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Abstract: Partial discharge (PD) measurement and recognition is a significant tool for potential failure
diagnosis of a power transformer. This paper proposes the application of self organizing map (SOM) approach
to recognize partial discharge patterns of cast-resin current transformer (CRCT). The PD patterns are measured
by using a commercial PD detector. A set of features, used as operators, for each PD pattern is extracted
through statistical schemes. The proposed SOM classifier has the advantages of high robustness to ambiguous
patterns and is useful in recognizing the PD patterns of electrical transformers. To verify the effectiveness of
the proposed method, the classifier was verified on 250 sets of field-test PD patterns of CRCTs. The test results
show that the proposed approach may achieve quite satisfactory recognition of PD patterns.
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1 Introduction
Partial discharge measurement and pattern
recognition are important tools for improving the
reliability of high-voltage insulation systems. The
pattern recognition of PD aims at identifying
potential insulation defects from the measured data.
The potential defects can then be used for estimating
the risk of insulation failure of the high-voltage
equipment [1].

In the presence of a sufficiently strong electric
field, a sudden local displacement of electrons and
ions will lead to a PD if there exists a defect in an
insulator [2]. A PD event that occurs in the epoxy
resin insulator of high-voltage equipment would
have harmful effects on insulation that may finally
cause service failure. A defect in high-voltage
equipment, resulting in PD, will have a
corresponding particular pattern. Therefore, pattern
recognition of PD is significant for insulation
condition evaluation of high-voltage equipment.

Thanks to physical understanding of PD made
substantial progress in the last decade, it can now be
exploited to support interpretation of insulation
defects [1]. Recently, several methods have been
employed for the pattern recognition of PD,
including neural networks [3], expert systems, fuzzy
classification, and wavelet analysis methods.

The application of neural networks to pattern
recognition and system identification has become a
major trend in the fault diagnosis. Neural networks
has been applied for spatial variability identification
of greenhouse [4], and PD pattern recognition of
current transformers [5], and PD monitoring
technique of gas insulated substation [6]. Although
the speed of neural networks allows real-time
operation with comparable accuracy, the training
process of multilayer neural networks is often very
slow, and the training data must be sufficient and
compatible.

The recognition of PD pattern and the estimation
of insulation performance are relatively complicated,
a task which is often completed by experienced
experts. Several expert systems for the diagnostics
of insulation systems have been developed [7]. The
expert system method acquires the knowledge of
human expertise to build knowledge base. However,
it needs to build and maintain the base with efforts.

The third method is the fuzzy clustering
algorithm [8]. The fuzzy c-means clustering
algorithm is one of the most popular fuzzy
clustering algorithms [9]. Fuzzy c-means clustering
algorithm has been applied for pattern recognition
for PD of CRCT [10].

Another method is the wavelet analysis method,
which has been used to carry out time-frequency
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analysis in fault diagnosis [11] and de-noising [12].
Wavelet analysis method has also been applied to
identify the PD characteristics by decomposition of
acoustic emission signals [13] and PD signal de-
noising [14-16].

In this paper, a novel SOM based pattern
recognition technique for the PD identification of
CRCT is proposed with more effectiveness and
robustness than the conventional pattern recognition
methods.

This paper is organized as follows. Creation of
the PD pattern dataset is described in Section 2. The
development of the algorithm of feature extraction
is described in Section 3. The principles of SOM
and the operation flowchart of the proposed pattern
recognition scheme are given subsequently. The
experimental results and the analysis using 250 sets
of field-test PD patterns from five artificial defect
types of CRCTs are presented in Section 5. From
the test results, the effectiveness of the proposed
scheme to improve the recognition accuracy has
been demonstrated. The paper is concluded in the
last Section.

2 PD Pattern Dataset Creation
In order to investigate the PD features and to verify
the classification capabilities of the SOM for
different PD types commonly occurring in CRCTs,
a PD dataset is needed. The PD dataset was
collected from laboratory tests on a series of model
CRCTs. The material and process used to
manufacture the model CRCTs were exactly the
same as that of making a field CRCT. The
specifications of model CRCTs are shown in Table
1. Five types of experimental models with artificial
defects embedded were made to produce five
common PD events in the CRCTs.

The five PD activities include (a) normal PD
activity (NM) in standard CRCT, (b) internal cavity
discharge (VH) caused by an air cavity inside the
epoxy resin insulator on the high-voltage side, as
shown in Fig. 1, (c) internal cavity discharge (VL)
caused by two cavities inside the epoxy resin
insulator on the low-voltage side, as shown in Fig. 2,
(d) internal fissure discharge (FH) caused by an air
fissure inside the epoxy resin insulator on the high-
voltage side, as shown in Fig. 3, (e) internal
discharge (MH) caused by a metal-line impurity
inside the epoxy resin insulator on the high-voltage
side, as shown in Fig. 4.

The PD events were detected by a PD detecting
system set up in our laboratory. The structure of the
PD detecting system is shown in Fig. 5. It includes a
step-up transformer, capacitor coupling circuit, PD

Fig. 1 VH on the high-voltage side of CRCT

Fig. 2 VL on the low-voltage side of CRCT

Fig. 3 FH on the high-voltage side of CRCT

Fig. 4 MH on the high-voltage side of CRCT
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detector, and the CRCT under test. Through the
testing processes, all the data measured were
digitally converted in order to save them in the
computer memory.

Then, the phase-related distributions of PD
derived from the original PD data are obtained in
relation to the waveform of the field-test high
voltage. The high voltage in the field tests is
assumed to be held constant and the voltage phase
angle is divided into a suitable number of windows
(blocks). The PD detector, shown in Fig. 5, is used
for acquisition of all the individual quasi-integrated
pulses and quantifying each of these PD pulses by
their discharge magnitude (q), the corresponding
phase angle (), at which PD pulses occur and the
number of discharge (n) over the chosen block. The
analysis software (DDX DA3) plots these data as
functions of the phase positions [17].

The three phase-related distributions refer to the
peak pulse magnitude distribution Hqmax(), the
average pulse magnitude distribution Hqn(), and the
number of pulse distribution Hn(). The typical
phase-related distributions of PD patterns for the
four kinds of defects (VH, VL, FH, and MH) are
shown in Figs. 6 to 9, respectively. As shown in
Figs. 6 to 9, the PD patterns of deferent defects
display discriminative features.

3 Statistical Feature Extraction
Feature extraction is a technique essential in PD
pattern recognition to reduce the dimension of the
original data. The features are intended to denote the
characteristics of different PD statuses [18]. Several
statistical methods of feature extraction are

described in this section; five statistical operators
are extracted from phase-related distributions.
Definitions of the operators are described below.
The profile of all these discrete distribution
functions can be put in a general framework, i.e., yi

= f(xi) [17].
The statistical operators of mean () and variance

(2) can be computed as follows:
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Table 1 Specifications of model CRCTs
Service
Voltage

Primary
Current

Secondary
Current Burden

12000 V 20 A 5 A 40VA

Fig. 6 Typical phase-related distributions of PD
for the VH defect

Fig. 7 Typical phase-related distributions of PD
for the VL defect

Fig. 8 Typical phase-related distributions of PD
for the FH defect

Fig. 9 Typical phase-related distributions of PD
for the MH defect

High Voltage
Control Plate

Step-up
Transformer

PD Detector
Data

Acquirement &
Analysis Unit

PD Pattern
Analysis Unit

Personal Computer

Capacitor
Coupling
Circuit

Object under
Detection
(CRCT)

Fig. 5 System configuration of the PD detecting
system
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Skewness (Sk) is extracted from each phase-
related distribution of PD to denote the asymmetry
of the distribution. It can be represented as:
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Kurtosis (Ku) is extracted to describe the
sharpness of the distribution as:
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In (1) and (2), xi is the statistical value in the phase
window i, pi is the related probability of appearance.

Skewness is a measure of asymmetry degree with
respect to normal distribution. If the distribution is
totally symmetric, then Sk=0; if the distribution is
asymmetric to the left of mean, Sk>0; and if it is
asymmetric to the right of mean, Sk<0. Kurtosis is
an indicator of sharpness of distribution. If the
distribution has the same sharpness as a normal
distribution, Ku=0; and if it is sharper than normal,
Ku>0; and if it is flatter than normal, Ku<0 [17].

Peaks (Pe) count the number of peaks in the
positive or negative half of a cycle of the
distribution.

Asymmetry (Da) represents the asymmetrical
characteristic of partial pulses in both positive and
negative cycles. It is given by:
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where N- is the number of PD pulses in the negative
cycle, N+ is the number of PD pulses in the positive
cycle. qi

- is the amplitude of the PD pulse at a phase
window i in the negative cycle, and qi

+ is the
amplitude of the PD pulse at a phase window i in
the positive cycle.

The cross correlation factor (Cc) can be expressed
as:
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where xi is the statistical value in the phase window
i of the positive half cycle, yi is the statistical value
in the corresponding window of the negative half
cycle, and n is the number of phase window per half
cycle.

Cross correlation factor indicates the difference in
the distribution sharps of both positive and negative

half cycles. Cc=1 means the sharps are totally
symmetric, Cc=0 means sharps are totally
asymmetric.

As Sk, Ku and Pe are applied to both positive and
negative cycles of Hqmax(), Hqn(), and Hn(), a
total of 18 features can be extracted from a PD
pattern. Da and Cc are applied to indicate the
difference or asymmetry in positive and negative
cycles of Hqmax(), Hqn(), and Hn(), and a total of 6
features can be extracted from a PD pattern.
Therefore, after the feature extraction procedure, a
feature vector of 24 statistical features is built for
each PD pattern.

The typical statistical features extracted by the
analysis software (DDX DA3) from PD patterns for
the four kinds of defects (VH, VL, FH, and MH) are
shown in Figs. 10 to 13, respectively.

Fig. 10 Typical statistical features of PD for VH

Fig. 11 Typical statistical features of PD for VL

Fig. 12 Typical statistical features of PD for FH

Fig. 13 Typical statistical features of PD for MH
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The use of statistical featuring operators for the
patterns instead of the distribution profiles can
significantly reduce the dimension of the database.
To a certain degree, they can characterize the PD
patterns with reasonable discrimination [19].

4 SOM-Based PD Pattern Recognition
Method

In this section, the algorithms of SOM and SOM-
based PD pattern recognition scheme are described.
The PD recognition through SOM in
multidimensional feature space is also validated on
the basis of the laboratory PD dataset as mentioned
above.

4.1 SOM Algorithm
The SOM is a typical unsupervised neural network,
which maps the multidimensional space onto a two
dimensional space by preserving the original order.
It simulates the self-organizing feature map’s
function of the human cerebrum. The SOM is a two-
layer neural network that consists of an input layer
in a line and an output layer constructed of neurons
in a two-dimensional grid as shown in Fig. 14.

The arithmetic of SOM maps random dimension
input vectors to one or two-dimension dispersed
graphics and maintain its original topologies. With
continuous competitive learning, weight vectors
would separate from each other in the input space
and form one kind of pattern representation. So,
SOM learns to recognize groups of similar input
vectors in such a way that neurons which are
physically close to each other in the neuron layer
respond to similar input vectors.

Different from other clustering mapping methods
for unsupervised data, mapping relationship of SOM
can be highly nonlinear, directly showing the similar
input vectors in the source space by points close in
the two-dimensional target space [18]. Along with
the similarity of the input data, SOM potentially
leads to a classification result. It has been applied
for PD pattern recognition of turbo-generators [18]
and gas insulated switchgear [20], and for power
system voltage stability assessment [21].

4.2 SOM-based PD Pattern Recognizing
Procedure

The proposed SOM-based PD pattern recognition
scheme for CRCTs has been successfully
implemented in the PC-based software (MATLAB).
The overall operation flowchart is shown in Fig. 15.
The procedure of the proposed recognition scheme
is described briefly as follows.

Step1 A grid of SOM output layer neurons is set
up with initial given weight vectors.

Step2 An input vector is chosen randomly from
the input space.

Step3 A winning neuron on the output layer is
determined by calculating the Euclidean
distance between the input vector and the
weight vectors of all neurons in the grid.

Step4 The weight vector of the winner and the
weight vectors of its neighbouring neurons
are adjusted according to the learning rate.

Step5 Iterate the procedures from Steps 2 to 4
above, till the training process is finished.

Step6 Save the weight vectors of the trained SOM.
Step7 Use the trained SOM to identify the defect

types of CRCTs.

Output Layer

Input Layer

Weight

Fig. 14 System structure of SOM

Start

Stop

Set up SOM Structure

Initial Setup of SOM
Neurons’ Weight

Training the SOM

PD Pattern Recognition
for CRCT

Training Procedure
Finished ?

Yes

No

Save the Weight
of SOM

Fig. 15 Flowchart of the SOM-based recognition
scheme
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5 Experimental Results
To verify the proposed approach, a practical
experiment is conducted to demonstrate the
effectiveness of the PD pattern recognition scheme.
The proposed method has been implemented
according to the field-test PD patterns collected
from the laboratory. Five types of experimental
models with artificial defects are purposely
embedded to produce five common PD events in
CRCTs.

The proposed method has been implemented
according to the field-test PD patterns collected
from our laboratory. The input data to a PD
recognition system are the peak pulse magnitude
distribution Hqmax(), the average pulse magnitude
distribution Hqn(), and the number of pulse
distribution Hn()..

Associated with their real defect types, there are a
total of 250 sample data for different PD events.
Each PD event contains 50 patterns of sample data,
of which 30 patterns are training data and 20
patterns are testing data.

The statistical feature extraction methods are used
to extract 24 statistical features for each pattern. But,
some of the statistical features are futile for pattern
recognition. So, the combination of feature vector
will influence the accuracy of pattern recognition. In
this paper, the selecting index of statistical features
is the standard deviation of each feature calculated
from the training data. To evaluate the best
combination of feature vector, we set up three
systems of training sets. In System 1, the feature
vector includes 10 features, which have the lower
standard deviation. In System 2, the feature vector
includes 12 features; and in System 3 the feature
vector includes 14 features. Table 2 shows the
combination of feature vector for Systems 1 to 3.

In System 1, the number of neurons in the input
layer of SOM is designed to comprise the 10
statistical featuring operators mentioned above. The
numbers of neurons in input layer of SOM are set to
be 12 and 14 for System 2 and System 3,
respectively. To evaluate the performance of
different structure of SOM, the experimental tests
are carried out on 3 types of SOM. The output layer
of Type 1 SOM in the three systems is a two-
dimensional space comprising 15 by 15 neurons.
The output layer of Type 2 SOM in the three
systems is a two-dimensional space comprising 17
by 17 neurons. The output layer of Type 3 SOM in
the three systems is a two-dimensional space
comprising 20 by 20 neurons. The structures of 3
types of SOM are shown in Table 3.

Table 2 Combination of feature vector for 3 systems

System 1
Distribution Cycle Sk Ku Pe Da Cc

Positive ●
Hqmax()

Negative ●
● ●

Positive ●Hqn()
Negative ●

●

Positive ●Hn()
Negative ●

●

System 2
Distribution Cycle Sk Ku Pe Da Cc

Positive ●
Hqmax()

Negative ●
● ●

Positive ●Hqn()
Negative ● ●

●

Positive ● ●Hn()
Negative ●

●

System 3
Distribution Cycle Sk Ku Pe Da Cc

Positive ● ●
Hqmax()

Negative ●
● ●

Positive ●Hqn()
Negative ● ●

● ●

Positive ● ●Hn()
Negative ●

●

●:selected feature

Table 3 The structures of 3 types of SOM

SOM System
Neurons in
Input layer

Neurons in
Output layer

System 1 10 1515

System 2 12 1515Type 1

System 3 14 1515

System 1 10 1717

System 2 12 1717Type 2

System 3 14 1717

System 1 10 2020

System 2 12 2020Type 3

System 3 14 2020
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The training data consist of 150 patterns, which
were randomly chosen from the 250 sets of sample
data. The other 100 patterns were used as the testing
data. After the training process, the weight vectors
of the trained SOM were saved.

To verify the training effectiveness of the SOM,
training data are applied to the SOM again. Tables 4
to 6 show the test results of the training data for
Types 1 to 3 SOM, respectively. From Tables 4 to 6,
they are shown that the proposed method has 100%
accuracy for the 150 training feature vectors in three
SOMs.

Table 7 demonstrates the promising performance
of Type 1 SOM when 300 testing patterns of three
systems were tested. As shown in Table 7 among
the 100 testing patterns of System 1, there are only
two errors of recognition, one for VL, and the other
for MH defects. The Table shows that among the
100 testing patterns of System 2, there is only one
error of recognition for FH defect. It is shown in the
Table that the proposed method has 100% accuracy
for the 100 testing patterns of System 3. The test
results give that Type 1 SOM is able to accurately
recognize the testing defects for three systems. The
number of features in the feature vector will
influence the accuracy of pattern recognition. The
best combination of feature vector for Type 1 SOM
is System 3, the feature vector includes 14 features.

Table 8 demonstrates the promising performance
of Type 2 SOM when 300 testing patterns of three
systems were tested. As shown in Table 8 among
the 100 testing patterns of System 1, there is only
one error of recognition MH defects. The Table
shows that among the 100 testing patterns of System
2, there is only one error of recognition for VH
defect. The Table also displays that proposed
method has 100% accuracy for the 100 testing
patterns of System 3 and the Type 2 SOM is able to
accurately recognize the testing defects for three
systems. The best combination of feature vector for
Type 2 SOM is System 3, the feature vector
includes 14 features.

Table 9 demonstrates the promising performance
of Type 3 SOM when 300 testing patterns of three
systems were tested. As shown in Table 9 among
the 100 testing patterns of System 1, there are only
two errors of recognition, one for VH, and the other
for MH defects. The Table shows that among the
100 testing patterns of System 2, there is only one
error of recognition for FH defect. As shown in the
Table, among the 100 testing patterns of System 3,
only two errors of recognition exist, one for VH,
and the other for MH defects. The best combination
of feature vector for Type 3 SOM is System 2, the
feature vector includes 12 features.

Table 4 Recognition performance of Type 1 SOM
in training data (150 patterns)

System Pattern Defect Types Accuracy Rate

NM 100%

VH 100%

VL 100%

FH 100%

System 1

Training Data

MH 100%

NM 100%

VH 100%

VL 100%

FH 100%

System 2

Training Data

MH 100%

NM 100%

VH 100%

VL 100%

FH 100%

System 3

Training Data

MH 100%

Table 5 Recognition performance of Type 2 SOM
in training data (150 patterns)

System Pattern Defect Types Accuracy Rate

NM 100%

VH 100%

VL 100%

FH 100%

System 1

Training Data

MH 100%

NM 100%

VH 100%

VL 100%

FH 100%

System 2

Training Data

MH 100%

NM 100%

VH 100%

VL 100%

FH 100%

System 3

Training Data

MH 100%
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6 Conclusions
This paper has proposed an SOM based pattern
recognition technique for PD of CRCTs. The
effectiveness of the proposed technique has been
verified using experimental results. It has been
shown that through the feature extraction procedure,
the extracted statistical featuring operators can
significantly reduce the size of the PD pattern
database. Also, the SOM based PD pattern
recognition scheme is very effective for clustering
the defects of CRCTs.

The experimental results show that the number of
features in the feature vector influences the accuracy
of pattern recognition. To further improve the
recognition accuracy of the proposed approach, the
optimal search methods, such as genetic
programming and evolutionary programming, etc.,
for the best combination selection of feature vectors
can be investigated and integrated in the proposed
SOM based PD pattern recognition for the CRCTs
and other high-voltage equipment. Besides, the
structures of SOM have also been found to influence
the accuracy of pattern recognition. To ameliorate
further the recognition accuracy of the proposed
approach, the optimized structure of the SOM can
be studied in the future researches.
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