
Parallel Prefix Algorithms on the Multicomputer

LI-LING HUNG YEN-CHUN LIN

Department of Computer Science and Information Engineering

National Taiwan University of Science and Technology

43 Keelung Road, Sec. 4, Taipei 106

TAIWAN

D9115004@mail.ntust.edu.tw yclin747@gmail.com

http://faculty.csie.ntust.edu.tw/~yclin/yclin.htm

Abstract: - A family of computation-efficient parallel prefix algorithms for message-passing multicomputers

are presented. The family generalizes a previous algorithm that uses only half-duplex communications, and thus

can improve the running time. Several properties of the family are derived, including the number of

computation steps, the number of communication steps, and the condition for effective use of the family. The

family can adopt collective communication operations to reduce the communication time, and thus becomes a

second family of algorithms. These algorithms provide the flexibility of choosing either less computation time

or less communication time, depending on the characteristics of the target machine, to achieve the minimal

running time.

Key-Words: - Computation-efficient, Cost optimality, Half-duplex, Message-passing multicomputers, Parallel

algorithms, Prefix computation

1 Introduction
The prefix problem, or prefix computation, is

defined as follows: given n inputs x1, x2,…, xn, and

an associative binary operator ⊕, compute

yi = x1 ⊕ x2 ⊕…⊕ xi, for 1 ≤ i ≤ n.

For ease of presentation, unless otherwise stated,

this study assumes that xi’s and yi’s represent inputs

and outputs, respectively, and the number of inputs

is n. Prefix computation has been extensively

studied for its wide application in fields such as

biological sequence comparison, cryptography,

design of silicon compilers, job scheduling, image

processing, loop parallelization, polynomial

evaluation, processor allocation, and sorting [1-3, 8,

11, 14, 16, 23-26, 28, 51, 52, 54, 56, 57]}. The

binary operation ⊕ can be as simple as a Boolean

operation or an extremely time-consuming

multiplication of matrices [12].

Because of its importance and usefulness, prefix

computation has been proposed as a primitive

operation [4]. In fact, prefix computation is a built-

in operation for Message-Passing Interface (MPI)

parallel programming [17], and is implemented in

hardware in the Thinking Machines CM-5 [50].

Additionally, many parallel prefix algorithms for

various parallel computing models have been

proposed [1, 7, 9, 13, 19, 24, 26, 29, 30, 36, 41, 42,

44, 46, 51], and many parallel prefix circuits have

also been designed [3, 5, 6, 10, 15, 18, 21, 25-27,

30, 32-34, 37-40, 43, 45, 47, 48, 51, 55-57].

In particular, Egecioglu and Koc present a

computation-efficient parallel prefix algorithm,

henceforth named EK, for the half-duplex

multicomputer model with p processing elements

(PEs), where p < n [12]. Lin proposes an algorithm,

henceforth named L, to reduce the communication

time on the same model [31]. Half-duplex

communication is the weakest communication

model of message-passing multicomputers, with

which each PE of a multicomputer can only send or

receive a message in a communication step. This

model of communication is basic and important

[22].

Although a PE of a modern multicomputer can

send and receive in the same step, it usually takes a

longer time to send and receive than to send or

receive only due to the inherent hardware capability

and software overhead [20, 49]. On a p-PE system,

the half-duplex communication ensures that no more

than p/2 messages are transferred in a

communication step and thus a communication step

will not take too much time.

In this paper, computation-efficient parallel

prefix algorithms for multicomputers with p PEs,

where n ≥ (p2
 + kp + k + 1)/2, are presented. We

first present a family of algorithms that generalize

Algorithm L such that they represent multiple

combinations of the computation time and

WSEAS TRANSACTIONS on COMPUTER RESEARCH Li-Ling Hung and Yen-Chun Lin

ISSN: 1991-8755 Issue 4, Volume 3, April 2008
213

communication time. Algorithm L is at one extreme

of the family. The others of the family take less

computation time than Algorithm L, but may take

more or less communication time. Users can thus

take into account both the exact time of performing

⊕ and that of communicating a message to choose

an algorithm that requires the minimal running time.

Like Algorithms EK and L, the proposed

algorithms are more practical when the amount of

time required to perform a binary operation ⊕ is

greater than that required to transfer a message

between two PEs. This situation may happen, for

example, when the binary operation is time-

consuming matrix multiplication.

The rest of this paper is organized as follows.

Section 2 presents a family of parallel prefix

algorithms for half-duplex message-passing

multicomputers. Section 3 gives various properties

of the family, including the computation time,

communication time, and the condition for effective

use of algorithms. Section 4 compares the new

algorithms with previous ones for multicomputers.

Section 5 discusses possible ways to improve the

running time. Conclusions are finally drawn in

Section 6.

2 A Family of Parallel Prefix

Algorithms
In this section, we describe a family of parallel

algorithms for solving the prefix problem on the

half-duplex multicomputer model. The p PEs are

represented by P1, P2,…, Pp. For ease of

presentation, i:j is used to represent the result of

computing xi ⊕ xi+1 ⊕…⊕ xj, where i ≤ j.

Algorithm A(n, p, k) {Solving the prefix

problem of n inputs, x1, x2,…, xn, using p PEs to

generate y1, y2,…, yn, where n ≥ (p2
 + kp + k + 1)/2,

p = kq + 1, k ≥ 1, q ≥ 1. For ease of presentation,
assume that all numerical values are integers.}

Phase 1: Partition the inputs into two parts N1 =

(x1, x2,…, xv) and N2 = (xv+1, xv+2,…, xn), where 0 < v

< n. How the value of v is determined will be

explained shortly. If p = k + 1, then P1 uses N1 to

compute outputs y1, y2,…, yv sequentially;

otherwise, P1, P2,…, Pp–k use N1 to compute y1,

y2,…, yv by invoking A(v, p – k, k) recursively. In

the mean time, N2 is first distributed evenly among

the other k PEs, Pp–k+1, Pp–k+2,…, Pp; each of the PEs

holds c = (n – v)/k input values. These k PEs then

concurrently compute

z1 = (z1,1, z1,2,…, z1,c),

z2 = (z2,1, z2,2,…, z2,c),

.

.

.

zk = (zk,1, zk,2,…, zk,c),

respectively, where

zi,j = (v + (i – 1)c + 1):(v + (i – 1)c + j).

The value of v is chosen to make the total number of

computation steps in this phase required by the first

p – k PEs equal to that required by the other k PEs,

and it is given later. Note that yv is obtained by Pp–k.

Phase 2: Initially, Pp–k sends yv to all the other

PEs. Next, Pp–k+1 scatters, i.e., partitions and

distributes, z1 among all the PEs evenly, each PE

having c/p of the c values. All the PEs then

concurrently compute

yv+i = yv ⊕ z1,i, i = 1, 2,…, c

in c/p computation steps. Note that yv+c is computed

by Pp.

Phase m (m = 3, 4,…, k + 1): Initially, Pp sends

yv+(m–2)c to all the other PEs. Next, Pp–k+m–1 scatters

zm–1 among all the PEs evenly, each PE having c/p

values. All the PEs then concurrently compute

yv+(m–2)c+i = yv+(m–2)c ⊕ zm–1,i, i = 1, 2,…, c

in c/p computation steps. Note that yv+(m–1)c is

computed by Pp.

To evaluate Algorithm A(n, p, k), let C(n, p, k)

denote the number of computation steps required,

and R(n, p, k) denote the number of communication

steps. As in the two previous papers [12, 31], the

initial input data loading time is not taken into

account in this paper. To help understand the

algorithm, we give two examples in the following.

First, consider the case when p = 5, k = 4.

Phase 1: Assign N1 = (x1, x2,…, xv) to P1 and N2 =

(xv+1, xv+2,…, xn) to P2, P3, P4, P5. The prefixes of N1

are computed by P1, and those of N2 by the other

PEs. By the rule of deciding v, the number of

computation steps required by P1, v – 1, equals the

number of parallel computation steps required by

the other three PEs, (n – v)/4 – 1. Hence, v = n/5.

After phase 1 has completed, P1 obtains y1, y2,…,

yn/5; P2 obtains z1,1, z1,2,…, z1,n/5; P3 obtains z2,1,

z2,2,…, z2,n/5; P4 obtains z3,1, z3,2,…, z3,n/5; and P5

obtains z4,1, z4,2,…, z4,n/5. It takes n/5 – 1

computation steps.

Phase 2: P1 initially sends yn/5 to P2, P3, P4, P5 in

4 communication steps. Then, P2 sends 1/5 of the

n/5 prefixes computed in phase 1 to each of the

other four PEs in 4 communication steps. That is,

z1,1 through z1,n/25, z1,2n/25+1 through z1,3n/25, z1,3n/25+1

WSEAS TRANSACTIONS on COMPUTER RESEARCH Li-Ling Hung and Yen-Chun Lin

ISSN: 1991-8755 Issue 4, Volume 3, April 2008
214

through z1,4n/25, and z1,4n/25+1 through z1, n/5 are sent to

P1, P3, P4, P5, respectively. Subsequently, the five

PEs compute n/5 outputs yn/5+1, yn/5+2,…, y2n/5 in n/25

parallel computation steps. At the end, P5 has y2n/5.

Phase 3: P5 initially sends y2n/5 to the other PEs

in 4 communication steps. Then, P3 sends 1/5 of the

n/5 prefixes computed in phase 1 to each of the

other four PEs in 4 communication steps. That is,

z2,1 through z2,n/25, z2,n/25+1 through z2,2n/25, z2,3n/25+1

through z2,4n/25, and z2,4n/25+1 through z2,n/5 are sent to

P1, P2, P4, P5, respectively. Subsequently, the five

PEs compute n/5 outputs y2n/5+1, y2n/5+2,…, y3n/5

concurrently in n/25 computation steps. At the end,

P5 has y3n/5.

Phase 4: P5 initially sends y3n/5 to the other PEs

in 4 communication steps. Then, P4 sends 1/5 of the

n/5 prefixes computed in phase 1 to each of the

other four PEs in 4 communication steps. That is,

z3,1 through z3,n/25, z3,n/25+1 through z3,2n/25, z3,2n/25+1

through z3,3n/25, and z3,4n/25+1 through z3,n/5 are sent to

P1, P2, P3, P5, respectively. Subsequently, the five

PEs compute n/5 outputs y3n/5+1, y3n/5+2,…, y4n/5

concurrently in n/25 computation steps. At the end,

P5 has y4n/5.

Phase 5: P5 sends y4n/5 and 1/5 of the n/5 prefixes

computed in phase 1 to each of the other four PEs in

4 communication steps. That is, z4,1 through z4,n/25,

z4,n/25+1 through z4,2n/25, z4,2n/25+1 through z4,3n/25, and

z4,3n/25+1 through z4,4n/25 are sent to P1, P2, P3, P4,

respectively. Subsequently, the five PEs

concurrently compute n/5 outputs y4n/5+1, y4n/5+2,…,

yn in n/25 computation steps.

Therefore, the total number of computation steps

is

C(n, 5, 4) = (n/5 – 1) + n/25 + n/25 + n/25 + n/25

= 9n/25 – 1. (1)

The total number of communication steps is

R(n, 5, 4) = 4 × 2 + 4 × 2 + 4 × 2 + 4 = 28.

Next, consider the case when p = 9, k = 4.

Phase 1: Assign N1 = (x1, x2,…, xv) to the first

five PEs, and assign N2 = (xv+1, xv+2,…, xn) to the last

four PEs. From Eq. (1), we know that P1, P2, P3, P4,

P5 can compute the prefixes of N1 in C(v, 5, 4) =

9v/25 – 1 computation steps. In the mean time, P6,

P7, P8, P9 share N2 evenly and compute their

respective prefixes concurrently, taking (n – v)/4 – 1

computation steps. By the rule of deciding v,

9v/25 – 1 = (n – v)/4 – 1,

v = 25n/61.

Consequently, each of the last four PEs has c =

(n – v)/4 = 9n/61 input values. Thus, the prefixes z1,1

through z1,9n/61 are computed in P6, z2,1 through

z2,9n/61 in P7, z3,1 through z3,9n/61 in P8, and z4,1 through

z4,9n/61 in P9. Note that P5 obtains yv = y25n/61, and

C(25n/61, 5, 4) = 9n/61 – 1.

Phase 2: P5 initially sends y25n/61 to the other

eight PEs in 8 communication steps. Then, P6 sends

1/9 of the 9n/61 prefixes computed in phase 1 to

each of the other eight PEs in 8 communication

steps. Subsequently, the nine PEs compute 9n/61

outputs y25n/61+1, y25n/61+2,…, y34n/61 in n/61 parallel

computation steps. At the end, P9 has y34n/61.

Phase 3: P9 initially sends y34n/61 to the other

eight PEs in 8 communication steps. Then, P7 sends

1/9 of the 9n/61 prefixes computed in phase 1 to

each of the other eight PEs in 8 communication

steps. Subsequently, the nine PEs concurrently

compute 9n/61 outputs y34n/61+1, y34n/61+2,…, y43n/61 in

n/61 computation steps. At the end, P9 has y43n/61.

Phase 4: P9 initially sends y43n/61 to the other

eight PEs in 8 communication steps. Then, P8 sends

1/9 of the 9n/61 prefixes computed in phase 1 to

each of the other eight PEs in 8 communication

steps. Subsequently, the nine PEs concurrently

compute 9n/61 outputs y43n/61+1, y43n/61+2,…, y52n/61 in

n/61 computation steps. At the end, P9 has y52n/61.

Phase 5: P9 initially sends y52n/61 and 1/9 of the

9n/61 prefixes computed in phase 1 to each of the

other eight PEs in 8 communication steps. The nine

PEs then concurrently compute 9n/61 outputs

y52n/61+1, y52n/61+2,…, yn in n/61 computation steps.

Therefore, the total number of computation steps

is

C(n, 9, 4) = 9n/61 – 1 + (n/61) × 4

= 13n/61 – 1.

The total number of communication steps is

R(n, 9, 4) = R(25n/61, 5, 4) + 8 × 7 = 84.

3 Properties of Algorithm A
In this section, we present the various properties of

Algorithm A, including the values of v, C(n, p, k),

and R(n, p, k). How to achieve the minimum

running time is also investigated. Let v = αp,k n,
where 0 < αp,k < 1.

Theorem 1. When p = k + 1, αp,k = 1/p; otherwise,

αp,k =
2

2

1
1

p kp k
p kp k
− + +
+ + +

.

Proof. We consider two cases separately.

WSEAS TRANSACTIONS on COMPUTER RESEARCH Li-Ling Hung and Yen-Chun Lin

ISSN: 1991-8755 Issue 4, Volume 3, April 2008
215

Case 1: p = k + 1. In phase 1 the number of

computation steps required by P1 equals the number

of parallel computation steps required by the other k

PEs. That is,

,
, 1 1.p k
p k

n n
n

k

α
α

−
− = −

Thus,

,

1 1
.

1p k k p
α = =

+
 (2)

Case 2: p = kq + 1, where q ≥ 2. The number of

computation steps in phase 1 required by P1 through

Pp–k equals that required by Pp–k+1 through Pp. That

is,

,
,(, ,) 1.p k
p k

n n
C n p k k

k

α
α

−
− = − (3)

Phases 2 through k + 1 require a total of (n – αp,k n)/p

computation steps. Hence,

,
,(, ,) (, ,)

p k
p k

n n
C n p k C n p k k

p
α

α
−

= − +

, ,
1

p k p kn n n n
pk

α α− −
= − +

,()(1)
1.p kn p k

kp

α+ −
= − (4)

Substituting n and p in Eq. (4) with αp,k n and p − k,
respectively, we obtain

,
, ,

(1)
(, ,) 1.

()
p k k

p k p k

p
C n p k k n

k p k

α
α α −−

− = −
−

 (5)

From Eqs. (3) and (5) we have

, , , ,()
1 1,

()
p k p k p k k p kn n p n n

k k p k

α α α α−− −
− = −

−

,
,

.
2p k

p k k

p k
p k p

α
α −

−
=

− −
 (6)

Then, let

ri = ip – ki(i + 1)/2

and

si = (i + 1)p – ki(i + 1)/2.

We prove by induction on i that

1 ,

,
1 ,

,i i p ki k
p k

i i p ki k

r r
s s

α
α α

− −

− −

−
= − for i ≥ 1. (7)

Base step: Since r0 = 0, s0 = p, r1 = p – k, and s1 =

2p – k, we have

1 0 ,

1 0 , ,

.
2

p k k

p k k p k k

r r p k
s s p k p

α
α α

−

− −

− −
=− − −

From Eq. (6), we have

1 0 ,

,
1 0 ,

.
p k k

p k
p k k

r r

s s

α
α

α
−

−

−
=

−

Induction step: Assume

1 ,

,
1 ,

t t p kt k

p k
t t p kt k

r r

s s

α
α

α
− −

− −

−
=

−
. (8)

We are to show

1 (1),

,
1 (1),

tt p k t k

p k
tt p k t k

r r

s s

α
α

α
+ − +

+ − +

−
=

−
. (9)

Substituting p in Eq. (6) with p – kt, we obtain

,
(1),

.
2() ()p kt k

p k t k

p kt k

p kt k p kt
α

α−
− +

− −
=

− − − −

Thus, Eq. (8) can be rewritten

1
(1),

,

1
(1),

2 2 ()

2 2 ()

t t
p k t k

p k

t t
p k t k

p kt k
r r

p kt k p kt

p kt k
s s

p kt k p kt

α
α

α

−
− +

−
− +

− −
−

− − − −
=

− −
−

− − − −

(1), 1

(1), 1

(2 2 ()) ()

(2 2 ()) ()

t p k t k t

t p k t k t

r p kt k p kt r p kt k

s p kt k p kt s p kt k

α

α
− + −

− + −

− − − − − − −
=

− − − − − − −

1 (1),

1 (1),

(2 2) () ()

(2 2) () ()

t t t p k t k

t t t p k t k

r p kt k r p kt k r p kt

s p kt k s p kt k s p kt

α

α
− − +

− − +

− − − − − − −

− − − − − − −
=

 (10)

By definition, we have

rt+1 = (t + 1)p – k(t + 1)(t + 2)/2,

rt = tp – kt(t + 1)/2,

rt–1 = (t – 1)p – k(t – 1)t/2.

These lead to

rt−1 = rt – p + kt,

rt+1 = rt + p – kt – k.

Thus,

rt(2p – 2kt – k) – rt−1(p – kt – k)

= rt(2p – 2kt – k)

– (rt – p + kt) (p – kt – k) (p – kt)(rt + p – kt – k)

= (p – kt)rt+1. (11)

By definition, we have

st+1 = (t + 2)p – k(t + 1)(t + 2)/2,

st = (t + 1)p – kt(t + 1)/2,

WSEAS TRANSACTIONS on COMPUTER RESEARCH Li-Ling Hung and Yen-Chun Lin

ISSN: 1991-8755 Issue 4, Volume 3, April 2008
216

st–1 = tp – k(t – 1)t/2.

These lead to

st−1 = st – p + kt,

st+1 = st + p – kt – k.

Thus,

st(2p – 2kt – k) – st−1(p – kt – k)

= st(2p – 2kt – k) – (st – p + kt) (p – kt – k)

= (p – kt)(st + p – kt – k)

= (p – kt)st+1. (12)

Using Eqs. (11) and (12), we see that Eq. (10) can

be rewritten

1 (1),

,
1 (1),

() ()
.

() ()

tt p k t k

p k
tt p k t k

p kt r r p kt

p kt s s p kt

α
α

α
+ − +

+ − +

− − −
=

− − −

This can be reduced to Eq. (9), and thus proves Eq.

(7).

Setting i = (p – k – 1)/k for Eq. (7), we have

1 1,

,
1 1,

,
i i k k

p k
i i k k

r r

s s

α
α

α
− +

− +

−
=

−
 i = (p – k – 1)/k.

From Eq. (2),

αk+1,k = 1/(k + 1).

In addition, the definition of ri implies

ri = ri–1 + p – ki,

and the definition of si implies

si = si–1 + p – ki.

Thus,

1
1

,
1

1

1

1

i
i

p k
i

i

r
r p ki

k
s

s p ki
k

α

−
−

−
−

+ − −
+=

+ − −
+

1

1

1
1 , = (1) / .

1
1

i

i

k
r k

k i p k k
k

s k
k

−

−

+ +
+= − −

+ +
+

 (13)

Since i – 1 = (p – 2k – 1)/k, from the definitions of ri

and si, we have

1

2 1 2 1 1
,

2
i

p k p k p kk
r p

k k k
−

− − − − − −
= −

1

1 2 1 1
.

2
i

p k p k p kk
s p

k k k
−

− − − − − −
= −

Thus, Eq. (13) can be written

,

2 1 2 1 1
() 1

1 2
1 2 1 1

() 1
1 2

p k

p k p k p kk k
p k

k k k k
p k p k p kk k

p k
k k k k

α

− − − − − −
− + +

+=
− − − − − −

− + +
+

2 2

2 2

2 3 1
1

1 2
2 3 1

1
1 2

p pk k kk
k

k k
p pk k kk

k
k k

− − − −
+ +

+=
+ − − −

+ +
+

2 2

2 2

2 3 1
1

2(1)

2 3 1
1

2(1)

p pk k k
k

k

p pk k k
k

k

− − − −
+ +

+
=

+ − − −
+ +

+

2 2

2 2

2 3 1 2(1)(1)

2 3 1 2(1)(1)

p pk k k k k

p pk k k k k

− − − − + + +
=

+ − − − + + +

2

2

1
.

1

p pk k

p pk k

− + +
=

+ + +
 Q.E.D.

Theorem 2. C(n, p, k) =
2

2 ()
1.

1
n p k

p kp k
+

−
+ + +

Proof. We consider two cases separately.

Case 1: p = k + 1. In phase 1 of Algorithm

A(n, p, k), P1 takes αp,k n – 1 computation steps to

sequentially compute the prefixes of the αp,k n inputs
assigned, and the number of computation steps

required by the other k PEs is also αp,k n – 1. In
phases 2 through k + 1, totally (n – αp,k n)/p
computation steps are required to compute n – αp,k n
values, precisely yv+1, yv+2,…, yn, by all the p PEs

concurrently. Hence,

,
,(, ,) 1 .

p k
p k

n n
C n p k n

p
α

α
−

= − +

From Theorem 1, ,

1
p k p

α = ; thus,

2

/ 2 1
(, ,) 1 1.

n n p pn
C n p k n

p p p
− −

= − + = −

Since p = k + 1, we have

2

2 1
(, ,) 2 1

2
p

C n p k n
p
−

= −

2
2 1

(1)
p k

n
p p k

+
= −

+ +

2

2 ()
1.

1
n p k

p kp k
+

= −
+ + +

Case 2: p = kq + 1, where q ≥ 2. The number of

computation steps in phase 1 required by Pp–k+1

through Pp is

WSEAS TRANSACTIONS on COMPUTER RESEARCH Li-Ling Hung and Yen-Chun Lin

ISSN: 1991-8755 Issue 4, Volume 3, April 2008
217

, 1.p kn n

k

α−
−

As already mentioned in case 1, phases 2 through

k + 1 require (n – αp,k n)/p computation steps. Hence,

totally

, ,(, ,) (1)p k p kn n n n

C n p k
pk

α α− −
= − +

,()(1)
1.p kn p k

kp

α+ −
= −

By Theorem 1, we then have

2

2

1
()(1)

1
(, ,) 1

p kp k
n p k

p kp k
C n p k

kp

− + ++ −
+ + +

= −

2

2 ()
1.

1
n p k

p kp k
+

= −
+ + +

 Q.E.D.

We can then examine what values of p and k can

achieve the minimal computation time. Let a = bq1

+ 1, d = eq2 + 1, and b, e, q1, q2 ≥ 1. Then

(, ,) (, ,)C n a b C n d e−

2 2

2 () 2 ()
1 1

n a b n d e
a ab b d de e

+ +
= −

+ + + + + +

2 2

2 2
.

()(1) (1)()
2

(1)(1)
a b d de e a ab b d e

n
a ab b d de e

+ + + + − + + + +
=

+ + + + + +

The numerator above can be rewritten

ad
2
 + ade + ae + a + bd

2
 + bde + be + b

− (a2
d + abd + bd + d + a

2
e + abe + be + e)

= ad(d − a) + ad(e − b) + (ae − bd) + (a − d)

+ (bd
2
 − a2

e) + be(d − a) + (b − e).

If p = a = d, the numerator becomes

a
2
(e − b) + a(e − b) + a2

(b − e) + (b − e)

= (e − b)(a − 1).

Clearly, if e > b, then the numerator is positive, and

thus C(n, p, b) > C(n, p, e); i.e., A(n, p, e) takes less

computation time than A(n, p, b).

On the other hand, if k = b = e, the numerator

becomes

ad(d − a) + b(a − d) + (a − d) + b(d2
 − a2

)

+ b
2
 (d − a)

= (d − a)(ad − b − 1 + ab + bd + b2
).

Clearly, if d > a, then the numerator is positive, and

thus C(n, a, k) > C(n, d, k); i.e., A(n, d, k) takes less

computation time than A(n, a, k).

We now summarize the effect of p and k on the

computation time as follows. Using as many PEs as

possible and using the maximal k, which equals

p – 1, can achieve the minimal computation time.

This can be expressed as the following theorem.

Theorem 3. If d > a and e > b, then C(n, a, b) >

C(n, d, b) > C(n, d, e).

Theorem 4. R(n, p, 1) = p(p − 1);

R(n, p, k) = (2k − 1)(p – 1)(p + k – 1)/2k for k ≥ 2.

Proof. From Algorithm A, R(n, p, k) is the sum of

the following four components:

(i) The number of communication steps,

R(v, p – k, k), when the first p – k PEs perform

A(v, p – k, k) in phase 1.

(ii) The number of communication steps required by

Pp–k to send yv to the other p – 1 PEs in phase 2.

(iii) The number of communication steps required by

Pp to send yv+ic to the other p – 1 PEs in phase

i + 2, for i = 1, 2,…, k – 1.

(iv) The number of communication steps taken to

distribute a total of kc, or n – v, values evenly

among all the p PEs in phases 2 through k + 1.

Note that the kc values are zi,j for i = 1, 2,…, k,

and j = 1, 2,…, c, which are obtained in phase 1

of Algorithm A.

The value of R(n, p, k) depends on the values of

p and k. Thus, we consider the following three

cases.

Case 1: k = 1. The algorithm has only two

phases, and it degenerates into Algorithm L. It has

been shown [31]

R(n, p, 1) = p(p – 1).

Case 2: k ≥ 2 and p = k + 1. Component (i) is 0;

component (ii) is p – 1; component (iii) is

(k – 1)(p – 1), and component (iv) is k(p – 1). Note

that in phase k + 1, component (iii) has the same

communication source and destinations as

component (iv). These two components can become

one in phase k + 1; that is, p − 1 communication

steps can be reduced. Hence,

R(n, p, k)

= 0 + (p – 1) + (k – 1)(p – 1) + k(p – 1) − (p − 1)

= (p – 1)(2k – 1), (14)

which is equal to (2k – 1)(p – 1)(p + k – 1)/2k since

p = k + 1.

WSEAS TRANSACTIONS on COMPUTER RESEARCH Li-Ling Hung and Yen-Chun Lin

ISSN: 1991-8755 Issue 4, Volume 3, April 2008
218

Case 3: k ≥ 2 and p = k(i + 1) + 1, where i ≥ 1.
Component (i) is R(v, p – k, k). Components (ii),

(iii), and (iv) are the same as those in case 2. Thus,

using Eq. (14), we have

R(n, p, k)

= R(αp,k n, p – k, k) + (p – 1)(2k – 1)

= R(αp–k,k αp,k n, p – 2k, k) + (p – k – 1)(2k – 1)

+ (p – 1)(2k – 1)

.

.

.

= R(αp–(i–1)k,k … αp–k,k αp,k n, p – ik, k)

+ (2k – 1)[(p – (i – 1)k – 1) + ... + (p – k – 1)

+ (p – 1)]

= R(αp–(i–1)k,k … αp–k,k αp,k n, p – ik, k)

+ (2k – 1)[i(p – 1) – (k + 2k + … + (i – 1)k)]

= R(α2k+1,k … αp–k,k αp,k n, k + 1, k)

+ (2k – 1)[i(p – 1) –
(1)

2

ki i−
]

= R(α2k+1,k … αp–k,k αp,k n, k + 1, k)

+
1 2 1

(2 1)[(1) (1)].
2

p k p k
k p p k

k k

− − − −
− − − − −

Since Eq. (14) can be rewritten

R(n, k + 1, k) = k (2k – 1),

which is independent of the value of n, we obtain

R(n, p, k) = k (2k – 1)

+
1 2 1

(2 1)[(1) (1)]
2

p k p k
k p p k

k k

− − − −
− − − − −

= (2k – 1)
2 2 1

2
p p kp k

k
− + − +

= (2k – 1)(p – 1)(p + k – 1)/2k. Q.E.D.

Note that the communication time is independent

of n. We now use Theorem 4 to investigate what

values of p and k can achieve the minimal

communication time. Clearly, a smaller p results in

less communication time.

To see the effect of k, we first note that when k ≥
2, a smaller k leads to less communication time.

Next, we compare R(n, p, 1) and R(n, p, k), where k

≥ 2. From Theorem 4,

R(n, p, 1) – R(n, p, k)

= (p
2
 – p) – (2k – 1)(p – 1)(p + k – 1)/2k

= (p – 1)(p – (2k
2
 – 3k + 1))/2k.

Therefore, when p ≥ 2k2 – 3k + 1, R(n, p, k) ≤
R(n, p, 1); otherwise, R(n, p, 1) < R(n, p, k).

We summarize the effect of k on the

communication time as follows. If p ≥ 2k2 – 3k + 1
and k ≥ 2, then R(n, p, k) ≤ R(n, p, 1), and R(n, p, 2)
is the minimal number of communication steps;

otherwise, R(n, p, k) > R(n, p, 1), and R(n, p, 1) is

the minimal number of communication steps.

Together with the effect of p on the communication

time, we have the following theorem.

Theorem 5. If d > a, then R(n, d, k) > R(n, a, k).

If p ≥ 2k2 – 3k + 1 and k ≥ 2, then R(n, p, k) ≤
R(n, p, 1) and R(n, p, 2) ≤ R(n, p, k) < R(n, p, k + 1);

otherwise, R(n, p, 1) < R(n, p, k) < R(n, p, k + 1).

Let τ be the ratio of the time required by a

communication step to the time required by a

computation step. Thus, the total running time of the

algorithm is equivalent to the time required to

perform C(n, p, k) + τ R(n, p, k) computation steps.

From Theorem 2, C(n, p, k) = Θ(n/p); from

Theorem 4, R(n, p, k) = Θ(p
2
). Totally, Algorithm A

takes

C(n, p, k) + τ R(n, p, k) = Θ(n/p) + Θ(p
2
)

time. When n = Ω(p

3
), n/p = Ω(p

2
); thus,

C(n, p, k) + τ R(n, p, k) = Θ(n/p).

Since the sequential solution for the prefix problem

takes Θ(n) time, and Θ(n/p) × p = Θ(n), we have the

following theorem.

Theorem 6. Algorithm A is cost optimal when n =

Ω(p
3
).

Let us use two examples to gain more insight

into Algorithm A. Suppose n = 2048, p = 511, and k

= 255. From Theorem 2, we have C(2048, 511, 255)

< 8. However, it is even impossible to compute the

sum of 2048 inputs in 8 computation steps.

Therefore, Theorem 2 does not hold under this

situation. We need to dig further to understand and

solve this problem.

As a more general case, suppose n = 2048, p =

511 = kq + 1, and q ≥ 1. From Theorem 1,

v =

2

2

2048(511 511 1)

(511 511 1)

k k

k k

− + +

+ + +

inputs are assigned to the first 511 – k PEs, and

 n – v = 2kpn/(p

2
 + kp + k + 1)

WSEAS TRANSACTIONS on COMPUTER RESEARCH Li-Ling Hung and Yen-Chun Lin

ISSN: 1991-8755 Issue 4, Volume 3, April 2008
219

 = 1022×2048k /(5112
 + 511k + k + 1)

 < 9k

inputs are assigned to the last k PEs. That is, each of

the last k PEs has at most 9 inputs. Then, in phase 2,

P512–k scatters at most 9 values to at most 9 of the

511 PEs for further computation, and thus at least

502 PEs are idle while the others are communicating

and computing. This ineffective use of PEs happens

in every phase except for phase 1.

Thus, in phase 1 at least kp inputs should be

assigned to the last k PEs, which guarantees that in

any later phase each PE can be assigned at least one

value to compute. Using n – v ≥ kp and Theorem 1,

we obtain

n – n(p

2
 – kp + k + 1)/(p

2
 + kp + k +1) ≥ kp,

n ≥ (p2
 + kp + k + 1)/2.

Therefore, we have following theorem.

Theorem 7. To use Algorithm A(n, p, k) effectively,

it is required that n ≥ (p2
 + kp + k + 1)/2.

The same condition can be derived by another

approach. Snir [49] has proved that the number of

computation steps needed when using p PEs to

compute the prefixes of n inputs, where n > p, must

satisfy

C(n, p, k) ≥ (2n – 2)/(p + 1).

Thus, after assigning v inputs to the first p – k PEs,

the number of computation steps needed to

recursively use the p – k PEs to solve a prefix

problem of v inputs is

C(v, p – k, k) ≥ (2v – 2)/(p – k + 1)

 =

2

2
2 2

1

1

1

n
p kp k

p kp k

p k

−
− + +

+ + +

− +
.

In addition, by the rule of choosing v, the number of

computation steps, C(v, p – k, k), required by the

first p – k PEs is equal to the number of computation

steps, (n – v)/k – 1, required by the last k PEs. That

is,

C(v, p – k, k) = (n – v)/k – 1

 = 2pn/(p
2
 + kp + k + 1) – 1.

Therefore, from the above relations, once more we

obtain

n ≥ (p2
 + kp + k + 1)/2.

4 Comparisons
Lin and Lin present a parallel prefix algorithm

named PLL for the half-duplex multicomputer [36];

PLL requires 2n/p + 1.44 log2 p – 1 computation

steps and 1.44 log2 p + 1 communication steps when

using p PEs, where 10 ≤ p < n. The number of

computation steps of Algorithm A is less than that

of PLL, but the number of communication steps is

greater than that of PLL. When τ is small, A may

be faster than PLL.

Since Algorithm L is a special case of A(n, p, k),

precisely A(n, p, 1), it takes C(n, p, 1) computation

steps and R(n, p, 1) communication steps. We have

shown that a larger k results in less computation

time, i.e., C(n, p, 1) > C(n, p, k) for k ≥ 2. As for the

communication time, we have shown that R(n, p, k)

≤ R(n, p, 1) when p ≥ 2k
2
 – 3k + 1; otherwise,

R(n, p, k) > R(n, p, 1). Therefore, A(n, p, k) is

definitely faster than L when p ≥ 2k
2
 – 3k + 1 and k

≥ 2. However, when p < 2k
2
 – 3k + 1, we must know

the value of τ to decide which algorithm is faster.

5 Discussion
It is more important to decide the best values of p

and k that can achieve the least running time than to

obtain the minimum computation time or

communication time. As already mentioned, a larger

k or p leads to less computation time. However, a

smaller p or k results in less communication time,

except when p ≥ 2k2 – 3k + 1 and k ≥ 2. When p ≥
2k

2
 – 3k + 1 and k ≥ 2, A(n, p, k) is definitely faster

than A(n, p, 1), but it is difficult to determine

analytically the values of p and k that result in the

minimal running time. Fortunately, we can

determine the minimal running time by choosing

appropriate p and k values.

Note that Algorithm A(n, p, k) requires that p =

kq + 1, k ≥ 1, and q ≥ 1. Thus, when p = 98, for

example, k can only be 1 or 97. That is, when p – 1

is prime, there are only two combinations of k and q.

However, when p = 97, k can be 1, 2, 3, 4, 6, 8, 12,

16, 24, 32, 48, or 96. Since the running time of

A(n, p, k) depends on the values of n, p, k, and τ,
A(n, 97, k) seems to have a better chance to be

faster than A(n, 98, k). Thus, in some cases, we may

want to use fewer PEs to run faster. It is desirable

that an algorithm guarantees faster execution using

all available PEs than using fewer PEs.

It may be possible to reduce the communication

time of Algorithm A by using collective

communications, such as broadcast and scatter.

Collective communication operations can be easier

to program and run faster than a sequence of send or

WSEAS TRANSACTIONS on COMPUTER RESEARCH Li-Ling Hung and Yen-Chun Lin

ISSN: 1991-8755 Issue 4, Volume 3, April 2008
220

receive operations [53]. We can thus use broadcast

and scatter to replace the primitive send and receive

in Algorithm A to improve the communication time,

and obtain one more family of algorithms.

With the above changes, which involve only

communications, most of the properties of

Algorithm A presented in Section 3 are not affected.

The communication time and running time can be

shorter. The resulting family of algorithms are cost

optimal when n = Ω(p
2
 log p) [35].

6 Conclusion
We have presented a family of parallel prefix

algorithms A(n, p, k) run on half-duplex

multicomputers with p PEs to solve the prefix

problem of n inputs, where p = kq + 1, k ≥ 1, q ≥ 1,
and n ≥ (p2

 + kp + k + 1)/2. The numbers of

computation steps and communication steps have

been derived. We can determine the minimal

running time by choosing appropriate p and k

values. The new algorithms are cost optimal when n

= Ω(p
3
). When p ≥ 2k2 – 3k + 1 and k ≥ 2, A(n, p, k)

is definitely faster than the previous Algorithm L.

Otherwise, whether the proposed algorithms are

faster than other prefix algorithms hinges on the

ratio of the time required by a communication step

to the time required by a computation step.

A(n, p, k) can be modified to be another family

using broadcasts and scatters to reduce the

communication time. The resulting family is cost

optimal when n = Ω(p
2
 log p).

Acknowledgment

This research was supported in part by the National

Science Council of Taiwan under contract NSC 91-

2218-E-011-002.

References:

[1] S. G. Akl, Parallel Computation: Models and

Methods, Prentice-Hall, 1997.

[2] S. Aluru, N. Futamura, and K. Mehrotra,

Parallel biological sequence comparison using

prefix computations, Journal of Parallel and

Distributed Computing, Vol. 63, No. 3, 2003,

pp. 264-272.

[3] A. Bilgory, D. D. Gajski, A heuristic for suffix

solutions, IEEE Transactions on Computers,

Vol. C-35, No. 1, 1986, pp. 34-42.

[4] G. E. Blelloch, Scans as primitive operations,

IEEE Transactions on Computers, Vol. 38, No.

11, 1989, pp. 1526-1538.

[5] R. P. Brent, H. T. Kung, A regular layout for

parallel adders, IEEE Transactions on

Computers, Vol. C-31, No. 3, 1982, pp. 260-

264.

[6] D. A. Carlson, B. Sugla, Limited width parallel

prefix circuits, Journal of Supercomputing,

Vol. 4, No. 2, 1990, pp. 107-129.

[7] L. Cinque, G. Bongiovanni, Parallel prefix

computation on a pyramid computer, Pattern

Recognition Letters, Vol. 16, No. 1, 1995, pp.

19-22.

[8] R. Cole, U. Vishkin, Faster optimal parallel

prefix sums and list ranking, Information and

Control, Vol. 81, No. 3, 1989, pp. 334-352.

[9] A. Datta, Multiple addition and prefix sum on a

linear array with a reconfigurable pipelined bus

system, Journal of Supercomputing, Vol. 29,

No. 3, 2004, pp. 303-317.

[10] G. Dimitrakopoulos, D. Nikolos, High-speed

parallel-prefix VLSI Ling adders, IEEE

Transactions on Computers, Vol. 54, No. 2,

2005, pp. 225-231.

[11] C. Efstathiou, H. T. Vergos, and D. Nikolos,

Fast parallel-prefix modulo 2n + 1 adders, IEEE

Transactions on Computers, Vol. 53, No. 9,

2004, pp. 1211-1216.

[12] O. Egecioglu, C. K. Koc, Parallel prefix

computation with few processors, Computers

and Mathematics with Applications, Vol. 24,

No. 4, 1992, pp. 77-84.

[13] S. C. Eisenstat, O(log* n) algorithms on a

Sum-CRCW PRAM, Computing, Vol. 79, No.

1, 2007, pp. 93-97.

[14] A. Ferreira, S. Ubeda, Parallel complexity of

the medial axis computation, in Proceedings of

International Conference on Image Processing,

Washington, D.C., 1995, pp. 105-108.

[15] F. E. Fich, New bounds for parallel prefix

circuits, in Proceedings of 15th Symposium on

the Theory of Computing, 1983, pp. 100-109.

[16] A. L. Fisher, A. M. Ghuloum, Parallelizing

complex scans and reductions, in Proceedings

of ACM SIGPLAN '94 Conference on

Programming Language Design and

Implementation, Orlando, FL, 1994, pp. 135-

146.

[17] W. Gropp, E. Lusk, and A. Skjellum, Using

MPI: Portable Parallel Programming with the

Message-Passing Interface, MIT Press, 1994.

[18] T. Han, D. A. Carlson, Fast area-efficient VLSI

adders, in Proceedings of 8th Computer

Arithmetic Symposium, Como, Italy, 1987, pp.

49-56.

[19] D. R. Helman, J. JaJa, Prefix computations on

symmetric multiprocessors, Journal of Parallel

and Distributed Computing, Vol. 61, 2001, pp.

265-278.

WSEAS TRANSACTIONS on COMPUTER RESEARCH Li-Ling Hung and Yen-Chun Lin

ISSN: 1991-8755 Issue 4, Volume 3, April 2008
221

[20] Inmos, The Transputer Databook, 3rd ed.,

Inmos, 1992.

[21] P. M. Kogge, H. S. Stone, A parallel algorithm

for the efficient solution of a general class of

recurrence equations, IEEE Transactions on

Computers, Vol. C-22, No. 8, 1973, pp. 783-

791.

[22] D. W. Krumme, G. Cybenko, and K. N.

Venkataraman, Gossiping in minimal time,

SIAM Journal on Computing, Vol. 21, No. 1,

1992, pp. 111-139.

[23] C. P. Kruskal, T. Madej, and L. Rudolph,

Parallel prefix on fully connected direct

connection machines, in Proceedings of

International Conference on Parallel

Processing, St. Charles, IL, 1986, pp. 278-284.

[24] C. P. Kruskal, L. Rudolph, and M. Snir, The

power of parallel prefix, IEEE Transactions on

Computers, Vol. C-34, 1985, pp. 965-968.

[25] R. E. Ladner, M. J. Fischer, Parallel prefix

computation, Journal of the Association for

Computing Machinery, Vol. 27, No. 4, 1980,

pp. 831-838.

[26] S. Lakshmivarahan, S. K. Dhall, Parallel

Computing Using the Prefix Problem, Oxford

University Press, 1994.

[27] S. Lakshmivarahan, C. M. Yang, and S. K.

Dhall, On a new class of optimal parallel prefix

circuits with (size + depth) = 2n – 2 and lοg n
≤ depth ≤ (2 log n – 3), in Proceedings of
International Conference on Parallel

Processing, St. Charles, IL, 1987, pp. 58-65.

[28] F. T. Leighton, Introduction to Parallel

Algorithms and Architectures: Arrays, Trees,

Hypercubes, Morgan Kaufmann, 1992.

[29] R. Lin, K. Nakano, S. Olariu, M. C. Pinotti, J.

L. Schwing, and A. Y. Zomaya, Scalable

hardware-algorithms for binary prefix sums,

IEEE Transactions on Parallel and Distributed

Systems, Vol. 11, No. 8, 2000, pp. 838-850.

[30] Y.-C. Lin, Optimal parallel prefix circuits with

fan-out 2 and corresponding parallel

algorithms, Neural, Parallel & Scientific

Computations, Vol. 7, No. 1, 1999, pp. 33-42.

[31] Y.-C. Lin, A family of computation-efficient

parallel prefix algorithms, WSEAS

Transactions on Computers, Vol. 5, No. 12,

2006, pp. 3060-3066.

[32] Y.-C. Lin, J.-N. Chen, Z4: A new depth-size

optimal parallel prefix circuit with small depth,

Neural, Parallel & Scientific Computations,

Vol. 11, No. 3, 2003, pp. 221-235.

[33] Y.-C. Lin, J.-W. Hsiao, A new approach to

constructing optimal parallel prefix circuits

with small depth, Journal of Parallel and

Distributed Computing, Vol. 64, No. 1, 2004,

pp. 97-107.

[34] Y.-C. Lin, Y.-H. Hsu, and C.-K. Liu,

Constructing H4, a fast depth-size optimal

parallel prefix circuit, Journal of

Supercomputing, Vol. 24, No. 3, 2003, pp. 279-

304.

[35] Y.-C. Lin, L.-L. Hung, Four Families of

Computation-Efficient Parallel Prefix

Algorithms for Multicomputers, Department of

Computer Science and Information

Engineering, National Taiwan University of

Science and Technology, Taipei, Taiwan,

Technical Report: NTUST-CSIE-08-01,

February 2008.

[36] Y.-C. Lin, C. M. Lin, Efficient parallel prefix

algorithms on multicomputers, Journal of

Information Science and Engineering, Vol. 16,

No. 1, 2000, pp. 41-64.

[37] Y.-C. Lin, C.-K. Liu, Finding optimal parallel

prefix circuits with fan-out 2 in constant time,

Information Processing Letters, Vol. 70, No. 4,

1999, pp. 191-195.

[38] Y.-C. Lin, C.-C. Shih, Optimal parallel prefix

circuits with fan-out at most 4, in Proceedings

of 2nd IASTED International Conference on

Parallel and Distributed Computing and

Networks, Brisbane, Australia, 1998, pp. 312-

317.

[39] Y.-C. Lin, C.-C. Shih, A new class of depth-

size optimal parallel prefix circuits, Journal of

Supercomputing, Vol. 14, No. 1, 1999, pp. 39-

52.

[40] Y.-C. Lin, C.-Y. Su, Faster optimal parallel

prefix circuits: New algorithmic construction,

Journal of Parallel and Distributed

Computing, Vol. 65, No. 12, 2005, pp. 1585-

1595.

[41] Y.-C. Lin, C.-S. Yeh, Efficient parallel prefix

algorithms on multiport message-passing

systems, Information Processing Letters, Vol.

71, No. 2, 1999, pp. 91-95.

[42] Y.-C. Lin, C.-S. Yeh, Optimal parallel prefix

on the postal model, Journal of Information

Science and Engineering, Vol. 19, No. 1, 2003,

pp. 75-83.

[43] J. Liu, S. Zhou, H. Zhu, and C.-K. Cheng, An

algorithmic approach for generic parallel

adders, in Proceedings of International

Conference on Computer-Aided Design, San

Jose, CA, 2003, pp. 734-740.

[44] R. Manohar, J. A. Tierno, Asynchronous

parallel prefix computation, IEEE Transactions

on Computers, Vol. 47, No. 11, 1998, pp.

1244-1252.

WSEAS TRANSACTIONS on COMPUTER RESEARCH Li-Ling Hung and Yen-Chun Lin

ISSN: 1991-8755 Issue 4, Volume 3, April 2008
222

[45] J. H. Park, H. K. Dai, Reconfigurable hardware

solution to parallel prefix computation, Journal

of Supercomputing, Vol. 43, No. 1, 2008, pp.

43-58.

[46] E. E. Santos, Optimal and efficient algorithms

for summing and prefix summing on parallel

machines, Journal of Parallel and Distributed

Computing, Vol. 62, 2002, pp. 517-543.

[47] M. Sheeran, I. Parberry, A New Approach to

the Design of Optimal Parallel Prefix Circuits,

Department of Computer Science and

Engineering, Chalmers University of

Technology, Goteborg, Sweden, Technical

Report: 2006:1, 2006.

[48] M. Snir, Depth-size trade-offs for parallel

prefix computation, Journal of Algorithms,

Vol. 7, 1986, pp. 185-201.

[49] M. Snir, P. Hochschild, D. D. Frye, and K. J.

Gildea, The communication software and

parallel environment of the IBM SP2, IBM

Systems Journal, Vol. 34, No. 2, 1995, pp. 205-

221.

[50] Thinking  Machines, Connection Machine

Parallel Instruction Set (PARIS), Thinking

Machines, 1986.

[51] S. Vanichayobon, S. K. Dhall, S.

Lakshmivarahan, and J. K. Antonio, Power-

speed trade-off in parallel prefix circuits,

Journal of Circuits, Systems, and Computers,

Vol. 14, No. 1, 2005, pp. 65-98.

[52] H. Wang, A. Nicolau, and K. S. Siu, The strict

time lower bound and optimal schedules for

parallel prefix with resource constraints, IEEE

Transactions on Computers, Vol. 45, No. 11,

1996, pp. 1257-1271.

[53] Z. Xu, K. Hwang, Modeling communication

overhead: MPI and MPL performance on the

IBM SP2, IEEE Parallel & Distributed

Technology, Vol. 4, No. 1, 1996, pp. 9-23.

[54] F. Zhou, P. Kornerup, Computing moments by

prefix sums, Journal of VLSI Signal Processing

Systems, Vol. 25, No. 1, 2000, pp. 5-17.

[55] H. Zhu, C.-K. Cheng, and R. Graham,

Constructing zero-deficiency parallel prefix

circuits of minimum depth, ACM Transactions

on Design Automation of Electronic Systems,

Vol. 11, No. 2, 2006, pp. 387-409.

[56] R. Zimmermann, Non-heuristic optimization

and synthesis of parallel-prefix adders, in

Proceedings of International Workshop on

Logic and Architecture Synthesis, Grenoble,

France, 1996, pp. 123-132.

[57] R. Zimmermann, Binary Adder Architectures

for Cell-Based VLSI and Their Synthesis,

Ph.D. thesis, Swiss Federal Institute of

Technology (ETH), Zurich, 1997.

WSEAS TRANSACTIONS on COMPUTER RESEARCH Li-Ling Hung and Yen-Chun Lin

ISSN: 1991-8755 Issue 4, Volume 3, April 2008
223

