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Abstract: 

 The prediction of chaotic time series with neural networks is a traditional practical problem of dynamic systems. This 
paper is not intended for proposing a new model or a new methodology, but to study carefully and thoroughly several 
aspects of a model on which there are no enough communicated experimental data, as well as to derive conclusions 
that would be of interest. The recurrent neural networks (RNN) models are not only important for the forecasting of 
time series but also generally for the control of the dynamical system. A RNN with a sufficiently large number of 
neurons is a nonlinear autoregressive and moving average (NARMA) model, with “moving average” referring to the 
inputs. The prediction can be assimilated to identification of dynamic process. An architectural approach of RNN with 
embedded memory, “Nonlinear Autoregressive model process with eXogenous input” (NARX), showing promising 
qualities for dynamic system applications, is analyzed in this paper. The performances of the NARX model are verified 
for several types of chaotic or fractal time series applied as input for neural network, in relation with the number of 
neurons, the training algorithms and the dimensions of his embedded memory. In addition, this work has attempted to 
identify a way to use the classic statistical methodologies (R/S Rescaled Range analysis and Hurst exponent) to obtain 
new methods of improving the process efficiency of the prediction chaotic time series with NARX.  
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1   Introduction 
Many processes in domains as physics, technique, 

biology, and economics are described by time series. 

In formal terms, a time series is a sequence of 

vectors, depending on time t: 

y(t), t = 0, 1, 2, … (1) 

The applications of type prediction or forecasting of 

time series is largely presented in the literature about 

time series [10][11][12][13]. The prediction of 

futures values of vector y is helpful or strict required 

to decide upon a strategy of control or to optimize 

the activity, production, selection, etc. Formally, the 

problem of prediction can be formulated as finding a 

function Γ so as to obtain an estimate )(ˆ Dty +  of the 

vector y at time t+D (D = 1, 2, …), given the values 

of y up to time t, plus a number of additional time-

independent variables (exogenous features) ui: 

ŷ (t+D) =  

=Γ(y(t), …  y(t-dy), u(t), …, u(t-du)) 

(2) 

where u(t) and y(t) represent the input and output of 

the model at time t, du and dy are the lags of the 

input and output of the system and Γ a nonlinear 

function. Typically, D = 1, meaning one-step ahead, 

but can take any value larger than 1 (multi-step 

ahead) [2]. 

Viewed this way, prediction becomes a problem of 

function approximation, where the purpose of the 

method is to approximate the continuous function Γ 

as closely as possible. Therefore, in the case of 

function approximation or regression problems, 

many methods from that domain can be applied 

here. 

Usually, the evaluation of prediction performance is 

done by computing an error measure E over a 

number of time series elements, such as a validation 

or test set: 

∑
=

−−=
N

k

ktyktyE

0

))(),(ˆ(  (3) 

E is a function measuring the error between the 

estimated (predicted) and actual sequence element. 

Typically, a distance measure (Euclidean or other) is 

used, but depending on the problem, any function 

can be used (e.g. a function computing the cost 

resulting from an incorrect prediction of y(t+D))[2]. 

The problem of chaotic time series prediction is 

studied in various disciplines now including 

engineering, medical and econometric applications. 

Chaotic time series are the output of a deterministic 

system with positive Liapunov exponent. Therefore, 

unless the initial condition are specified with infinite 

precision, the time series behavior becomes 
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unpredictable, and the prediction of chaotic time 

series is a difficult task.  

From a historical point of view, before the 1980s, 

prediction of time series used linear parametric 

autoregressive (AR), moving-average (MA) or 

autoregressive moving-average (ARMA) models 

introduced by Box and Jenkins [11][13]. These 

models are linear and are not able to cope with 

certain non stationary signals, and signals whose 

mathematical model is not linear. An obvious 

drawback is that these algorithms are linear, and are 

not able to cope with certain nonstationary signals 

and signals whose model is chaotic nonlinear. On 

the other hand, neural networks (NN) are powerful 

when applied to problems whose solutions require 

knowledge which is difficult to specify, but for 

which there is an abundance of examples. 

The prediction of chaotic processes implies finding 

the interdependences between time series 

components. The dependences are minimal in 

random time series and maximal in a complete 

deterministic process. But, random and deterministic 

are only margin of the large set of chaotic time 

series signals with weak dependences between 

components on short or long term. A special case is 

represented by the fractal time series characterized 

by auto similarity or non-periodic cycles. 

 

 

1.1 Prediction with neural networks 
After 1980, there has been resurgence in the field of 

time series prediction, when it becomes clear that 

this type of prediction is a suitable application for a 

neuronal network predictor.  

The NN approach to time series prediction is non-

parametric, in the sense that it is not necessary to 

know any information regarding the process that 

generates the signal. It is shown that the recurrent 

NN (RNN) with a sufficiently large number of 

neurons is a realization of the nonlinear ARMA 

(NARMA) process. [1][12][5]. 

Neural Networks (NN) based prediction has been 

explored from their beginning and development, 

because of NNs approximation and generalization 

property. Many research papers are published in 

scientific literature and some commercial companies 

claim or market the so-called advanced statistical 

programs, using neural networks, for modeling and 

prediction. 

However, some difficulties and limitations remain 

nevertheless of current actuality and cause 

researches for new NN models and learning 

techniques to be conducted[4][5][7][8]. 

-Outliers make it difficult for NNs (and other 

prediction models) to model the true underlying 

functional. Although NN had been shown to be 

universal approximators, it has found that NN had 

difficulty modeling seasonal patterns in time series. 

When a time series contains significant seasonality, 

the data need to be deseasonalized. 

-The number of samples in time series. Researchers 

have found that increasing observation frequency 

does not always help to improve the accuracy of 

prediction. 

-Stationarity – the classical techniques for time 

series prediction, require a stationary time series, 

while most real time series are not stationary 

(stationarity refers to a stochastic process whose 

mean value, variances and covariances – first and 

second order moments do not change in time). After 

NNs have been introduced one can use original time 

series as forecasting targets. 

-The problem of long time dependencies - is related 

to the problem of vanishing gradient or forgetting 

behavior.  

Time series prediction is the same as system 

identification; this paper shows that the dynamics of 

nonlinear system that produce complex time series 

can be captured in a model system. The model 

system is an artificial RNN. The main idea of RNN 

is providing a weighted feedback connection 

between layers of neurons and adding time 

significance to entire artificial NN. Therefore, RNNs 

are the most suitable for Time Series Analysis 

 

1.2 Chaotic time series 
 

1.2.1 A short characterization of some example of 

chaotic time series 
To evaluate the prediction capability of proposed 

algorithms, the best data are the chaotic time series 

[14], generated by some linear dynamical systems. 

The degree of irregularity is different, from on type 

of series to another, depending on the sort of iterated 

difference equation, chaotic map or flows. In this 

paper, four time series were been tested:  logistic, 

Mackey-Glass, fractal Weirstrass and BET index. 

The logistic time series (4) generate a chaotic map 

with extremely short memory length. It is a difficult 

test for prediction algorithm. They do not exhibit 

cycles as we see sometimes in system practice. 

))(1()()( tytyaty −⋅⋅=′  (4) 

The Mackey-Gloss equation (5) is classified as a 

simpler system generating chaotic flows. This type 

of chaotic time series is a relatively easy mission for 

prediction algorithms. Non-periodical cycles appear 

due the delay included in the equation.  Chaotic 
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flows are frequently encountered models in real life 

practice. 
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The fractal function of Weirstrass (6) is an infinite 

sum of a series of sine or cosine waves in which 

amplitude decreases, while the frequency increases 

according to different factors. The Weirstrass 

function used has a limited sum of four terms. 
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On the financial market, multivariate time series are 

encountered, for example the market indices BET 

(figure 1), BET-C, BET-FI from the Romanian stock 

market. These indexes also have, although they are 

presented only by their value, other important 

components, such as the daily transaction volume or 

number of transactions.  

 
Fig. 1 BET index for 2005-03.2008 years 

 

1.2.2 Preprocessing time series 
Usually, the time series y(t) and the input sequence 

ui(t) are analyzed in a process named “data 

selection” for the prediction optimization, or 

computing time minimization. The rule of input 

variable selection is that the input variables should 

be as predictive as possible [21]. Selection consists 

in partitioning the data series in prediction intervals 

about contents of measured information with 

autocorrelation coefficient rk. For time series, the 

autocorrelation coefficients rk are given by: 
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where y(t) is a data value at time step t, k is the lag, 

and the overall mean is given by: 

∑
=

=
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t

N

y
y

1

 
(8) 

This aspects do not are an objective for this work. 

The time series can be used immediately for 

processing in only few cases. In most cases, it is 

necessary to preprocess the time series to ensure an 

optimal outcome of the processing. The most 

common operations are removing known 

systematicies as linear or nonlinear trends 

(constantly rising or descending of the average 

value), seasonality (periodic patterns due to a 

periodic influencing factor)[2][9][12]. In this work, 

the data were only normalized to be included in [-1, 

1] range. 

 

 

1.2.3 Stochasticity of time series. Long memory 

processes 

Long memory process is a process with a random 

component, where a past event has a 

decreasing/decaying effect on future events. The 

process has some memory of past events, which is 

“forgotten” as time moves forward. 

The mathematical definition of long memory 

process is given in terms of autocorrelation: when a 

data set exhibit autocorrelation, a value yt at time ti 

is correlated with a value yt+d at time ti+d , where d is 

some time increment in the future. In a long memory 

process autocorrelation decrease over time and the 

decreasing follows a power low [10]. 

In a long memory process the decrease of the 

autocorrelation function (ACF) for a time series is a 

power low: 

ACFTS(k)=Ck 
-α

, (9)   

where C is a constant, and ACFTS(k) is the 

autocorrelation function with log k. The Hurst 

exponent is related to the exponent α in the equation 

by: 

H = 1 – α/2, (10)  

The value of the Hurst exponent ranges between 0 

and 1. A value of 0.5 indicates a random evolution 

in time (a Brownian time series). In a random 

process there is no correlation between any element 

and a future element. 

A Hurst exponent value 0.5 < H < 1 indicates 

“persistent behavior” (e.g. a positive 

autocorrelation). Persistence means that if the curve 

has been increasing for a period, it is expected to 

continue for another period. If there is an increase 

from step ti-1 to ti, there will probably be an increase 
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from ti to ti+1, or a decrease will be followed by a 

decrease. 

A Hurst exponent of 0 < H < 0.5 shows 

antipersistent behavior. After a period of decreases, 

a period of increases tends to show up. The 

antipersistent behavior has a rather high fractal 

dimension, corresponding to a very “noisy” profile-

like curve (which highly fills up the plane). This 

behavior is sometimes called “mean reversion”[10]. 

In principle, fractal dimension D and Hurst 

coefficient H are independent of each other because 

the D is considered a local propriety, and long-

memory dependence is a global characteristic [22]. 

For self-affine processes (e.g. fractals), the local 

properties are reflected in the global ones, and it is 

possible the relationship D + H = n + 1, where the n 

is dimension of self-affine space [22]. The long-

memory dependence (persistence) is linked with the 

case 0.5 < H < 1 and a feature of the surfaces with 

low fractal dimensions. The antipersistent processes 

are linked with the surfaces with higher fractal 

dimensions (rougher) with 0 < H < 0.5. 

 

 

2 NARX networks 
In this paper, the architectural approach proposed to 

deal with chaotic time series is one based upon 

“Nonlinear Autoregressive models with eXogenous 

input (NARX model)”, which are therefore called 

NARX recurrent neural networks [1][4][5]. This is a 

powerful class of models which has been 

demonstrated that they are well suited for modeling 

nonlinear systems and specially time series. One 

principal application of NARX dynamic neural 

networks is in control systems. Also, is a class 

computationally equivalent to Turing Machines [1]. 

Some important qualities about NARX networks 

with gradient-descending learning gradient 

algorithm have been reported: (1) learning is more 

effective in NARX networks than in other neural 

network (the gradient descent is better in NARX) 

and (2) these networks converge much faster and 

generalize better than other networks [4][5]. 

The simulated results show that NARX networks are 

often much better at discovering long time – 

dependences than conventional recurrent neural 

networks. An explanation why output delays can 

help long-term dependences can be found by 

considering how gradients are calculated using the 

back-propagation-through-time (BPTT) algorithm. 

Recently, several empirical studies have shown that 

when using gradient-descent learning algorithms, it 

might be difficult to learn simple temporal behavior 

with long time dependencies [7][9], in other words 

those problems for which the output of a system at 

time instant k depends on network inputs presented 

at times  r << k. The researchers have analyzed 

learning algorithms for systems with long time 

dependencies and showed that for gradient-based 

training algorithms, the information about the 

gradient contribution m steps in the past vanishes for 

large m. This effect is referred to as the problem of 

vanishing gradients, which partially explains why 

gradient descent algorithms are not very suitable to 

estimate systems and signals with long time 

dependencies. For instance, common recurrent 

neural networks encounter problems when learning 

information with long time dependencies, a problem 

in the prediction of nonlinear and no stationary 

signals. The vanishing gradients problem makes the 

learning of long-term dependencies in gradient-

based training algorithms difficult if not virtually 

impossible in certain cases [1]. 

A state space representation of recurrent NARX 

neural networks can be expressed as[12]: 








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i
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where the output y(k) = zi(k) and zi, i=1,2, … N, are 

state variables of recurrent neural network. The 

recurrent network exhibits forgetting behavior, if: 
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where z is state variable, “I” denotes the set of input 

neurons. “O” denotes the set of output neurons and 

K denotes the time index set. 

Several approaches have been suggested to get 

around the problem of vanishing gradient in training 

RNNs. Most of them rest on including embedding 

memory in neural networks, whereas several others 

propose improved learning algorithms, such as the 

extended Kalman filter algorithm, Newton type 

algorithm, annealing algorithm, etc. 

Embedded memory is particularly significant in 

recurrent NARX and NARMAX neural networks. 

This embedded memory can help to speed up 

propagation of gradient information, and hence help 

to reduce the effect of vanishing gradient. There are 

various methods of introducing memory and 

temporal information into neural networks. These 

include creating a spatial representation of temporal 

pattern, putting time delays into the neurons or their 

connections, employing recurrent connections, using 

neurons with activations that sum input over time, 

etc. 

 

 

WSEAS TRANSACTIONS on COMPUTER RESEARCH Eugen Diaconescu

ISSN: 1991-8755 185 Issue 3, Volume 3, March 2008



3   Architecture and learning 
 

3.1 The NARX models 
The NARX model for approximation of a function Γ 

can be implemented in many ways, but the simpler 

seems to be by using a feedforward neural network 

with the embedded memory (a first tapped delay 

line), as is shown in figure 2, plus a delayed 

connexion from the output of the second layer to 

input (a second tapped delay line). Making the 

network dependent on du previous sequence 

elements is identical to using du input units being fed 

with du adjacent sequence elements. This input is 

usually referred to as a time window since it 

provides a limited viewed on part of the series. It 

can also be viewed as a simple way of transforming 

the temporal dimension into another spatial 

dimension. 

 

 
Fig. 2 NARX model with tapped delay line at  input  

 

In practice it was observed that forecasting of a time 

series will be enhanced by simultaneously analyzing 

related time series. For example, electrical power 

consumption for the next day will be better 

predicted if taken together, last pc day consumptions 

and last pt environment temperatures are 

simultaneously applied as inputs to the neural 

networks. The architectural model in figure 3 is 

make to test this hypothesis A generalized 

implementation of this model allows the input and 

output to be multidimensional, and thus applying to 

the “multivariate” type of time series. 

For the architectural model in figure 2 the notation 

used is NN(du, dy; N) to denote the NN with du input 

delays, dy output delays and N neurons in layer 1. 

Similarly, for the architectural model in figure 2 the 

notation used is NN(du1, du2, dy; N). 

 

For the NN models used in this work, with two 

levels (level 1 surnamed input layer and level 2 or 

output layer), the general prediction equations for 

computing the next value of time series y(k+1) 

(output) using model in figure 2, the past 

observation u(k), u(k-1), …, u(k-du) and the past 

outputs y(k), y(k-1), …, y(k-dy) as inputs, may be 

written in the form: 

+
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For the model in figure 3, the prediction equations 

for computing the output value y(k+1) using the past 

observations u1(k), u1(k-1), …, u1(k-du) for the first 

time series, the past observations u2(k), u2(k-1), …, 

u2(k-du) for the second time series and the past 

outputs y(k), y(k-1), …, y(k-dy) as inputs, may be 

written in the form: 

+
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Fig. 3 NARX with two tapped delay lines for two 

time series applied at NARX input  
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3.2 Learning algorithms 
For learning purposes, a dynamic back-propagation 

algorithm is required to compute the gradients, 

which is more computationally intensive than static 

back-propagation and takes more time. In addition, 

the error surfaces for dynamic networks can be more 

complex than those for static networks. Training is 

more likely to be trapped in local minima [6][12].  

The selected training method in this work uses the 

advantage of availability at the training time of the 

true real output set. It is possible to use the true 

output instead of the estimated output to train the 

network witch has the feedback connections 

decoupled (cut). The decoupled network has a 

common feedforward architecture which can be 

trained with classical static back-propagation 

algorithm. In addition, during training, the inputs to 

the feedforward network are just the real/true ones – 

not estimated ones, and the training process will be 

more accurate. 

The training process has some difficulties. One is 

related to the number of parameters, which refers to 

how many connections or weights are contained in 

network. Usually, this number is large and there is a 

real danger of “overtraining” the data and producing 

a false fit which does not lead to better forecasts. For 

NARX neural network model the number is given 

by p = (du + dy + 2)N. A solution is penalizing the 

parameter increase [15]. This fact motivates the use 

of an algorithm including the regularization 

technique, which involves modifying the 

performance function for reducing parameters value. 

Practically, the typical performance function used in 

training, MSE, is replaced by a new one, MSEreg, as 

follows: 
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where ti is the target and ξ is the performance ratio. 

The new performance function causes the network 

to have smaller weights and biases, and in this way 

forces the network response to be smoother and less 

likely to overfit. 

The network training function that updates the 

weight and bias values according to Levenberg-

Marquardt optimization was modified to include the 

regularization technique. It minimizes a combination 

of squared errors and weights and, then determines 

the correct combination so as to produce a network 

which generalizes well.  The process is called 

Bayesian regularization. 

In general, in function approximation problems, for 

networks that contain up to a few hundred weights, 

the Levenberg-Marquardt algorithm will have the 

fastest convergence. This advantage is especially 

noticeable if very accurate training is required. 

However, as the number of weights in the network 

increases, the advantage of this algorithm decreases. 

Other training algorithms [15] were tested, but with 

a less good result: 

- The network training function that updates weight 

and bias values according to gradient descent with 

momentum. 

-The network training function that updates weight 

and bias values according to the gradient descent 

with adaptive learning rate. 

-The network training function that updates weight 

and bias values according to the gradient descent 

momentum and an adaptive learning rate. 

The neural network training can be made more 

efficient if certain preprocessing steps on the 

network inputs and targets are performed. The 

normalization of the input and target values mean to 

mapping them into the interval [-1, 1]. This 

simplifies the problem of the outliers for the 

network. The normalized inputs and targets that are 

returned will all fall in the interval [-1, 1]. 

 

 

4   Experimental results 
In all the experiments performed, a one-step-ahead 

prediction is considered; that is, the actual observed 

values of all lagged samples are used as inputs. (If 

multistep-ahead predictions are required then, it is 

possible to proceed by adding the first one-step-

ahead prediction to time series, and then the new 

time series is used to predict the second step-ahead, 

and so on). 

Various NN models having different numbers of 

lagged input steps (or time windows), different 

number of lagged output connected steps as inputs, 

and different number of neurons in layer 1 have 

been compared. All the models had layer 1 with N 

neurons and a single neuron in layer 2 (output 

layer). The input has been rescaled in most cases to 

be included in [-1, 1] range.  

An interesting comparison about length of input lags 

in feedforward neural network and the NARX model 

presented in this paper can be made with [3]. It is 

well known from practice of NN that the input 

variables of NN should not to be much correlated, 

because the correlated input variables may degrade 
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the forecasting by interacting with each other as well 

as other elements and producing a biased effect [23]. 

In [3] it is shown that a feedforward model as NN(1-

13;4) lead to poor prediction. The notation (1-13) 

means 13 inputs, and (1, 13) means 2 inputs. In 

general, the success model in [3] have only 3 or 4 

inputs, as in corresponding notation NN(1,12,13;1) 

or NN(1,2,12,13;2). By his architecture, the NARX 

model applies simultaneously all the values stored in 

the tapped delay line as inputs to the RNN. It is easy 

to observe from the table 1-5 that, in general, the 

optimum number of lags is in 12-30 range, the best 

value being found from one case to another case. A 

bigger number of lags at input do not improve the 

prediction, it is even worse. That is, a conflicting 

condition results in selecting the number of lags of 

the delay line at input: a bigger number should 

assure input sequence as predictive as possible, but 

many variables are too correlated to each other to 

produce   unconfused outputs. 

 

 

4.1 Criteria to estimate prediction 
Usually, the performance of a trained network can 

be measured by the errors on the training, validation, 

and test sets. In this work, the correlation coefficient 

R between the outputs and targets of neural network 

is used. R is a measure of the variation between the 

generated outputs and targets. If this number is equal 

to 1, then there is perfect correlation between the 

targets and outputs [15]. In the following examples, 

the fact that the number is very close to 1 (R>0.98 or 

better R>99), indicates a good fit. 

 

 

4.2 Example 1: Chaotic Mackey-Glass time 

series 

Table 1 depicts the experimental results with chaotic 

Mackey-Glass time series as input, for a total of 

1000 observations, test set being different from 

training set. Column labeled R (correlation 

coefficient between input and output of neural 

network) shows the results in different runs 

respectively. The rows 3 and 4 from table 1 show 

that for two different time-series but with identical 

H, the same NN model gives different predictions. 

The rows 6, 7, 8 and 9 indicate the influence of 

architecture on prediction quality: for the same time-

series, only the NN(24,1;5) model gives the best 

prediction. 

 

 

 

 

Table 1 
a b c τ H sse ssw N du dy R 
0.210.1 10 30 0,25 0.22 13.6 3 12 1 0.99545 

0.2 0.12 10 30 0.36 0.62 27.2 3 12 1 0.99966 

0.2 0.1 5 75 0.37 0.62e-3142.8 3 12 1 0.94592 

0.2 0.1 10 50 0.37 0,102 29.7 3 12 1 0.9931 

0.2 0.1 10 30 0.41 0.15 14 3 12 1 0.99185 

0.2 0.1 10 80 0.51 2.93 45.39 3 12 1 0.74984 

0.2 0.1 10 80 0.51 2.41 75 5 12 1 0.06015 

0.2 0.1 10 80 0.51 0.02 59 5 24 1 0.99968 

0.2 0.1 10 80 0.51 21,3 10 2 5 1 0.29047 

0.2 0.1 8 70 0.50 0.014 43.9 3 12 1 0.99981 

0.2 0.1 5 70 0.72 2.4e-5 2413 3 12 1 0.9244 

 

 
Fig. 4 The traces for original and predicted 

chaotic Mackey-Glass time series are very 

close; H=0.51, a=0.2, b=0.1, c=10, τ=80,  

NN(24, 5; 5) model. R=0.99573 

 

 

4.3 Example 2: Fractal Weirstrass time series 

The data contained in table 2 give a motivation 

about the conclusion that in that case of Weirstrass 

fractal time series the values of exponent Hurst do 

not represent an indication about the prediction 

success.  The column labeled H shows a strong 

variation of about more 300% of the values of Hurst 

coefficient which do not can be put in relation with 

the rate of success represented by the value from the 

column labeled R. 

 

Table 2 
a b ω H sse ssw N du dy R 
3.2 6.1 25 0.252e-11 5.2 18 15 2 0.99998 

2.7 2.1 11.9 0.2611e-8 4,9 10 30 2 0.99988 

3.2 5.1 32 0.3 1e-11 8.32 10 30 1 0.99739 

3.2 5.1 32 0.3 1.6e-9 5.61 10 30 2 0.99744 

2.3 1.5 15 0.363.8e-8 5.28 10 30 2 0.99988 

3.2 4.1 50 0.461.1e-8 4.07 10 30 2 0.99821 

3.2 4.1 50 0.467e-10 10.66 10 30 2 0.99906 

2.1 2.07 15 0.531.8e-9 21 10 35 1 0.99964 

3.2 5.1 38 0.571.2e-7 24.77 5 15 2 0.9980 

3.2 5.1 38 0.577e-10 10.66 10 30 2 0.99906 

3.2 6.1 25 0.662.3e-7 6.58 2 10 1 0.99971 

3.2 6.1 25 0.660.6 30 2 4 1 0.9655 

1.2 1.4 10 0.822e-7 61.52 2 10 1 0.99929 

2.7 2.1 11 0.841.2e-8 5,38 10 15 8 0.98409 

2.7 2.1 11 0.841.8e-8 5,39 10 30 2 0.99996 
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4.4 Example 3: BET time series 
The BET-index time-series is an average of daily 

closed prices for nine representative, most liquid 

listed companies at Bucharest Stock Market.  

Although the Hurst coefficient of BET-index time 

series was close to 1, it was proved that prediction in 

the case of BET index time series, (figure 1) is a 

much more very difficult task. For 800 daily 

observations, the result of simulations was obtained 

including the test set in training set (Table 3), or 

excluding the test set from training set (Table 4). 

 

 

 
Fig. 5 Weirstrass fractal function, easy to be 

predicted: H=0.82, a=1.2, b=1.4, ω=10, 

R=0.99971. Original and predicted time series are 

approximately the same, NN(8, 2;1). 

 

 

 

 
Fig. 6 A difficult Weirstrass case: H=0.53, a=2.1, 

b=2.07, ω=15, R = 0,99964, NN(35,1;10) 

 

From the first set of simulations, one of the best 

prediction is graphic represented in figure 7 with the 

correlation R=0.96116. The training algorithm with 

the best results was the back-propagation with 

Levenberg - Marquardt optimization and Bayesian 

regularization. To be compared with the results in 

Table 3, some results obtained after training with an 

algorithm that updates weight and bias values 

according to the gradient descent momentum and an 

adaptive learning rate, were presented in Table 5.   

 

 

  Table 3   Table 4 
N du dy R  N du dy R 

6 30 2 0.95185  6 30 3 0.25758 

7 30 2 0.96206  7 15 2 0.53296 

8 30 2 0.9535  9 24 2 0.88662 

10 30 2 0.72639  10 24 1 0.83436 

10 35 2 0.72639  10 24 2 0.2868 

11 30 2 0.54259  10 30 2 0.87045 

11 45 2 0.92045  11 40 1 0.64629 

11 45 3 0.92947  11 40 2 0.57197 

12 30 2 0.54337  15 50 3 0.07878 

12 50 3 0.9592      

12 50 4 0.82927      

15 50 3 0.96116      

18 50 3 0.86318      

 

 

   Table 5 

N du dy R 
6 30 2 0.8207 

7 30 2 0.9299 

8 30 2 0.8281 

11 45 2 0.8933 

11 45 3 0.8690 

12 30 2 0.4266 

12 50 3 0.4266 

15 50 3 0.7904 

 

 

 
Fig. 7 BET prediction, NN(50, 3;15) 

 

The RNN model presented in figure 3, for two 

inputs presented simultaneously to the network, was 

tested for two related time series: BET - index value 

and BET - index volume (figure 9 and 10). TDL 

means time delay line. The volume (figure 8) should 

be enhanced the prediction for the time series 

values. The results are in table 6. Another test was 

made by using as second input the delayed time 

series (with 15 days) of the same BET-values time 

series (figure 10). The results are in the table 7.  
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Fig. 8 BET index volume 2005-03.2008 

 

Table 6   Table 7 

N du1 du2dy R  N du1 du2 dy R 

10 25 25 3 0.8147  10 25 25 3 0.2432 

12 6 6 2 0.5607  12 6 6 2 0.6143 

12 25 25 3 0.8093  12 25 25 3 0.5320 

14 14 14 2 0.5916  14 14 14 2 0.0301 

15 25 25 3 0.7145  15 25 25 3 0.7308 

 

 
Fig. 9 NARX RNN with simultaneous inputs: BET-

index value and BET- index volume 

 

 
Fig. 10 NARX RNN with simultaneous inputs: BET- 

index value and BET- index value 15 days lagged 

 

5   Conclusions 
In this paper, the performance of the prediction for 

different time series was tested using a NARX 

dynamic recurrent neural network. Comparative 

experiments with real and artificial chaotic time 

series from diverse domains have been made. 

The first conclusion of this paper is that NARX 

recurrent neural networks have the potential to 

capture the dynamics of nonlinear dynamic system 

such as in the examples shown, for the Mackey-

Glass system with different delays. This affirmation 

is based on the fact that correlation coefficient R 

estimated for the original and generated (1000 

points) time series is close to 1 in many cases, and  

the prediction can be considered of real interest or 

significance if R>0.98. 

The paper has attempted to use traditional statistical 

methodologies (R/S Rescaled Range, from where 

Hurst coefficient) to obtain indications to make 

efficient the process of prediction chaotic time series 

with RNN. To certain extent, the Hurst coefficient 

may give a clue, otherwise vague, about existence of 

long time memory in the analyzed time series. The 

prediction may fails however, even the values of 

Hurst coefficient are encouraging, in conformity 

with R/S theory. 

The second conclusion is that the nonlinear NARX 

models are not without problems, they have 

limitation in learning long time dependences due to 

the “vanishing gradient”, and like any dynamical 

system are affected by instability, and have lack of a 

procedure of optimizing embedded memory. 

The last conclusion, and the most important, is that 

the architecture of the tested RNN model affects the 

performance of prediction. The most favorable 

behavior of NARX model is dependent upon the 

dimension of embedded memory of input and output 

and the number of neurons in the input layer. The 

determination of these architectural elements, in an 

optimal way, is a critical and difficult task for the 

NARX model, and remains an objective for future 

works. 

The followings lines contain several directions to 

explore:  

- The avoiding of saturation and over-fitting because 

of too many neurons in network. Too many hidden 

neurons lead to poor prediction. A solution is the 

including in NARX models the penalizing terms as 

Bayessian Information Criteria (BIC), Akaike 

Information Criteria (AIC) – a process named 

regularization. 

- The data input analysis may show how the length 

of sequences and their correlation influence the 
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interval and value of predictability (selection the 

length of lags). 

- The finding other training algorithms than back-

propagation, for the NARX models. Consecutive 

restarts of the program with back-propagation 

training function, give different results, indicating 

the end of iteration process in local optima.  
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