
The use of NARX Neural Networks to predict Chaotic Time Series

EUGEN DIACONESCU, PhD

Electronics, Communications and Computer Science Faculty

University of Pitesti

Targu din Vale, Nr. 1

ROMANIA

eugend@upit.ro

Abstract:

 The prediction of chaotic time series with neural networks is a traditional practical problem of dynamic systems. This
paper is not intended for proposing a new model or a new methodology, but to study carefully and thoroughly several
aspects of a model on which there are no enough communicated experimental data, as well as to derive conclusions
that would be of interest. The recurrent neural networks (RNN) models are not only important for the forecasting of
time series but also generally for the control of the dynamical system. A RNN with a sufficiently large number of
neurons is a nonlinear autoregressive and moving average (NARMA) model, with “moving average” referring to the
inputs. The prediction can be assimilated to identification of dynamic process. An architectural approach of RNN with
embedded memory, “Nonlinear Autoregressive model process with eXogenous input” (NARX), showing promising
qualities for dynamic system applications, is analyzed in this paper. The performances of the NARX model are verified
for several types of chaotic or fractal time series applied as input for neural network, in relation with the number of
neurons, the training algorithms and the dimensions of his embedded memory. In addition, this work has attempted to
identify a way to use the classic statistical methodologies (R/S Rescaled Range analysis and Hurst exponent) to obtain
new methods of improving the process efficiency of the prediction chaotic time series with NARX.

Key-Words: - Chaotic Time Series, Hurst Exponent, Prediction, Recurrent Neural Networks, NARX Model

1 Introduction
Many processes in domains as physics, technique,

biology, and economics are described by time series.

In formal terms, a time series is a sequence of

vectors, depending on time t:

y(t), t = 0, 1, 2, … (1)

The applications of type prediction or forecasting of

time series is largely presented in the literature about

time series [10][11][12][13]. The prediction of

futures values of vector y is helpful or strict required

to decide upon a strategy of control or to optimize

the activity, production, selection, etc. Formally, the

problem of prediction can be formulated as finding a

function Γ so as to obtain an estimate)(ˆ Dty + of the

vector y at time t+D (D = 1, 2, …), given the values

of y up to time t, plus a number of additional time-

independent variables (exogenous features) ui:

ŷ (t+D) =

=Γ(y(t), … y(t-dy), u(t), …, u(t-du))

(2)

where u(t) and y(t) represent the input and output of

the model at time t, du and dy are the lags of the

input and output of the system and Γ a nonlinear

function. Typically, D = 1, meaning one-step ahead,

but can take any value larger than 1 (multi-step

ahead) [2].

Viewed this way, prediction becomes a problem of

function approximation, where the purpose of the

method is to approximate the continuous function Γ

as closely as possible. Therefore, in the case of

function approximation or regression problems,

many methods from that domain can be applied

here.

Usually, the evaluation of prediction performance is

done by computing an error measure E over a

number of time series elements, such as a validation

or test set:

∑
=

−−=
N

k

ktyktyE

0

))(),(ˆ((3)

E is a function measuring the error between the

estimated (predicted) and actual sequence element.

Typically, a distance measure (Euclidean or other) is

used, but depending on the problem, any function

can be used (e.g. a function computing the cost

resulting from an incorrect prediction of y(t+D))[2].

The problem of chaotic time series prediction is

studied in various disciplines now including

engineering, medical and econometric applications.

Chaotic time series are the output of a deterministic

system with positive Liapunov exponent. Therefore,

unless the initial condition are specified with infinite

precision, the time series behavior becomes

WSEAS TRANSACTIONS on COMPUTER RESEARCH

Eugen Diaconescu

ISSN: 1991-8755 182 Issue 3, Volume 3, March 2008

unpredictable, and the prediction of chaotic time

series is a difficult task.

From a historical point of view, before the 1980s,

prediction of time series used linear parametric

autoregressive (AR), moving-average (MA) or

autoregressive moving-average (ARMA) models

introduced by Box and Jenkins [11][13]. These

models are linear and are not able to cope with

certain non stationary signals, and signals whose

mathematical model is not linear. An obvious

drawback is that these algorithms are linear, and are

not able to cope with certain nonstationary signals

and signals whose model is chaotic nonlinear. On

the other hand, neural networks (NN) are powerful

when applied to problems whose solutions require

knowledge which is difficult to specify, but for

which there is an abundance of examples.

The prediction of chaotic processes implies finding

the interdependences between time series

components. The dependences are minimal in

random time series and maximal in a complete

deterministic process. But, random and deterministic

are only margin of the large set of chaotic time

series signals with weak dependences between

components on short or long term. A special case is

represented by the fractal time series characterized

by auto similarity or non-periodic cycles.

1.1 Prediction with neural networks
After 1980, there has been resurgence in the field of

time series prediction, when it becomes clear that

this type of prediction is a suitable application for a

neuronal network predictor.

The NN approach to time series prediction is non-

parametric, in the sense that it is not necessary to

know any information regarding the process that

generates the signal. It is shown that the recurrent

NN (RNN) with a sufficiently large number of

neurons is a realization of the nonlinear ARMA

(NARMA) process. [1][12][5].

Neural Networks (NN) based prediction has been

explored from their beginning and development,

because of NNs approximation and generalization

property. Many research papers are published in

scientific literature and some commercial companies

claim or market the so-called advanced statistical

programs, using neural networks, for modeling and

prediction.

However, some difficulties and limitations remain

nevertheless of current actuality and cause

researches for new NN models and learning

techniques to be conducted[4][5][7][8].

-Outliers make it difficult for NNs (and other

prediction models) to model the true underlying

functional. Although NN had been shown to be

universal approximators, it has found that NN had

difficulty modeling seasonal patterns in time series.

When a time series contains significant seasonality,

the data need to be deseasonalized.

-The number of samples in time series. Researchers

have found that increasing observation frequency

does not always help to improve the accuracy of

prediction.

-Stationarity – the classical techniques for time

series prediction, require a stationary time series,

while most real time series are not stationary

(stationarity refers to a stochastic process whose

mean value, variances and covariances – first and

second order moments do not change in time). After

NNs have been introduced one can use original time

series as forecasting targets.

-The problem of long time dependencies - is related

to the problem of vanishing gradient or forgetting

behavior.

Time series prediction is the same as system

identification; this paper shows that the dynamics of

nonlinear system that produce complex time series

can be captured in a model system. The model

system is an artificial RNN. The main idea of RNN

is providing a weighted feedback connection

between layers of neurons and adding time

significance to entire artificial NN. Therefore, RNNs

are the most suitable for Time Series Analysis

1.2 Chaotic time series

1.2.1 A short characterization of some example of

chaotic time series
To evaluate the prediction capability of proposed

algorithms, the best data are the chaotic time series

[14], generated by some linear dynamical systems.

The degree of irregularity is different, from on type

of series to another, depending on the sort of iterated

difference equation, chaotic map or flows. In this

paper, four time series were been tested: logistic,

Mackey-Glass, fractal Weirstrass and BET index.

The logistic time series (4) generate a chaotic map

with extremely short memory length. It is a difficult

test for prediction algorithm. They do not exhibit

cycles as we see sometimes in system practice.

))(1()()(tytyaty −⋅⋅=′ (4)

The Mackey-Gloss equation (5) is classified as a

simpler system generating chaotic flows. This type

of chaotic time series is a relatively easy mission for

prediction algorithms. Non-periodical cycles appear

due the delay included in the equation. Chaotic

WSEAS TRANSACTIONS on COMPUTER RESEARCH Eugen Diaconescu

ISSN: 1991-8755 183 Issue 3, Volume 3, March 2008

flows are frequently encountered models in real life

practice.

)(
)(1

)(
tyb

ty

tya
y

c
⋅−

−+

−⋅
=′

τ

τ

(5)

The fractal function of Weirstrass (6) is an infinite

sum of a series of sine or cosine waves in which

amplitude decreases, while the frequency increases

according to different factors. The Weirstrass

function used has a limited sum of four terms.

))cos()
1

(()(

3

0

∑
=

=

⋅⋅=
n

n

n

n
tb

a
ty ω

(6)

On the financial market, multivariate time series are

encountered, for example the market indices BET

(figure 1), BET-C, BET-FI from the Romanian stock

market. These indexes also have, although they are

presented only by their value, other important

components, such as the daily transaction volume or

number of transactions.

Fig. 1 BET index for 2005-03.2008 years

1.2.2 Preprocessing time series
Usually, the time series y(t) and the input sequence

ui(t) are analyzed in a process named “data

selection” for the prediction optimization, or

computing time minimization. The rule of input

variable selection is that the input variables should

be as predictive as possible [21]. Selection consists

in partitioning the data series in prediction intervals

about contents of measured information with

autocorrelation coefficient rk. For time series, the

autocorrelation coefficients rk are given by:

∑

∑

=

=

−

−+−

=
N

t

N

t
k

yty

yktyyty

R

1

2

1

)))((

))()()((

 (7)

where y(t) is a data value at time step t, k is the lag,

and the overall mean is given by:

∑
=

=
N

t

t

N

y
y

1

(8)

This aspects do not are an objective for this work.

The time series can be used immediately for

processing in only few cases. In most cases, it is

necessary to preprocess the time series to ensure an

optimal outcome of the processing. The most

common operations are removing known

systematicies as linear or nonlinear trends

(constantly rising or descending of the average

value), seasonality (periodic patterns due to a

periodic influencing factor)[2][9][12]. In this work,

the data were only normalized to be included in [-1,

1] range.

1.2.3 Stochasticity of time series. Long memory

processes

Long memory process is a process with a random

component, where a past event has a

decreasing/decaying effect on future events. The

process has some memory of past events, which is

“forgotten” as time moves forward.

The mathematical definition of long memory

process is given in terms of autocorrelation: when a

data set exhibit autocorrelation, a value yt at time ti

is correlated with a value yt+d at time ti+d , where d is

some time increment in the future. In a long memory

process autocorrelation decrease over time and the

decreasing follows a power low [10].

In a long memory process the decrease of the

autocorrelation function (ACF) for a time series is a

power low:

ACFTS(k)=Ck
-α

, (9)

where C is a constant, and ACFTS(k) is the

autocorrelation function with log k. The Hurst

exponent is related to the exponent α in the equation

by:

H = 1 – α/2, (10)

The value of the Hurst exponent ranges between 0

and 1. A value of 0.5 indicates a random evolution

in time (a Brownian time series). In a random

process there is no correlation between any element

and a future element.

A Hurst exponent value 0.5 < H < 1 indicates

“persistent behavior” (e.g. a positive

autocorrelation). Persistence means that if the curve

has been increasing for a period, it is expected to

continue for another period. If there is an increase

from step ti-1 to ti, there will probably be an increase

WSEAS TRANSACTIONS on COMPUTER RESEARCH Eugen Diaconescu

ISSN: 1991-8755 184 Issue 3, Volume 3, March 2008

from ti to ti+1, or a decrease will be followed by a

decrease.

A Hurst exponent of 0 < H < 0.5 shows

antipersistent behavior. After a period of decreases,

a period of increases tends to show up. The

antipersistent behavior has a rather high fractal

dimension, corresponding to a very “noisy” profile-

like curve (which highly fills up the plane). This

behavior is sometimes called “mean reversion”[10].

In principle, fractal dimension D and Hurst

coefficient H are independent of each other because

the D is considered a local propriety, and long-

memory dependence is a global characteristic [22].

For self-affine processes (e.g. fractals), the local

properties are reflected in the global ones, and it is

possible the relationship D + H = n + 1, where the n

is dimension of self-affine space [22]. The long-

memory dependence (persistence) is linked with the

case 0.5 < H < 1 and a feature of the surfaces with

low fractal dimensions. The antipersistent processes

are linked with the surfaces with higher fractal

dimensions (rougher) with 0 < H < 0.5.

2 NARX networks
In this paper, the architectural approach proposed to

deal with chaotic time series is one based upon

“Nonlinear Autoregressive models with eXogenous

input (NARX model)”, which are therefore called

NARX recurrent neural networks [1][4][5]. This is a

powerful class of models which has been

demonstrated that they are well suited for modeling

nonlinear systems and specially time series. One

principal application of NARX dynamic neural

networks is in control systems. Also, is a class

computationally equivalent to Turing Machines [1].

Some important qualities about NARX networks

with gradient-descending learning gradient

algorithm have been reported: (1) learning is more

effective in NARX networks than in other neural

network (the gradient descent is better in NARX)

and (2) these networks converge much faster and

generalize better than other networks [4][5].

The simulated results show that NARX networks are

often much better at discovering long time –

dependences than conventional recurrent neural

networks. An explanation why output delays can

help long-term dependences can be found by

considering how gradients are calculated using the

back-propagation-through-time (BPTT) algorithm.

Recently, several empirical studies have shown that

when using gradient-descent learning algorithms, it

might be difficult to learn simple temporal behavior

with long time dependencies [7][9], in other words

those problems for which the output of a system at

time instant k depends on network inputs presented

at times r << k. The researchers have analyzed

learning algorithms for systems with long time

dependencies and showed that for gradient-based

training algorithms, the information about the

gradient contribution m steps in the past vanishes for

large m. This effect is referred to as the problem of

vanishing gradients, which partially explains why

gradient descent algorithms are not very suitable to

estimate systems and signals with long time

dependencies. For instance, common recurrent

neural networks encounter problems when learning

information with long time dependencies, a problem

in the prediction of nonlinear and no stationary

signals. The vanishing gradients problem makes the

learning of long-term dependencies in gradient-

based training algorithms difficult if not virtually

impossible in certain cases [1].

A state space representation of recurrent NARX

neural networks can be expressed as[12]:









=

=Φ
=+

,,...3,2),(

,1)),(),((
)1(

Nikz

ikzku
kz

i

i
k (11)

where the output y(k) = zi(k) and zi, i=1,2, … N, are

state variables of recurrent neural network. The

recurrent network exhibits forgetting behavior, if:

,,,,0
)(

)(
lim Ι∈Ο∈∈∀=

−∂

∂

∞→
jiKmk

mkz

kz

j

i

m

 (12)

where z is state variable, “I” denotes the set of input

neurons. “O” denotes the set of output neurons and

K denotes the time index set.

Several approaches have been suggested to get

around the problem of vanishing gradient in training

RNNs. Most of them rest on including embedding

memory in neural networks, whereas several others

propose improved learning algorithms, such as the

extended Kalman filter algorithm, Newton type

algorithm, annealing algorithm, etc.

Embedded memory is particularly significant in

recurrent NARX and NARMAX neural networks.

This embedded memory can help to speed up

propagation of gradient information, and hence help

to reduce the effect of vanishing gradient. There are

various methods of introducing memory and

temporal information into neural networks. These

include creating a spatial representation of temporal

pattern, putting time delays into the neurons or their

connections, employing recurrent connections, using

neurons with activations that sum input over time,

etc.

WSEAS TRANSACTIONS on COMPUTER RESEARCH Eugen Diaconescu

ISSN: 1991-8755 185 Issue 3, Volume 3, March 2008

3 Architecture and learning

3.1 The NARX models
The NARX model for approximation of a function Γ

can be implemented in many ways, but the simpler

seems to be by using a feedforward neural network

with the embedded memory (a first tapped delay

line), as is shown in figure 2, plus a delayed

connexion from the output of the second layer to

input (a second tapped delay line). Making the

network dependent on du previous sequence

elements is identical to using du input units being fed

with du adjacent sequence elements. This input is

usually referred to as a time window since it

provides a limited viewed on part of the series. It

can also be viewed as a simple way of transforming

the temporal dimension into another spatial

dimension.

Fig. 2 NARX model with tapped delay line at input

In practice it was observed that forecasting of a time

series will be enhanced by simultaneously analyzing

related time series. For example, electrical power

consumption for the next day will be better

predicted if taken together, last pc day consumptions

and last pt environment temperatures are

simultaneously applied as inputs to the neural

networks. The architectural model in figure 3 is

make to test this hypothesis A generalized

implementation of this model allows the input and

output to be multidimensional, and thus applying to

the “multivariate” type of time series.

For the architectural model in figure 2 the notation

used is NN(du, dy; N) to denote the NN with du input

delays, dy output delays and N neurons in layer 1.

Similarly, for the architectural model in figure 2 the

notation used is NN(du1, du2, dy; N).

For the NN models used in this work, with two

levels (level 1 surnamed input layer and level 2 or

output layer), the general prediction equations for

computing the next value of time series y(k+1)

(output) using model in figure 2, the past

observation u(k), u(k-1), …, u(k-du) and the past

outputs y(k), y(k-1), …, y(k-dy) as inputs, may be

written in the form:

+






−+Φ⋅+Φ=+ ∑ ∑
= =

N

h

d

i

ihhohhobo

u

ikuwwwwky

1 0

0))(()1(







−⋅+∑
=

))(

0

jkyw

yd

j

jh

(13)

For the model in figure 3, the prediction equations

for computing the output value y(k+1) using the past

observations u1(k), u1(k-1), …, u1(k-du) for the first

time series, the past observations u2(k), u2(k-1), …,

u2(k-du) for the second time series and the past

outputs y(k), y(k-1), …, y(k-dy) as inputs, may be

written in the form:

+






−+Φ⋅+Φ=+ ∑ ∑
= =

N

h

d

i

hihohhobo

u

ikuwwwwky

1 01

110)1(()1(
1







−⋅+−+ ∑∑
==

))()2(

002

22

2

jkywikuw

yu
d

j

jh

d

i

hi

(14)

Fig. 3 NARX with two tapped delay lines for two

time series applied at NARX input

WSEAS TRANSACTIONS on COMPUTER RESEARCH Eugen Diaconescu

ISSN: 1991-8755 186 Issue 3, Volume 3, March 2008

3.2 Learning algorithms
For learning purposes, a dynamic back-propagation

algorithm is required to compute the gradients,

which is more computationally intensive than static

back-propagation and takes more time. In addition,

the error surfaces for dynamic networks can be more

complex than those for static networks. Training is

more likely to be trapped in local minima [6][12].

The selected training method in this work uses the

advantage of availability at the training time of the

true real output set. It is possible to use the true

output instead of the estimated output to train the

network witch has the feedback connections

decoupled (cut). The decoupled network has a

common feedforward architecture which can be

trained with classical static back-propagation

algorithm. In addition, during training, the inputs to

the feedforward network are just the real/true ones –

not estimated ones, and the training process will be

more accurate.

The training process has some difficulties. One is

related to the number of parameters, which refers to

how many connections or weights are contained in

network. Usually, this number is large and there is a

real danger of “overtraining” the data and producing

a false fit which does not lead to better forecasts. For

NARX neural network model the number is given

by p = (du + dy + 2)N. A solution is penalizing the

parameter increase [15]. This fact motivates the use

of an algorithm including the regularization

technique, which involves modifying the

performance function for reducing parameters value.

Practically, the typical performance function used in

training, MSE, is replaced by a new one, MSEreg, as

follows:

∑∑
==

−==
N

i

ii

N

i

i yt
N

e
N

MSE

1

2

1

2)(
1

)(
1

 (15)

∑
=

=
n

j

jw
n

MSW

1

21
 (16)

MSWMSEMSEreg)1(ξξ −+= (17)

where ti is the target and ξ is the performance ratio.

The new performance function causes the network

to have smaller weights and biases, and in this way

forces the network response to be smoother and less

likely to overfit.

The network training function that updates the

weight and bias values according to Levenberg-

Marquardt optimization was modified to include the

regularization technique. It minimizes a combination

of squared errors and weights and, then determines

the correct combination so as to produce a network

which generalizes well. The process is called

Bayesian regularization.

In general, in function approximation problems, for

networks that contain up to a few hundred weights,

the Levenberg-Marquardt algorithm will have the

fastest convergence. This advantage is especially

noticeable if very accurate training is required.

However, as the number of weights in the network

increases, the advantage of this algorithm decreases.

Other training algorithms [15] were tested, but with

a less good result:

- The network training function that updates weight

and bias values according to gradient descent with

momentum.

-The network training function that updates weight

and bias values according to the gradient descent

with adaptive learning rate.

-The network training function that updates weight

and bias values according to the gradient descent

momentum and an adaptive learning rate.

The neural network training can be made more

efficient if certain preprocessing steps on the

network inputs and targets are performed. The

normalization of the input and target values mean to

mapping them into the interval [-1, 1]. This

simplifies the problem of the outliers for the

network. The normalized inputs and targets that are

returned will all fall in the interval [-1, 1].

4 Experimental results
In all the experiments performed, a one-step-ahead

prediction is considered; that is, the actual observed

values of all lagged samples are used as inputs. (If

multistep-ahead predictions are required then, it is

possible to proceed by adding the first one-step-

ahead prediction to time series, and then the new

time series is used to predict the second step-ahead,

and so on).

Various NN models having different numbers of

lagged input steps (or time windows), different

number of lagged output connected steps as inputs,

and different number of neurons in layer 1 have

been compared. All the models had layer 1 with N

neurons and a single neuron in layer 2 (output

layer). The input has been rescaled in most cases to

be included in [-1, 1] range.

An interesting comparison about length of input lags

in feedforward neural network and the NARX model

presented in this paper can be made with [3]. It is

well known from practice of NN that the input

variables of NN should not to be much correlated,

because the correlated input variables may degrade

WSEAS TRANSACTIONS on COMPUTER RESEARCH Eugen Diaconescu

ISSN: 1991-8755 187 Issue 3, Volume 3, March 2008

the forecasting by interacting with each other as well

as other elements and producing a biased effect [23].

In [3] it is shown that a feedforward model as NN(1-

13;4) lead to poor prediction. The notation (1-13)

means 13 inputs, and (1, 13) means 2 inputs. In

general, the success model in [3] have only 3 or 4

inputs, as in corresponding notation NN(1,12,13;1)

or NN(1,2,12,13;2). By his architecture, the NARX

model applies simultaneously all the values stored in

the tapped delay line as inputs to the RNN. It is easy

to observe from the table 1-5 that, in general, the

optimum number of lags is in 12-30 range, the best

value being found from one case to another case. A

bigger number of lags at input do not improve the

prediction, it is even worse. That is, a conflicting

condition results in selecting the number of lags of

the delay line at input: a bigger number should

assure input sequence as predictive as possible, but

many variables are too correlated to each other to

produce unconfused outputs.

4.1 Criteria to estimate prediction
Usually, the performance of a trained network can

be measured by the errors on the training, validation,

and test sets. In this work, the correlation coefficient

R between the outputs and targets of neural network

is used. R is a measure of the variation between the

generated outputs and targets. If this number is equal

to 1, then there is perfect correlation between the

targets and outputs [15]. In the following examples,

the fact that the number is very close to 1 (R>0.98 or

better R>99), indicates a good fit.

4.2 Example 1: Chaotic Mackey-Glass time

series

Table 1 depicts the experimental results with chaotic

Mackey-Glass time series as input, for a total of

1000 observations, test set being different from

training set. Column labeled R (correlation

coefficient between input and output of neural

network) shows the results in different runs

respectively. The rows 3 and 4 from table 1 show

that for two different time-series but with identical

H, the same NN model gives different predictions.

The rows 6, 7, 8 and 9 indicate the influence of

architecture on prediction quality: for the same time-

series, only the NN(24,1;5) model gives the best

prediction.

Table 1
a b c τ H sse ssw N du dy R
0.210.1 10 30 0,25 0.22 13.6 3 12 1 0.99545

0.2 0.12 10 30 0.36 0.62 27.2 3 12 1 0.99966

0.2 0.1 5 75 0.37 0.62e-3142.8 3 12 1 0.94592

0.2 0.1 10 50 0.37 0,102 29.7 3 12 1 0.9931

0.2 0.1 10 30 0.41 0.15 14 3 12 1 0.99185

0.2 0.1 10 80 0.51 2.93 45.39 3 12 1 0.74984

0.2 0.1 10 80 0.51 2.41 75 5 12 1 0.06015

0.2 0.1 10 80 0.51 0.02 59 5 24 1 0.99968

0.2 0.1 10 80 0.51 21,3 10 2 5 1 0.29047

0.2 0.1 8 70 0.50 0.014 43.9 3 12 1 0.99981

0.2 0.1 5 70 0.72 2.4e-5 2413 3 12 1 0.9244

Fig. 4 The traces for original and predicted

chaotic Mackey-Glass time series are very

close; H=0.51, a=0.2, b=0.1, c=10, τ=80,

NN(24, 5; 5) model. R=0.99573

4.3 Example 2: Fractal Weirstrass time series

The data contained in table 2 give a motivation

about the conclusion that in that case of Weirstrass

fractal time series the values of exponent Hurst do

not represent an indication about the prediction

success. The column labeled H shows a strong

variation of about more 300% of the values of Hurst

coefficient which do not can be put in relation with

the rate of success represented by the value from the

column labeled R.

Table 2
a b ω H sse ssw N du dy R
3.2 6.1 25 0.252e-11 5.2 18 15 2 0.99998

2.7 2.1 11.9 0.2611e-8 4,9 10 30 2 0.99988

3.2 5.1 32 0.3 1e-11 8.32 10 30 1 0.99739

3.2 5.1 32 0.3 1.6e-9 5.61 10 30 2 0.99744

2.3 1.5 15 0.363.8e-8 5.28 10 30 2 0.99988

3.2 4.1 50 0.461.1e-8 4.07 10 30 2 0.99821

3.2 4.1 50 0.467e-10 10.66 10 30 2 0.99906

2.1 2.07 15 0.531.8e-9 21 10 35 1 0.99964

3.2 5.1 38 0.571.2e-7 24.77 5 15 2 0.9980

3.2 5.1 38 0.577e-10 10.66 10 30 2 0.99906

3.2 6.1 25 0.662.3e-7 6.58 2 10 1 0.99971

3.2 6.1 25 0.660.6 30 2 4 1 0.9655

1.2 1.4 10 0.822e-7 61.52 2 10 1 0.99929

2.7 2.1 11 0.841.2e-8 5,38 10 15 8 0.98409

2.7 2.1 11 0.841.8e-8 5,39 10 30 2 0.99996

WSEAS TRANSACTIONS on COMPUTER RESEARCH Eugen Diaconescu

ISSN: 1991-8755 188 Issue 3, Volume 3, March 2008

4.4 Example 3: BET time series
The BET-index time-series is an average of daily

closed prices for nine representative, most liquid

listed companies at Bucharest Stock Market.

Although the Hurst coefficient of BET-index time

series was close to 1, it was proved that prediction in

the case of BET index time series, (figure 1) is a

much more very difficult task. For 800 daily

observations, the result of simulations was obtained

including the test set in training set (Table 3), or

excluding the test set from training set (Table 4).

Fig. 5 Weirstrass fractal function, easy to be

predicted: H=0.82, a=1.2, b=1.4, ω=10,

R=0.99971. Original and predicted time series are

approximately the same, NN(8, 2;1).

Fig. 6 A difficult Weirstrass case: H=0.53, a=2.1,

b=2.07, ω=15, R = 0,99964, NN(35,1;10)

From the first set of simulations, one of the best

prediction is graphic represented in figure 7 with the

correlation R=0.96116. The training algorithm with

the best results was the back-propagation with

Levenberg - Marquardt optimization and Bayesian

regularization. To be compared with the results in

Table 3, some results obtained after training with an

algorithm that updates weight and bias values

according to the gradient descent momentum and an

adaptive learning rate, were presented in Table 5.

 Table 3 Table 4
N du dy R N du dy R

6 30 2 0.95185 6 30 3 0.25758

7 30 2 0.96206 7 15 2 0.53296

8 30 2 0.9535 9 24 2 0.88662

10 30 2 0.72639 10 24 1 0.83436

10 35 2 0.72639 10 24 2 0.2868

11 30 2 0.54259 10 30 2 0.87045

11 45 2 0.92045 11 40 1 0.64629

11 45 3 0.92947 11 40 2 0.57197

12 30 2 0.54337 15 50 3 0.07878

12 50 3 0.9592

12 50 4 0.82927

15 50 3 0.96116

18 50 3 0.86318

 Table 5

N du dy R
6 30 2 0.8207

7 30 2 0.9299

8 30 2 0.8281

11 45 2 0.8933

11 45 3 0.8690

12 30 2 0.4266

12 50 3 0.4266

15 50 3 0.7904

Fig. 7 BET prediction, NN(50, 3;15)

The RNN model presented in figure 3, for two

inputs presented simultaneously to the network, was

tested for two related time series: BET - index value

and BET - index volume (figure 9 and 10). TDL

means time delay line. The volume (figure 8) should

be enhanced the prediction for the time series

values. The results are in table 6. Another test was

made by using as second input the delayed time

series (with 15 days) of the same BET-values time

series (figure 10). The results are in the table 7.

WSEAS TRANSACTIONS on COMPUTER RESEARCH Eugen Diaconescu

ISSN: 1991-8755 189 Issue 3, Volume 3, March 2008

Fig. 8 BET index volume 2005-03.2008

Table 6 Table 7

N du1 du2dy R N du1 du2 dy R

10 25 25 3 0.8147 10 25 25 3 0.2432

12 6 6 2 0.5607 12 6 6 2 0.6143

12 25 25 3 0.8093 12 25 25 3 0.5320

14 14 14 2 0.5916 14 14 14 2 0.0301

15 25 25 3 0.7145 15 25 25 3 0.7308

Fig. 9 NARX RNN with simultaneous inputs: BET-

index value and BET- index volume

Fig. 10 NARX RNN with simultaneous inputs: BET-

index value and BET- index value 15 days lagged

5 Conclusions
In this paper, the performance of the prediction for

different time series was tested using a NARX

dynamic recurrent neural network. Comparative

experiments with real and artificial chaotic time

series from diverse domains have been made.

The first conclusion of this paper is that NARX

recurrent neural networks have the potential to

capture the dynamics of nonlinear dynamic system

such as in the examples shown, for the Mackey-

Glass system with different delays. This affirmation

is based on the fact that correlation coefficient R

estimated for the original and generated (1000

points) time series is close to 1 in many cases, and

the prediction can be considered of real interest or

significance if R>0.98.

The paper has attempted to use traditional statistical

methodologies (R/S Rescaled Range, from where

Hurst coefficient) to obtain indications to make

efficient the process of prediction chaotic time series

with RNN. To certain extent, the Hurst coefficient

may give a clue, otherwise vague, about existence of

long time memory in the analyzed time series. The

prediction may fails however, even the values of

Hurst coefficient are encouraging, in conformity

with R/S theory.

The second conclusion is that the nonlinear NARX

models are not without problems, they have

limitation in learning long time dependences due to

the “vanishing gradient”, and like any dynamical

system are affected by instability, and have lack of a

procedure of optimizing embedded memory.

The last conclusion, and the most important, is that

the architecture of the tested RNN model affects the

performance of prediction. The most favorable

behavior of NARX model is dependent upon the

dimension of embedded memory of input and output

and the number of neurons in the input layer. The

determination of these architectural elements, in an

optimal way, is a critical and difficult task for the

NARX model, and remains an objective for future

works.

The followings lines contain several directions to

explore:

- The avoiding of saturation and over-fitting because

of too many neurons in network. Too many hidden

neurons lead to poor prediction. A solution is the

including in NARX models the penalizing terms as

Bayessian Information Criteria (BIC), Akaike

Information Criteria (AIC) – a process named

regularization.

- The data input analysis may show how the length

of sequences and their correlation influence the

WSEAS TRANSACTIONS on COMPUTER RESEARCH Eugen Diaconescu

ISSN: 1991-8755 190 Issue 3, Volume 3, March 2008

interval and value of predictability (selection the

length of lags).

- The finding other training algorithms than back-

propagation, for the NARX models. Consecutive

restarts of the program with back-propagation

training function, give different results, indicating

the end of iteration process in local optima.

References:

[1] Simon Haykin, Neural Networks, Second

Edition, Pearson Education, 1999

[2] Georg Dorffner, Neural Networks for Time

Series Processing, Neural Network World, Vol.

6, No. 4, 447-468, 1996

[3] J.Farawey, C.Chatfield, Time Series Forecasting

with Neural Networks: A Comparative Study

Using the Airline Data, Applied Statistics,

Volume 47, No.2, 1998, pp. 231-250

[4] Tsungnan Lin, Bill G. Horne, Peter Tino, C. Lee

Giles, Learning long-term dependencies in

NARX recurrent neural networks, IEEE

Transactions on Neural Networks, Vol. 7, No. 6,

1996, pp. 1329-1351

[5] Yang Gao, Meng Joo Er, NARMAX time series

model prediction: feedforward and recurrent

fuzzy neural network approaches, Fuzzy Sets and

Systems, Vol. 150, No. 2, 2005, pp.331-350

[6] M. T. Hagan, O. D. Jesus, R. Schultz, Training

Recurrent Networks for Filtering and Control, in

(editors) L.R. Medsker, L.C. Jain, Recurrent

Neural Networks – Design and Applications,

CRC Press, 2001

[7] Tsungnan Lin, C. Lee Giles, Bill G. Horne, S.Y.

Kung, A Delay Damage Model Selection

Algorithm for NARX Neural Networks, IEEE

Transactions on Signal Processing, “Special

Issue on Neural Networks”, Vol. 45, No. 11,

1997, pp. 2719-2730

[8] H. T. Siegelmann, B. G. Horne and C. Lee

Giles, Computational capabilities of recurrent

NARX neural networks, IEEE Transactions on

Systems, Man and Cybernetics, Part B, Vol. 27,

No.2, 1997, 208-215

[9] Jingtao Yao, Chew Lim Tan, A case study on

using neural networks to perform technical

forecasting of forex, Neurocomputing, 34, 2000,

pp. 79-98

[10] Edgar E. Peters, Fractal Market Analysis, John

Wiley & Sons, 2001

[11] D.S.G. Pollok, A Handbook of Time – Series,

Signal Processing and Dynamics, Academic

Press, 1999

[12] D.P. Mandic, J.A. Chambers, Recurrent Neural

Networks for Prediction, JohnWiley&Sons, 2001

[13] M. Tertisco, P. Stoica, T. Petrescu, Modeling

and forecasting of time series, Publ. House of

Romanian Academy, 1985

[14] Garnet P. Williams, Chaos Theory Tamed,

Joseph Henry Press, 1999

[15] H.B. Demuth, M. Beale, Users’ Guide for the

Neural Network Toolbox for Matlab, The

Mathworks, Natica, MA, 1998

[16] L.F. Mingo, J. Castellans, G. Lopez, F. Arroyo,

Time Series Analysis with Neural Network,

WSEAS Transactions on Business and

Economics, Issue 4, Volume 1, October, ISSN

1109-9526, pp. 303-310, 2004

[17] A.C. Tsakoumis, P. Fessas, V. M. Mladenov,

N. E. Mastorakis, Application of Neural

Networks for Short Term Electric Load

Prediction, WSEAS Transaction on systems,

Issue 3, Volume 2, July 2003, ISSN 1109-2777,

pp. 513-516

[18] A.C. Tsakoumis, P. Fessas, V. M. Mladenov,

N. E. Mastorakis, Application of Chaotic Time

Series for Short-Time Load Prediction, WSEAS

TRANSACTION on SYSTEMS, Issue 3,

Volume 2, July 2003, ISSN 1109-2777, pp. 517-

523

[19] Theodor D. Popescu, New method for time

series forecasting, WSEAS TRANSACTIONS

on CIRCUITS and SYSTEMS, Issue 3, Volume

2, July 2003, ISSN 1109-2734, pp. 582-587

[20] O. Valenzuela, I. Rojas, I. Marquez, M.

Pasados, WSEAS TRANSACTION on

CIRCUITS and SYSTEMS, A novel Aproach to

ARMA Time Series Model Identification by

Neural Network, Issue 2, Volume 3, April 2004,

ISSN 1109 – 2737, pp. 342-347

[21] Wei Huang, Shouyang Wang, Lean Yu, Yukun

Bao, L. Wang, A New Computational Method of

Input Selection for Stock Market Forrecasting

with Neural Networks, International Conference

on Computational Science, 2006, pp. 308-315

[22] Tilmann Gneiting, Martin Schlather, Stochastic

Models That Separate Fractal Dimension and

Hurst Effect, SIAM review, 46, 2004, pp. 269-

282

[23] G. P. Zhang, Neural networks in Business

Forecasting, Ideea Group Inc., 2003

WSEAS TRANSACTIONS on COMPUTER RESEARCH Eugen Diaconescu

ISSN: 1991-8755 191 Issue 3, Volume 3, March 2008

