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Abstract:- In this article, we are interested in the camera self-calibration from three views of a 3-D 

scene. The originality of our method resides in the new technique used to estimate the homography of 

the plane at infinity by the minimization of a non-linear cost function that is based on a particular 

motion of the camera "translation and small rotation". Our approach also permits to calculate the 

camera parameters and the depths of interest points detected in the images. Experimental results 

demonstrate the performance of our algorithms, in term of precision and convergence.  
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1  Introduction 
The camera calibration requires the utilization of a 

grid [2] or of a known scene [3], this constraint is 

not still present in computer vision applications, 

what gives new method, say self-calibration, to 

calculate the camera parameters while replacing the 

grid or the known scene by an unknown scene.  

Generally, the camera self-calibration is achieved 

by two methods, the first uses any 3-D scene [4, 5, 

6] and the second uses a planar scene [7, 8]. In this 

article we are interested in the first method which is 

more general and treats more scene than the second. 

In any case, the camera self-calibration is non-linear 

and the obtained results depend strongly on the 

choice of the cost function to minimize and of the 

initial solution. 

Our approach to solve the problem of camera self 

calibration by a new method that simultaneously 

estimates the depths of the interest points, the 

homography of the plane at infinity and the camera 

parameters. Input data are the interest points 

between the three images that are detected by Harris 

algorithm and matched by ZNCC  correlation 

measure. Then an initial solution of the problem is 

calculated while supposing that the camera has a 

motion "mere translation", this solution permits a 

non-linear optimization algorithm to minimize a 

cost function to get satisfactory results.  

We will suppose, all along this article, that the 

camera intrinsic parameters are unknown constants 

variables. 

The paper is organized as follows: The second 

part presents some essential preliminaries to the 

understanding of the problem. The third part 

describes our approach of self-calibration. 

Experimentations are presented in the fourth part 

and the conclusion in the fifth part. 

 

2  Preliminaries 
 

 

2.1  Notations  
In this paper we denote by:   

 T
zyxM   a scene point and  T

vum   a 

image point.  T
zyxM


  a point at 

infinity and  T
vum


  his projection in the 

image plan.  T
1zyxM  ,  T1vum  , 

 T
0zyxM


  and  T

1vum


  

the homogeneous coordinates of  the points, M , m , 


M  and 

m .  T
000O   the 3 zero vector, 3

I  

the 3×3 identity matrix. 

 

 

2.2  Camera Model 
We consider that the imaging system is based on the 

pinhole model. The projection from 3D space to the 

2D image plane can be expressed by:  

  MtRKm   (1) 

with: 















 



100

vaf0

u0f

K
0

0

,  tR  is the 3×4 matrix,   a 

scalar different of zero, M  a scene point and m  an 

image point. Elements of the matrix K  are the 

camera's intrinsic parameters that will be determined 

by the self-calibration procedure. f  is the focal 

length, a  is the scale factors, iM  are the image 

coordinates of the principal point and   is the image 

skew considered as equal to zero (but this can be 

relaxed). Elements of the rotation matrix R  and the 

translation vector t  are the extrinsic parameters 
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determining the relative orientation and the position 

of the camera in 3-D space. 

 

 

2.3  Vision System  
We consider a camera that moves in three positions 

to project a 3D scene in three images. The space 

reference is attached to the camera reference in the 

first position. Therefore a point scene M  is 

projected in three points images m , 'm  and ''m , 

Fig. 1 by the following relations: 

  MOIKm 
3

  (2) 

  MtRK'm '   (3) 

  MtRK''m ''
11

  (4) 

 
Fig. 1: vision system used. 

 

 

2.4  Homography of the Plane at Infinity 

The projection of a point at infinity 


M  in the three 

images is given by: 

  


 MOIKm 
3

 (5) 

  


 MtRK'm'  (6) 

  


 MtRK''m''
11

 (7) 

From the relation (5) and (6) we deduct that: 

 




 mKRK'm 1  (8) 

The matrix 
1KRK 
 is called the homography of the 

plane at infinity between the images 1 and 2, noted 


H , therefore: 

 1KRKH 


  (9) 

The homography of the plane at infinity between the 

images 1 and 3 is given by: 

 1

11
KKRH 


  (10) 

 

 

2.5  Absolute Conic, its Image and the Dual 

of its Image 

● Absolute conic: In the projective space 
3P  all 

spheres intersect the plan at infinity in a unique set 

of points 


M , as: 

 0zyxMM 222T 


 (11) 

While avoiding the case 0zyx 


, the 

previous equation has a solution if the coordinates 


z  ,  y  ,  x  take some complex values. The set 

of points verifies the relation (11) is a conical 

particular of the plan at infinity, called absolute 

conic, associated to the matrix ~
3

I . 

● Image of the absolute conic: According to the 

relation (6) we deduct that: 



 'mKR'M 1T , 

and from the equation (11) we find that: 

   0'mKK'm
1T

T





  (12) 

Therefore the image of the absolute conic is the 

conical   1TKK


  that is the same in all views. 

● Dual of the image of the absolute conic: The 

matrix TKK  is the dual conic of   that is a 

positive definite symmetric matrix and only depends 

on the camera's intrinsic parameters. The knowledge 

of   is equivalent to the matrix K , and therefore to 

the camera calibration [9]: 

  






















1vu

vvafvu

uvuuf

KK

00

0

2

0

2

00

000

2

0

2

T  (13) 

 

 

2. 6  Fundamental Matrix 
The fundamental matrix is the correlation that 

transforms an image point on the epipolar line 

corresponding in the other image. The epipolar 

constraint for two points m  and 'm  written as: 

 0m F'm
T

  (14) 

This equation expresses that 'm  is on the epipolar 

line corresponding to m  and that is given by 

m Fl  . The matrix fundamental F  can be 

estimated by a robust algorithm [10]. 

 

2.7  Self-Calibration Equations 

From the relation (2) we find that mKM 1  and 

z  therefore: 

 mzKM 1  (15) 

From the relation (3) and (15) we find that: 

 Ktm
1

zKRK'm' 


  (16) 

We replace the vector Kt  by 't , according to 

relations (9) and (16) we find that: 

 'tmzH'm' 


  (17) 

 In (17), we put  T1'v'u'm   and we 

eliminate ' , we find the following equations: 

 
   

 
31

'tmzH21
'tmzH

11
'tmzH

'v'u











  (18) 
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Among the three precedent equations, two that are 

independent, we eliminate one, we find that: 

 

 
 

 
 




























31
'tmzH

'v

21
'tmzH

31
'tmzH

'u

11
'tmzH

 (19) 

These equations are non-linear, therefore, they 

require an optimization procedure.  

 

 

3  Camera Self-Calibration 
 

 

3.1  Matching  
To achieve the camera self-calibration, the matching 

of certain points is an important stage that is 

determined in three procedures; the first consists in 

localizing corners points by the Harris detector, the 

second aims at detecting the interest points by a 

correlation measure. Finally, to eliminate the false 

matching, a part of regularization by the 

fundamental matrix between the two images is done 

in the third procedure. 

 

3.1.1  Harris Detector 

Harris [11] developed the Moravec method to 

calculate the local maxima in images by a matrix 

N :  

 































































































 2

2

v

I

v

I
 

u

I

v

I
 

u

I

u

I

N  (20) 

where  vuI  is the grey level intensity. If at a 

certain point the tow eigenvalues of the matrix N  

are large, then a small motion in any direction will 

cause an important change of grey level. This 

indicates that the point is a corner. The corner 

response function is given by: 

 2))N(trce()Ndet(r   (21) 

where 04.0  (Harris parameter response). 

Corners are defined as local maxima of the 

cornerness function. It is necessary to smooth the 

images with a Gaussian filter to avoid corners due to 

image noise. 

 

3.1.2  Interest Points 
Interest points are Harris points detected previously 

matched by the correlation measure ZNCC  [12, 1] 

that is invariant to the local linear changes of 

luminance. The correlation measure  'm,mZNCC  

between two Harris points m  and 'm  detected in 

the images 1 and 2, is given by the following 

formula: 

 
 




i i

2

i

2

i

i

ii

ba

ba

)'m,m(ZNCC  (22) 

with: 

   

   'm'Ii'm'Ib

mIimIa

i

i




 

)m(I  and )'m('I  are means of pixel luminance on a 

1111  window centered respectively in m  and 'm . 

 

3.1.3  Regularization 
To eliminate the false matching detected in the 

previous part, we regularize all interest points by the 

estimation of a fundamental matrix F  between 

images 1 and 2 while using the RANSAC method 

[13]. If sm F'm
T

 , with s  a threshold fixed to the 

departure, and  'mm  two interest points, then the 

couple  'mm  is admitted, otherwise the couple 

 'mm  is omitted. 

 

 

3.2  Estimation of Homography of the Plane 

at Infinity 
Several methods have been proposed to improve the 

evaluation of the homography of the plane at 

infinity, such as the techniques that are based on a 

translation camera motion [14] or rotation [15]. Our 

approach is in the same axis, but with a particular 

motion "translation and small rotation", this 

displacement type permits to initialize a non-linear 

cost function by a solution that guarantees the 

convergence toward an exact solution.  

 

3.2.1  Formulation of a Cost Function  
In practice, there is no direct method to solve 

equations (19). Therefore we minimize the 

following non-linear cost function: 

  





n

1i

2

i

2

i
min  (23) 

with: 
   
   
 't,H,Z

31
't

i
mH

i
z

21
't

i
mH

i
z

i

31
't

i
mH

i
z

11
't

i
mH

i
z

i

i

i

'v

'u



















 

 T
ni1

z .... z .... zZ   is a n  vector of depths of the 

scene points  T
iiii

zyxM  .  T
iii

vum   

and   T
iii
'v'u'm   are projections of the point 

i
M  in the images 1 and 2. 
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n  (must be superior to twelve) is the number of 

interest points. We use the Levenberg-Marquardt 

algorithm (Matlab implementation) to solve this 

non-linear problem that must be initialized. 
 

3.2.2  Initialization 
The motion of camera is "translation and small 

rotation", therefore initially we suppose that the 

displacement is mere translation, in this case 
3

I~R  

therefore 
3

I~H


. This constraint permits to write 

equations (19) as follows: 

 
 
 

0
't

z
 

'v10'vv

'u01'uu
i

iii

iii





















 (24) 

For n  interest points, the equation (24) becomes: 

 0BA   (25) 

With A  as a  3nn2   matrix and B  as a 3n   

vector as: 

 T
nnii11
   V    U ........ V    U ...... V    UA   

 TTT 'tZB

  T
i

T

inii

T

1ii
'u01O'uuOU 


 

  T
i

T

inii

T

1ii
'v10O'vvOV 


 

 T
i

0 .......... 0O   is a i  zero vector, 
0

O  is a non 

definite vector that must be eliminated. 

The solution of the equation (25) can be obtained 

by the singular value decomposition method. 

 

 

3.3  Intrinsic Parameters 

From the relation (9) we find that KHKR 1



  and 

since 
3

T IRR   we deduct that TTT HKKHKK


  

in (13) we have 
TKK  therefore: 

 THH


  (26) 

The equation (26) can be written as a set of nine 

linear equations with five unknown (elements of the 

matrix  ). Among these nine equations, only five 

are independent, therefore two views are sufficient 

to determine the matrix  , but for reasons of 

numeric stability it is preferable to use two 

displacements (three views). Therefore the linear 

equation to solve is the following: 

 














T

11

T

HH

HH
 (27) 

To estimate the homography of the plane at 

infinity 1
H  between the images 1 and 3, we use the 

interest points m  and ''m  detected in these two 

images and we apply the same procedure as in the 

previous parts to find 
H . The intrinsic parameters 

are calculated by a Cholesky decomposition of the 

matrix  . 

 

 

4  Experimentations 
 

 

4.1  Simulations 
We simulate a sequence of three 512×512 images of 

a known grid 3D in the space. The camera moves 

from one position to the other by motion 

"translation and small rotation". Points of the grid 

are projected in images and a calibration method is 

applied to find the intrinsic parameters that are 

  280vet    264u  ,94.0a  ,1230f
00
 .  

The Gaussian noise with varying deviation   is 

added to the image point location. Interest Points are 

matching by ZNCC  and are regularized by the 

fundamental matrix after the normalization of data 

[15]. The initialization of the problem is obtained by 

the hypothesis of a motion is mere translation and 

the homography of the plane at infinity is estimated 

by the minimization of the non-linear cost function. 

The intrinsic parameters are calculated by equations 

(27). The presented tests concentrate on the 

comparison of the focal length estimated by our 

method with the classic calibration technique.  

The relative error on the focal length is increased 

linearly according to noise with a very reasonable 

precision Fig. 2.  
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Fig. 2: The relative error on f according to noise. 

The relative error on the focal length is decreased 

when the interest points are added Fig. 3. 
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Fig. 3: The relative error on f according to number 

of interest points. 
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4.2  Real Data 
To show the good quality studied algorithms in this 

article, three 512×512 images are acquired Fig. 4 by 

a numeric camera (Canon EOS 400D Digital) of 

which its intrinsic parameters are kept constant. 

        

 
Fig.4, The three images used for the camera self-

calibration. 

The interest points are detected and the homography 

the plane at infinity is estimated, then the camera 

parameters are determined table 1. 

 f  a  
0

u  
0

v  

Intrinsic 

parameters 

1232 0.87 262 310 

Table 1: Camera's intrinsic parameters. 

 

 

5  Conclusion 
We dealt with the problem of the camera self-

calibration, from the estimation of the homography 

of the plane at infinity by a simple technique to 

manipulate, which consists in displacing the camera 

so that its motion is "translation and small rotation", 

with the constraint that at least twelve scene points 

remain in the camera visual field between two 

consecutive views. The hypothesis of a motion is 

mere translation only used to initialize parameters to 

be estimated, before applying a non-linear 

resolution method. 
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