012 0.743 0.342 0.379 0.278

#8 0.783 0.390 0.334 0.294 0.443

#9 0.211 0.226 0.279 0.106 0.221

#10 0.202 0.621 0.167 0.523 0.390
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To verify the training results of FCM clusters, the
training data were applied to the trained FCM
clusters again. Tables 6 to 8 show the test results of
the training data for Systems 1 to 3, respectively.
The data in Tables 6 to 8 shows that the proposed
method has 100% accuracy for the 150 training
feature vectors in three systems. Tables 9 to 11
demonstrate the promising performance when 100
testing patterns of three systems were tested. It is
shown in Table 9 that among the 100 testing
patterns of System 1, there are only 2 errors of
recognition, one for FH and the other for MH
defects. It is shown in Table 10 that the proposed
method has 100% accuracy for the 100 testing
patterns of System 2. As shown in Table 11 among
the 100 testing patterns of System 3, there is only
one error of recognition for MH defect.

The test results show that the proposed method is
able to accurately recognize the testing defects for
three systems. The number of features in the feature
vector will influence the accuracy of pattern
recognition. The optimal combination of feature
vector is System 2.

7 Conclusions
This paper has proposed an FCM based pattern
recognition technique for PD of CRCTs. The
effectiveness of the proposed technique has been
verified using experimental results. It has been
shown that through the NLPCA feature extraction
procedure, the extracted feature vectors can
significantly reduce the size of the PD pattern
database. Also, the FCM based PD pattern
recognition scheme is very effective for clustering
the defects of CRCTs. The FCM based PD pattern
recognition scheme can be applied to other high-
voltage equipments such as transformer, circuit
breaker, and generator.

The experimental results show that the number of
features in the feature vector influences the accuracy
of pattern recognition. The directions for future
research of the FCM based PD pattern recognition
scheme can be described as follow: To further
improve the recognition accuracy of the proposed
approach, the optimal search methods for the
optimal combination selection of feature vectors can
be investigated and integrated in the proposed FCM
based PD pattern recognition for the CRCTs and
other high-voltage equipment. Besides, the proposed
recognition approach is based on the PD dataset
collected from a series of model CRCTs. The
content of PD dataset influences the accuracy of
pattern recognition. To ameliorate further the
recognition accuracy of the proposed approach, the

Table 4 The centres of trained FCM clusters for
System 2

Defect Types
Feature NM VH VL FH MH

#1 0.394 0.643 0.348 0.523 0.379

#2 0.227 0.389 0.237 0.431 0.278

#3 0.478 0.467 0.521 0.623 0.602

#4 0.642 0.211 0.233 0.321 0.368

#5 0.277 0.732 0.456 0.345 0.233

#6 0.186 0.197 0.201 0.327 0.378

#7 0.568 0.378 0.721 0.540 0.504

#8 0.297 0.289 0.367 0.419 0.467

#9 0.442 0.397 0.421 0.728 0.325

#10 0.397 0.489 0.236 0.212 0.275

#11 0.197 0.752 0.629 0.356 0.449

#12 0.624 0.233 0.189 0.228 0.208

Table 5 The centres of trained FCM clusters for
System 3

Defect Types
Feature NM VH VL FH MH

#1 0.425 0.512 0.216 0.219 0.265

#2 0.209 0.219 0.427 0.286 0.331

#3 0.563 0.431 0.222 0.318 0.294

#4 0.217 0.189 0.381 0.641 0.186

#5 0.167 0.318 0.287 0.324 0.528

#6 0.201 0.443 0.329 0.218 0.428

#7 0.408 0.209 0.210 0.228 0.143

#8 0.372 0.317 0.482 0.339 0.327

#9 0.184 0.228 0.308 0.497 0.374

#10 0.201 0.189 0.219 0.129 0.216

#11 0.310 0.286 0.312 0.175 0.286

#12 0.298 0.323 0.107 0.336 0.249

#13 0.119 0.186 0.186 0.329 0.335

#14 0.286 0.332 0.218 0.215 0.381

Table 6 Recognition performance of training data
for System 1 (150 patterns)

Pattern Defect Types Accuracy Rate

NM 100%

VH 100%

VL 100%

FH 100%

Training Data

MH 100%
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more plenteous PD dataset creation methods will be
studied in the future researches.
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