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Abstract: - In regression neural networks for pattern recognition of preprocessed guided waves signals in 
beams, a trained network produced large errors when identifying a test pattern not found in the training set. To 
improve the accuracy of results, a new neural network procedure was introduced where progressive training 
was performed in a series combined network with the integration of a weight-range selection (WRS) technique 
that was dependent on the test pattern. The WRS method was applied for a supervised multi-layer perceptron 
operating with one hidden layer of neurons and trained using a backpropagation algorithm. The system was 
able to achieve average predictions accurate to 2.5% and 7.8% of the original training range sizes for the 
damage location and depth respectively while the WRS provided up to 13.9% improvement compared to 
equivalent conventional neural networks. 
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1   Introduction 
Structural health monitoring is a field that aims to 
evaluate the integrity and safety of structures mainly 
for aerospace, civil and marine applications. The 
advent of advanced sensor technologies, accurate 
measuring instruments and the improvement in 
signal processing techniques have motivated the 
research and development of practical solutions to 
quantify damages in structures [1]. A technology 
that has gained much interest in the recent years are 
ultrasonic guided waves, which are highly sensitive 
in detecting discontinuities in their paths of 
propagation [2, 3]. However, identifying damages 
accurately from the measured transient wave 
response alone can prove difficult when a 
reasonably large damage parameter space is 
considered. Signal processing thus becomes an 
essential intermediate procedure in guided waves 
damage identification, leading to the application of 
pattern recognition with neural networks. 
     Pattern recognition with regression neural 
networks has recently been developed for guided 
waves signals to quantify damages in metal and 
composite structures [4, 5, 6]. These systems require 
the simulation of patterns with known damage 
parameters for the supervised neural network 
training as a practical and cost-effective approach. 
Simulations of wave responses from the given 
damage parameters can be calculated from 

considerations of the reflection and transmission 
coefficients at the damage boundaries [7] or by 
finite-element methods [8].  
     Although these simulations predict the wave 
response to adequate accuracies, there are some 
areas where experimental measurements will 
normally differ. These differences are sufficient to 
cause networks trained with simulated patterns to 
encounter difficulties in identifying experimental 
patterns. Discrepancies can originate from noise, 
pulse interference, mode coupling, dispersion and 
additional wave modes, all of which are difficult to 
predict and hence, not easy to reproduce in 
simulation. The occurrences of these effects are 
mostly case-specific, i.e. to the test pattern being 
identified. Hence, there must be an integral step to 
consider the test pattern during neural network 
training to obtain more accurate damage 
identification results. This motivates the research to 
develop a progressive training process through a 
series network that considers the intermediate test 
results from recognizing the test pattern. 
     In the next Section 2, the pattern recognition 
system is presented, outlining the experimental 
setup, simulation model, preprocessing procedure to 
obtain the inputs patterns, as well as the neural 
network architecture and design. The potential and 
the methodology of the test pattern dependent 
system are described in Section 3. The damage 
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identification results from the system are presented 
and discussed in Section 4 followed by a conclusion 
in Section 5. 
 
 

2 Pattern Recognition for Guided 
Waves Damage Identification in 
Beams 

A pattern recognition system was designed for a 
damage identification tool in beams investigated 
with guided waves. Single thin laminar damages 
were quantified in beams, which are elementary 
members of frames and trusses in structures.  
     Test patterns were obtained from measurements 
of the transient wave responses on beams fabricated 

with artificial laminar damages. On the other hand, 
training patterns were generated from a simulation 
based on the fundamental principles of wave 
propagation, reflection and transmission. Both 
patterns were preprocessed using the discrete 
wavelet transform, improving correlation between 
experimental and simulated patterns while reducing 
the neural network processing time.  
     A multi-layer perceptron feedforward neural 
network architecture trained with simulated patterns 
through a backpropagation algorithm was then used 
to identify the experimental test pattern. Further 
details of the input data acquisition procedures and 
the pattern recognition system are described in the 
following sections.  

 

 
Fig. 1. 500mm region of investigation at the center of a beam specimen fabricated with a full-width step damage. Pulse 
Excitation inset shows the 8-cycle 80kHz Hanning windowed tone burst pulse as the interrogating wave while the 
Damage Model inset shows the inhomogeneity model for simulating training patterns. 
 
2.1 Experiment 
Aluminum beam specimens of 2 metres in length 
with rectangular cross-sections 12mm × 6mm were 
considered. A 2mm × 12mm × 6mm longitudinal 
Pz27 piezoceramic transducer was adhesively 
bonded to one end of the beam to excite an 
interrogating wave pulse into the beam. The 
transducer was wired to a SRS DS345 function 
generator to produce an 8-cycle 80kHz Hanning 
windowed tone burst pulse excitation, as depicted in 
the Pulse Excitation inset of Fig. 1. A Krohn-Hite 
7500 amplifier was connected between the function 
generator and the transducer to increase the 
amplitude of the signal. Additionally, for a better 
signal-to-noise ratio response, a 4mm × 12mm × 
6mm brass backing mass was adhesively bonded to 
the transducer. A Polytec OFV 303/OFV 3001 laser 
vibrometer system was used to measure the transient 
wave response at the center of the 6mm thickness 
surface of the beam. Measurements were collected 
at 500mm from the transducer-beam interface to 
obtain optimum separation among pulses and thus 
ensure minimum pulse interferences in the signal. 
Out-of-plane displacements were measured against 

time, which was displayed on a digital oscilloscope 
and transferred to a personal computer for storage 
and processing.   
     A full-width step damage was machined in a 
region of investigation located at the center of each 
beam, as shown in Fig. 1. This 500mm long region 
was taken as the original damage parameter space. 
Five beams were prepared and labeled according to 
the fabricated damages described in Table 1. Three 
damage parameters would be identified by pattern 
recognition, namely damage center location (DCP), 
damage depth (DD) and damage length (DL). Note 
that DCP was measured from the transducer-beam 
interface. 
 

Table 1. Damage parameters fabricated on 
five test beams T1 – T5. 
 

Beam DCP (mm) DD (mm) DL (mm) 
T1 820 2.5 25.0 
T2 960 1.0 90.0 
T3 1100 2.0 75.0 
T4 1130 1.5 65.5 
T5 1200 2.5 50.5 
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2.2 Simulation 
The longitudinal wave velocity, c, was used to 
determine the arrival times of wave pulses at the 
point of measurement during simulation. c was 
approximated to travel at 4750m/s by comparing the 
change in incident pulse arrival times measured 
experimentally at several locations along the length 
of the beam. Note that this velocity was lower than 
theoretical group velocities in aluminum rods due to 
the complex dispersion in rectangular beams that 
cannot be quantified through an exact solution [9]. 
     At the damage region, the wave was split into 
reflected and transmitted waves. The proportion of 
reflection and transmission were quantified by 
modeling the damage region as an inhomogeneity 
[7], described graphically in the Damage Model 
inset of Fig. 1. The inhomogeneity took on the same 
length as the damage with an equal cross-sectional 
area as the undamaged aluminum beam. However, 
the inhomogeneity region contained a different 
acoustic wave impedance, Z, compared to the 
aluminium beam. Z is an acousto-ultrasonic material 
property, as defined in Eq. (1) where ρ is the 
material density, c is the wave velocity, and A is the 
cross-sectional area of the specimen. 
 

       Z c Aρ=     (1) 
 
     For the step damage, there was a change in Z due 
to a change in A, which was a function of the beam 
thickness. Reflection and transmission coefficients 
at the boundaries of the damage region, CR and CT 
respectively, can thus be derived from Eq. (2) [10] 
where subscripts a and b denote the locations before 
and after a damage boundary.  
 

     2 ,  b a b
R T

a b a b

Z Z ZC C
Z Z Z

−
= =

+ + Z
  (2) 

 
     Signals of the transient wave response at the 
point of measurement for different damage 
parameters could then be generated by simulation 
based on the known c, CR and CT values. Training 
data was simulated randomly within the selected 
original parameter spaces at accuracies given in 
Table 2. 
 

Table 2. Original damage parameter spaces and 
accuracies for simulation of training data. 
 

Damage 
Parameter 

Original Parameter 
Space (mm) 

Accuracy 
(mm) 

DCP 750 - 1250 1 
DD 0 - 3.0 0.1 
DL 0 - 100.0 0.1 

2.3 Experimental and Simulated Signals  
Fig. 2(a) shows an example of the extracted transient 
wave response signal for test beam T3 acquired 
from the point of measurement. The equivalent 
simulated signal based on the inhomogeneity model 
is also plotted. Both signals are normalized by the 
amplitude of the incident wave and the notable 
pulses are described. The arrival times of all the 
pulses can be easily checked from simple 
calculations with the known wave velocity and the 
distance traveled along the beam.      
     Signals within the 100µs-940µs range contained 
rich information regarding the damage and were 
extracted as neural network input. This range 
spanned from the incident wave to the first 
transmitted wave. The first transmitted wave was 
defined for a pulse that had traveled past the 
damage, reflected from the free end of the beam, and 
transmitted again through the damage before being 
collected at the point of measurement. Signals out of 
this range were not considered because there was 
only noise prior to 100μs while beyond 940μs the 
wave response was affected by the presence of 
severe attenuation and dispersion [10], which were 
features not included in the simulation. 
 
 

 
 

 

Fig. 2. Experimental and simulated extracted signals with 
corresponding preprocessed wavelet patterns for test 
beam specimen T3. 
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Table 3. Correlation coefficients between 
experimental and simulated extracted signals 
and wavelet patterns for  the test beams. 
 

Beam T1 T2 T3 T4 T5 
rsig 0.132 0.115 0.299 0.174 0.285 
rwav 0.972 0.982 0.974 0.976 0.981 

 

 
     With low noise levels achieved with the laser 
vibrometer system, a generally good match with 
respect to pulse amplitudes and arrival times is 
observed between experimental and simulated 
signals, as evident in Fig. 2(a). However, weak 
correlation coefficients are calculated between 
extracted experimental and simulated signals, rsig, as 
shown in Table 3.  
     As the pulse amplitudes and arrival times 
corresponded reasonably well between experiment 
and simulation, the weak rsig values are mainly the 
result of inconsistent differences in the phase. These 
phase discrepancies are attributed to the complex 
dispersive behaviours of waves propagating in 
rectangular beams [9]. These properties can only be 
approximated with limited accuracies through 
elaborate numerical methods [11] and hence, are not 
feasible to produce training patterns. 
 
2.4 Wavelet Transform Preprocessing 
Discrepancies in the phase could lead to errors in 
pattern recognition, hence, preprocessing was 
performed to minimize these effects and to extract 
only important features from the signals. The 
discrete wavelet transform was applied, which 
decomposed the signal by reducing the number of 
sampling points through a wavelet derived filter 
bank in dyadic scales [4]. 
     The absolute signals were transformed to produce 
wavelet patterns, as shown in Fig. 2(b). These 
wavelet patterns were the result of 5 levels of 
decomposition with the 8th order Daubechies 
wavelet. 5 levels of decomposition gave an optimum 
balance between resolution and downsampling while 
the 8th order Daucbechies wavelet was selected for 
its high regularity to locate local properties within 
the signal [12]. Essential features that described the 
damage viz. the pulse arrival times, magnitudes and 
lengths, were relatively preserved in the wavelet 
patterns. 
     The discrete wavelet transform increased the 
correlation coefficient between experimental and 
simulated patterns, rwav, as evident in Table 3, which 
could improve the pattern recognition performance. 
In addition, the number of points was also reduced 
from 841 points at a sampling rate of 1MHz in an 
extracted signal to 28 points in a wavelet pattern. 

The shorter wavelet pattern thus provided the 
advantage of faster processing times when learning 
the simulated patterns during neural network 
training. 
 
2.5 Neural Network Architecture and Design 
The multi-layer perceptron feedforward neural 
network with a single hidden layer of neurons [13] 
was architecture selected for pattern recognition. 
This neural network contained a hyperbolic sigmoid 
activation function, F, to account for nonlinear 
regression. The governing function for this network 
architecture is given in Eq. (3) where I is the input, 
O is the output, M is the total neurons, W is the 
weight, and B is the bias. U = 28 for the total points 
in the input pattern while v = 1, 2 or 3 for the three 
damage parameters identified. 
 

, ,
1 1

F
M U

v v m m u u m
m u

O W W I B
= =

⎛
vB⎞

= + +⎜
⎝ ⎠

∑ ∑ ⎟   (3) 

   

    The training data consisted of a set of input 
pattern and corresponding target parameter pairs. 
Training was supervised with weights and biases 
adjusted via a resilient backpropagation algorithm 
[14] by minimizing the mean square error between 
outputs and targets. This algorithm was suitable to 
process large networks due to its fast adaptive code 
and low memory requirements. As there were 
substantial differences in orders of magnitude 
among the three damage parameters, these known 
parameters were scaled in the range [-1,1] for 
training. Therefore, the test results were also 
obtained within this scaled range and were required 
for conversion back into the original magnitudes.  
     Validation with early stopping [15] was applied 
during training as a regularization procedure to 
improve generalization. The size of the validation 
set consisted of half the training set, which was the 
accepted solution for adequate verification purposes 
and fast processing time. Another regularization 
method conducted was the inclusion of noise into 
the training patterns [13]. The range of noise levels 
was initially measured from the experimental 
signals. Based on the measurement, half the 
simulated signals for training were added with noise 
with zero mean and standard deviations that varied 
between 0.001 and 0.01 before performing the 
discrete wavelet transform.       
     A systematic approach [16] was adopted to 
design the optimum number of neurons in the 
hidden layer and the size of the training set. The 
outcome was a neural network with 10 neurons in 
the hidden layer and a training set size of 4845 
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patterns that resulted in a validation set size of 2423 
patterns. The same architecture and design was 
maintained throughout the series network processing 
for consistency while assuming that a network that 
worked well for a training range would work equally 
well for a subset of the range.  
 
 

3 Weight-Range Selection through a 
Series Network 

The concept of a test pattern dependent neural 
network is based on combined networks [17] by 
joining conventional neural network processes in a 
series. The intermediate test results from a neural 
network can then be used to limit the parameter 
space for improved generalization in training the 
subsequent network. The weight-range selection 
(WRS) is introduced for this purpose to bridge 
between the networks in series.  
 
3.1  Potential of Weight-Range Selection 
Errors calculated from test results obtained from 
single runs of conventional neural network 
processes conducted through 50 trials are shown in 
Fig. 3. The errors presented are for both the 
experimental and the equivalent simulated test 
patterns to allow for comparison. Accurate test 
results observed for simulated patterns with an 
average error, <E>, of 6mm, and standard 
deviation, σ, of 15mm, verifies the appropriate 
application of the neural network architecture and 
design. In comparison, large uncertainties and 
fluctuations were dominant for testing with the 
experimental pattern, although the pattern exhibited 
excellent correlation with simulation in Fig. 2 and 
Table 3. As the same training, validation and test 
patterns were used in all the trials, the fluctuations in 
the results were initiated by random selection of 
initial weights including biases in Eq. (3). This 
highlights the important difference in identification 
results between experiment and simulation from a 
neural network trained with simulated patterns for 
the present pattern recognition system.  
 

 
Fig. 3. Errors in DCP for testing the T3 experimental and 
simulated patterns in 50 trials. 

     The random initialization of weights is a property 
of neural networks that results in no unique solution 
[18]. Training only ensures that for any random 
initial weights, the function approximated at the end 
of training gives minimum error with respect to the 
training data. Even when minimum error is achieved 
after training for a particular set of initial weights, 
the trained network might not necessarily give good 
generalization for the test pattern being identified. A 
broad variation in regression trends exists with some 
approximations being more favorable than others in 
obtaining accurate pattern recognition results from 
the test pattern. Although subtle discrepancies 
between experimental and simulated patterns are 
present, as observed in Fig. 2(b), due to noise and 
complex wave propagation effects already 
mentioned in Section 1, this significantly reduces 
the proportion of regression trends that can map 
accurately to the experimental patterns. 
  

Table 4. Calculated <E> and σ values 
for the three damage parameters in 
beam specimens T1 – T5.   

 

Beam Damage 
Parameter 

<E> 
(mm) 

σ  
(mm) 

DCP -7 175 
DD -0.9 1.5 T1 
DL 53.9 65.5 

DCP 16 185 
DD 0.1 1.5 T2 
DL -47.1 83.1 

DCP 79 175 
DD -0.3 1.5 T3 
DL -7.3 78.1 

DCP 74 193 
DD -0.2 1.9 T4 
DL -20.1 72.2 

DCP 45 206 
DD 0.0 1.6 T5 
DL -6.0 71.0 

 

 
     It is thus essential to conduct a reasonable 
number of trials for training different random initial 
weights to obtain a more confident measure of the 
quality of generalization, as performed in Fig. 3. 
Identifying the test pattern can then be based on the 
statistics from all the trained neural networks from 
the trials. According to Fig. 3, the plotted <E> 
provides a more confident prediction with the actual 
parameter within ±1σ. <E> and σ values for the 
other test specimens are tabulated in Table 4. The 
calculated results in Table 4 also show differences in 
accuracies among test cases when comparing the 
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3.2 Methodology same damage parameters, clearly indicating that the 
performance of the pattern recognition system is 
case-specific and test pattern dependent. Thus, 
application of the WRS test pattern dependent 
technique in the present damage identification 
system by narrowing the training range based on the 
statistics in Table 4 is introduced in the next section 
as a feasible approach to improve generalization.  

The WRS technique functions by reducing the size 
of the training range using statistics calculated from 
the test results obtained through a specified number 
of neural network trials, K. Training and validation 
patterns are then generated randomly within the new 
parameter space. As the number of training patterns 
is kept constant, the WRS technique requires the 
availability of large data sets or data generation.   

 

 
Fig. 4. Flowchart shows the main processes of the weight-range selection (WRS) in a series network. 
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     Training and test then resume but initial weights 
are restricted to only those that allow the trained 
network to produce test pattern identification results 
within the new parameter space. Results that are 
predicted outside this parameter space are from 
extrapolation, which are generally considered 
unreliable [19]. This procedure thus filters out poor 
initial weights and removes the unreliable results 
they produce from being considered as a trial. 
     Obtaining K accepted trials mark the end of the 
iteration in the series network. Statistical analysis is 
performed on the test results in the next iteration and 
the cycle repeats until the maximum number of 
iterations, Imax, is achieved. The statistical analysis 
procedure is explained in the next section. A 
flowchart illustrating the integration of the WRS 
technique into a series network is shown in Fig. 4.  
     The final outputs via WRS are the product of 
learning from a training set that is determined from 
results for the test pattern that is being identified in 
the first place. This creates a case-specific neural 
network scheme that uniquely identifies the test 
pattern that it depends on, naturally turning into a 
symbiotic system. 
     The rationale of reducing the size of the training 
range within the statistical boundaries of the test 
pattern identification results lies in the likelihood of 
improving generalization, which can be described by 
underfitting and overfitting [13]. Underfitting can be 
minimized, as the function approximated by the 
neural network for smaller parameter spaces is less 
complicated without the need to consider trends of 
patterns outside the space, thus promoting greater 
accuracy. Overfitting can also be minimized because 
in a smaller parameter space with the same number 
of patterns, the amount of interpolations required for 
regression can be reduced. However, it is important 
to note that ultimately, the quality of generalization 
depends on the mapping between inputs and targets, 
and the sensitivity of that mapping with respect to 
the test patterns. 
     The WRS method aims to improve generalization 
by managing the variation in regression trends 
through the control of the initial weights. However, 
the content of the training data can also influence the 
neural network outputs, which have led to research 
in network ensembles applying methods like 
bagging and boosting [17]. These methods can be 
integrated into the WRS technique and is a subject 
of further research.  
 
3.3 Statistical Analysis 
The statistical analysis introduced extracts the mean 
output, <O>, and the standard deviation, σ, from the 

K samples of output results, O. These statistical 
properties are used to calculate the limits of the new 
training range for data generation, [ll,ul], and the 
limits of the range to accept O, [LL,UL]. Two types 
of limits are required because [ll,ul] is not equal to 
[LL,UL] when the actual parameter is located close 
to the boundaries of the training range. Here, LL or 
UL is then allowed to be located outside the training 
range to sustain a balanced spread of the sample 
results for the correct calculation of the statistics. 
Extrapolation in this situation is permitted and the 
results produced outside the training range are 
considered reliable. This allowance is necessary to 
enable the detection and characterization of damages 
located close to the boundaries of the training range. 
     The expressions and conditions that govern both 
the required limits for the ith iteration are given in 
Eq. (4) and Eq. (5). n is a constant that denotes the 
number of standard deviations. Eq. (4) shows the 
application of basic statistics to determine the limits 
of the new training range. This equation can be 
modified or replaced with more favourable 
expressions based on more advanced statistics or 
other mathematical concepts that may better 
represent the distribution of the samples. 
  
     [ , ] [< >  , < > ]   ; 0i i i i i iLL UL O n O n iσ σ= − + ≠
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             (5) 
 

     Selection of n in Eq. (4) can be based on sample 
distribution of past results for known output 
parameters of similar neural network tests. If this is 
not available, the confidence level desired for the 
new range can be used as a gauge for n. More 
confident ranges can be achieved by choosing a 
larger n value. However, n is inversely related to the 
range reduction rate where large n values can cause 
the range to converge too slowly to the parameters 
identified, causing the need for many iterations of 
the series network and an impractically long 
processing time. 
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4 Results and Discussion 
Neural network architecture described in Section 2.5 
was prepared to identify the damages in the five 
beam specimens of Table 1. The neural network was 
integrated into a series network illustrated in the 
flowchart of Fig. 4. K = 50 was selected to obtain an 
adequate number of samples to represent the 
distribution of the test results. Statistical analysis 
was based on Eq. (4) while the limits for the new 
training and rejection ranges were determined from 
Eq. (5). n = 1 for a confidence interval of 68.3% and 
a reasonably fast range reduction rate. Based on n 
and the original damage parameter space sizes given 
in Table 2, Imax = 3 was selected to provide sufficient 
room for improvement in generalization within the 
series network. 
     Computations were performed with MATLAB® 
equipped with the Neural Network Toolbox 4.0.4. 
The damage identification results for the individual 
iterations in the series network are plotted as three 
separate histograms according to the damage 
parameters in Fig. 5. Table 5 shows the associated 
percentage change in the results from I0 to I3, 
normalized by the size of the respective original 
damage parameter space. 
     According to Fig. 5, the final pattern recognition 
predictions after three iterations in the series 
network are on average 2.5%, 7.8% and 23.5% of 
the original damage parameter space sizes for DCP, 
DD and DL respectively. DL is clearly less accurate 
compared to DCP and DD due to the difficulty in 
quantifying from the training patterns the pulse 
length, which is the major signal signature that 
identifies DL. On the other hand, DCP and DD, 
related to the location and amplitude of the pulses 
respectively can be more explicitly gauged from the 
signal and pattern, as shown in Fig. 2.     
     The WRS technique in the series network 
provided most benefit for test cases where the 
damage is poorly recognized initially, notably in 
DCP of T3, T4 and T5, DD of T1 and T3, and DL of 
T1 and T2. This observation is supported by the 
corresponding positive percentage increase in 
accuracies given in Table 5 with DCP of T3 
achieving the best improvement at 13.9%.  
     Fluctuations in the results among the iterations 
are also frequently present in the histograms. This is 
conceived as the prediction tolerance, a property of 
neural networks caused mainly by changes in the 
content of the training patterns as well as the random 
initial weights [13]. The level of tolerance depends 
on the variation in sensitivity of the regression maps 
formed from training with the test patterns. A broad 
range of sensitivity causes a high tolerance level 

with relatively large changes during the fluctuations, 
for example in DCP of T2, DD of T2 and T5. 
     The prediction tolerance affects the performance 
of the series network. If further improvements in 
generalization for the parameter being identified 
cannot be achieved, the results fluctuate within the 
tolerance range of the perceived prediction in 
subsequent neural network iterations. This explains 
the stagnant performance after significant initial 
improvements in accuracy for subsequent iterations 
down the series network, most obvious in DCP of 
T4 and T5, DD of T3 and DL of T1 and T2. 
 
    

 
 

Fig. 5. Damage identification results for the individual 
iterations in the series network with the WRS technique.  
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Table 5. Percentage change in the results 
from I0 to I3, normalized by the size of the 
respective original damage parameters. 

 

Beam DCP (%) DD (%) DL (%) 
T1 0.1 6.0 8.3 
T2 1.7 -2.3 7.9 
T3 13.9 8.3 1.9 
T4 12.0 3.4 -9.5 
T5 3.4 0.1 2.1 

 

 
     The prediction tolerance can also cause 
potentially worse accuracies in the final results 
compared to the initial output in I0. This is caused by 
the lack of improvement in generalization with WRS 
in subsequent iterations after I0 while the result has 
fluctuated to a less accurate region within the 
tolerance range. However, the likelihood of such an 
event is relatively low as indicated in Table 5 where 
DD of T2 and DL of T4 are the only two cases that 
experience this negative impact. 
     Results for DCP of T3 and DD of T1 in Fig. 5 
suggest that further improvement in generalization 
and thus more accurate predictions can be obtained 
by running more than the three iterations conducted 
in this study. However, with range reduction rates at 
1σ, these cases have probably arrived at the 
tolerance range of the perceived prediction where 
subsequent iterations will bring no significant 
increase in accuracy.     
 
 

5 Conclusions 
A guided waves damage identification system for 
beams applying the test pattern dependent WRS 
technique in a series network has been developed 
with promising potentials for improving the 
performance of regression neural networks. Average 
predictions among five test cases with different 
fabricated damages after three iterations of the series 
network were very accurate for DCP and DD at 
2.5% and 7.8% of the original parameter space sizes 
respectively. The WRS technique was able to yield 
improvement in prediction accuracies up to 13.9% 
compared to the equivalent single neural network 
run. It was also found that the prediction tolerance 
could affect the performance of the WRS technique 
by fluctuating results within the tolerance range of 
the perceived prediction, causing no significant 
increase in accuracy in subsequent neural network 
iterations.    
     This new neural network scheme introduced is 
not restricted to the present damage identification 
system, as it is designed to function for any pattern 
recognition problems that contain relatively high 

uncertainties in predictions due to random initial 
weights. The WRS technique also encourages 
further research and development to improve its 
effectiveness in retrieving the most accurate 
predictions. The flexibility of the technique allows 
integration with other training methods like bagging 
and boosting while modifying or replacing the basic 
statistical analysis to accommodate more advance 
mathematical concepts and algorithms is also a 
possible area of further studies.  
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