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Abstract: - A family of computation-efficient parallel prefix algorithms for message-passing multicomputers 

are presented. The family generalizes a previous algorithm that uses only half-duplex communications, and thus 

can improve the running time. Several properties of the family are derived, including the number of 

computation steps, the number of communication steps, and the condition for effective use of the family. The 

family can adopt collective communication operations to reduce the communication time, and thus becomes a 

second family of algorithms. These algorithms provide the flexibility of choosing either less computation time 

or less communication time, depending on the characteristics of the target machine, to achieve the minimal 

running time. 
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1 Introduction 
The prefix problem, or prefix computation, is 

defined as follows: given n inputs x1, x2,…, xn, and 

an associative binary operator ⊕, compute  
 

yi = x1 ⊕ x2 ⊕…⊕ xi,        for 1 ≤ i ≤ n. 
 

For ease of presentation, unless otherwise stated, 

this study assumes that xi’s and yi’s represent inputs 

and outputs, respectively, and the number of inputs 

is n. Prefix computation has been extensively 

studied for its wide application in fields such as 

biological sequence comparison, cryptography, 

design of silicon compilers, job scheduling, image 

processing, loop parallelization, polynomial 

evaluation, processor allocation, and sorting [1-3, 8, 

11, 14, 16, 23-26, 28, 51, 52, 54, 56, 57]}. The 

binary operation ⊕ can be as simple as a Boolean 

operation or an extremely time-consuming 

multiplication of matrices [12]. 

Because of its importance and usefulness, prefix 

computation has been proposed as a primitive 

operation [4]. In fact, prefix computation is a built-

in operation for Message-Passing Interface (MPI) 

parallel programming [17], and is implemented in 

hardware in the Thinking Machines CM-5 [50]. 

Additionally, many parallel prefix algorithms for 

various parallel computing models have been 

proposed [1, 7, 9, 13, 19, 24, 26, 29, 30, 36, 41, 42, 

44, 46, 51], and many parallel prefix circuits have 

also been designed [3, 5, 6, 10, 15, 18, 21, 25-27, 

30, 32-34, 37-40, 43, 45, 47, 48, 51, 55-57].  

In particular, Egecioglu and Koc present a 

computation-efficient parallel prefix algorithm, 

henceforth named EK, for the half-duplex 

multicomputer model with p processing elements 

(PEs), where p < n [12]. Lin proposes an algorithm, 

henceforth named L, to reduce the communication 

time on the same model [31]. Half-duplex 

communication is the weakest communication 

model of message-passing multicomputers, with 

which each PE of a multicomputer can only send or 

receive a message in a communication step. This 

model of communication is basic and important 

[22].  

Although a PE of a modern multicomputer can 

send and receive in the same step, it usually takes a 

longer time to send and receive than to send or 

receive only due to the inherent hardware capability 

and software overhead [20, 49]. On a p-PE system, 

the half-duplex communication ensures that no more 

than p/2 messages are transferred in a 

communication step and thus a communication step 

will not take too much time. 

In this paper, computation-efficient parallel 

prefix algorithms for multicomputers with p PEs, 

where n ≥ (p2
 + kp + k + 1)/2, are presented. We 

first present a family of algorithms that generalize 

Algorithm L such that they represent multiple 

combinations of the computation time and 
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communication time. Algorithm L is at one extreme 

of the family. The others of the family take less 

computation time than Algorithm L, but may take 

more or less communication time. Users can thus 

take into account both the exact time of performing 

⊕ and that of communicating a message to choose 

an algorithm that requires the minimal running time. 

Like Algorithms EK and L, the proposed 

algorithms are more practical when the amount of 

time required to perform a binary operation ⊕ is 

greater than that required to transfer a message 

between two PEs. This situation may happen, for 

example, when the binary operation is time-

consuming matrix multiplication. 

The rest of this paper is organized as follows. 

Section 2 presents a family of parallel prefix 

algorithms for half-duplex message-passing 

multicomputers. Section 3 gives various properties 

of the family, including the computation time, 

communication time, and the condition for effective 

use of algorithms. Section 4 compares the new 

algorithms with previous ones for multicomputers. 

Section 5 discusses possible ways to improve the 

running time. Conclusions are finally drawn in 

Section 6.  

 

 

2 A Family of Parallel Prefix 

Algorithms 
In this section, we describe a family of parallel 

algorithms for solving the prefix problem on the 

half-duplex multicomputer model. The p PEs are 

represented by P1, P2,…, Pp. For ease of 

presentation, i:j is used to represent the result of 

computing xi ⊕ xi+1 ⊕…⊕ xj, where i ≤ j.  

 

Algorithm A(n, p, k) {Solving the prefix 

problem of n inputs, x1, x2,…, xn, using p PEs to 

generate y1, y2,…, yn, where n ≥ (p2
 + kp + k + 1)/2,  

p = kq + 1, k ≥ 1, q ≥ 1. For ease of presentation, 
assume that all numerical values are integers.} 

Phase 1: Partition the inputs into two parts N1 = 

(x1, x2,…, xv) and N2 = (xv+1, xv+2,…, xn), where 0 < v 

< n. How the value of v is determined will be 

explained shortly. If p = k + 1, then P1 uses N1 to 

compute outputs y1, y2,…, yv sequentially; 

otherwise, P1, P2,…, Pp–k use N1 to compute y1, 

y2,…, yv by invoking A(v, p – k, k) recursively. In 

the mean time, N2 is first distributed evenly among 

the other k PEs, Pp–k+1, Pp–k+2,…, Pp; each of the PEs 

holds c = (n – v)/k input values. These k PEs then 

concurrently compute  
 

z1 = (z1,1, z1,2,…, z1,c), 

z2 = (z2,1, z2,2,…, z2,c), 

. 

. 

. 

zk = (zk,1, zk,2,…, zk,c), 
 

respectively, where  
 

zi,j = (v + (i – 1)c + 1):(v + (i – 1)c + j). 
 

The value of v is chosen to make the total number of 

computation steps in this phase required by the first 

p – k PEs equal to that required by the other k PEs, 

and it is given later. Note that yv is obtained by Pp–k. 

Phase 2: Initially, Pp–k sends yv to all the other 

PEs. Next, Pp–k+1 scatters, i.e., partitions and 

distributes, z1 among all the PEs evenly, each PE 

having c/p of the c values. All the PEs then 

concurrently compute  
 

yv+i = yv ⊕ z1,i,        i = 1, 2,…, c 
 

in c/p computation steps. Note that yv+c is computed 

by Pp. 

Phase m (m = 3, 4,…, k + 1): Initially, Pp sends 

yv+(m–2)c to all the other PEs. Next, Pp–k+m–1 scatters 

zm–1 among all the PEs evenly, each PE having c/p 

values. All the PEs then concurrently compute  
 
yv+(m–2)c+i = yv+(m–2)c ⊕ zm–1,i,        i = 1, 2,…, c 

 
in c/p computation steps. Note that yv+(m–1)c is 

computed by Pp. 

 

To evaluate Algorithm A(n, p, k), let C(n, p, k) 

denote the number of computation steps required, 

and R(n, p, k) denote the number of communication 

steps. As in the two previous papers [12, 31], the 

initial input data loading time is not taken into 

account in this paper. To help understand the 

algorithm, we give two examples in the following.  

First, consider the case when p = 5, k = 4. 

Phase 1: Assign N1 = (x1, x2,…, xv) to P1 and N2 = 

(xv+1, xv+2,…, xn) to P2, P3, P4, P5. The prefixes of N1 

are computed by P1, and those of N2 by the other 

PEs. By the rule of deciding v, the number of 

computation steps required by P1, v – 1, equals the 

number of parallel computation steps required by 

the other three PEs, (n – v)/4 – 1. Hence, v = n/5. 

After phase 1 has completed, P1 obtains y1, y2,…, 

yn/5; P2 obtains z1,1, z1,2,…, z1,n/5; P3 obtains z2,1, 

z2,2,…, z2,n/5; P4 obtains z3,1, z3,2,…, z3,n/5; and P5 

obtains z4,1, z4,2,…, z4,n/5. It takes n/5 – 1 

computation steps.  

Phase 2: P1 initially sends yn/5 to P2, P3, P4, P5 in 

4 communication steps. Then, P2 sends 1/5 of the 

n/5 prefixes computed in phase 1 to each of the 

other four PEs in 4 communication steps. That is, 

z1,1 through z1,n/25, z1,2n/25+1 through z1,3n/25, z1,3n/25+1 
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through z1,4n/25, and z1,4n/25+1 through z1, n/5 are sent to 

P1, P3, P4, P5, respectively. Subsequently, the five 

PEs compute n/5 outputs yn/5+1, yn/5+2,…, y2n/5 in n/25 

parallel computation steps. At the end, P5 has y2n/5. 

Phase 3: P5 initially sends y2n/5 to the other PEs 

in 4 communication steps. Then, P3 sends 1/5 of the 

n/5 prefixes computed in phase 1 to each of the 

other four PEs in 4 communication steps. That is, 

z2,1 through z2,n/25, z2,n/25+1 through z2,2n/25, z2,3n/25+1 

through z2,4n/25, and z2,4n/25+1 through z2,n/5 are sent to 

P1, P2, P4, P5, respectively. Subsequently, the five 

PEs compute n/5 outputs y2n/5+1, y2n/5+2,…, y3n/5 

concurrently in n/25 computation steps. At the end, 

P5 has y3n/5. 

Phase 4: P5 initially sends y3n/5 to the other PEs 

in 4 communication steps. Then, P4 sends 1/5 of the 

n/5 prefixes computed in phase 1 to each of the 

other four PEs in 4 communication steps. That is, 

z3,1 through z3,n/25, z3,n/25+1 through z3,2n/25, z3,2n/25+1 

through z3,3n/25, and z3,4n/25+1 through z3,n/5 are sent to 

P1, P2, P3, P5, respectively. Subsequently, the five 

PEs compute n/5 outputs y3n/5+1, y3n/5+2,…, y4n/5 

concurrently in n/25 computation steps. At the end, 

P5 has y4n/5. 

Phase 5: P5 sends y4n/5 and 1/5 of the n/5 prefixes 

computed in phase 1 to each of the other four PEs in 

4 communication steps. That is, z4,1 through z4,n/25, 

z4,n/25+1 through z4,2n/25, z4,2n/25+1 through z4,3n/25, and 

z4,3n/25+1 through z4,4n/25 are sent to P1, P2, P3, P4, 

respectively. Subsequently, the five PEs 

concurrently compute n/5 outputs y4n/5+1, y4n/5+2,…, 

yn in n/25 computation steps. 

Therefore, the total number of computation steps 

is  
 

C(n, 5, 4) = (n/5 – 1) + n/25 + n/25 + n/25 + n/25 

= 9n/25 – 1. (1) 
 

The total number of communication steps is 
 

R(n, 5, 4) = 4 × 2 + 4 × 2 + 4 × 2 + 4 = 28. 
 

Next, consider the case when p = 9, k = 4.  

Phase 1: Assign N1 = (x1, x2,…, xv) to the first 

five PEs, and assign N2 = (xv+1, xv+2,…, xn) to the last 

four PEs. From Eq. (1), we know that P1, P2, P3, P4, 

P5 can compute the prefixes of N1 in C(v, 5, 4) = 

9v/25 – 1 computation steps. In the mean time, P6, 

P7, P8, P9 share N2 evenly and compute their 

respective prefixes concurrently, taking (n – v)/4 – 1 

computation steps. By the rule of deciding v,  
 

9v/25 – 1 = (n – v)/4 – 1, 

v = 25n/61. 
 

Consequently, each of the last four PEs has c =   

(n – v)/4 = 9n/61 input values. Thus, the prefixes z1,1 

through z1,9n/61 are computed in P6, z2,1 through 

z2,9n/61 in P7, z3,1 through z3,9n/61 in P8, and z4,1 through 

z4,9n/61 in P9. Note that P5 obtains yv = y25n/61, and  
 

C(25n/61, 5, 4) = 9n/61 – 1. 
 

Phase 2: P5 initially sends y25n/61 to the other 

eight PEs in 8 communication steps. Then, P6 sends 

1/9 of the 9n/61 prefixes computed in phase 1 to 

each of the other eight PEs in 8 communication 

steps. Subsequently, the nine PEs compute 9n/61 

outputs y25n/61+1, y25n/61+2,…, y34n/61 in n/61 parallel 

computation steps. At the end, P9 has y34n/61. 

Phase 3: P9 initially sends y34n/61 to the other 

eight PEs in 8 communication steps. Then, P7 sends 

1/9 of the 9n/61 prefixes computed in phase 1 to 

each of the other eight PEs in 8 communication 

steps. Subsequently, the nine PEs concurrently 

compute 9n/61 outputs y34n/61+1, y34n/61+2,…, y43n/61 in 

n/61 computation steps. At the end, P9 has y43n/61. 

Phase 4: P9 initially sends y43n/61 to the other 

eight PEs in 8 communication steps. Then, P8 sends 

1/9 of the 9n/61 prefixes computed in phase 1 to 

each of the other eight PEs in 8 communication 

steps. Subsequently, the nine PEs concurrently 

compute 9n/61 outputs y43n/61+1, y43n/61+2,…, y52n/61 in 

n/61 computation steps. At the end, P9 has y52n/61. 

Phase 5: P9 initially sends y52n/61 and 1/9 of the 

9n/61 prefixes computed in phase 1 to each of the 

other eight PEs in 8 communication steps. The nine 

PEs then concurrently compute 9n/61 outputs 

y52n/61+1, y52n/61+2,…, yn in n/61 computation steps. 

Therefore, the total number of computation steps 

is 
  

C(n, 9, 4) = 9n/61 – 1 + (n/61) × 4 

= 13n/61 – 1. 
 

The total number of communication steps is 
 

R(n, 9, 4) = R(25n/61, 5, 4) + 8 × 7 = 84. 
 

 

3 Properties of Algorithm A  
In this section, we present the various properties of 

Algorithm A, including the values of v, C(n, p, k), 

and R(n, p, k). How to achieve the minimum 

running time is also investigated. Let v = αp,k n, 
where 0 < αp,k < 1.  
 

Theorem 1. When p = k + 1, αp,k = 1/p; otherwise,  

αp,k =
2

2

1
1

p kp k
p kp k
− + +
+ + +

. 

Proof. We consider two cases separately. 
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Case 1: p = k + 1. In phase 1 the number of 

computation steps required by P1 equals the number 

of parallel computation steps required by the other k 

PEs. That is, 
 

,
, 1 1.p k
p k

n n
n

k

α
α

−
− = −  

 
Thus, 

 

,

1 1
.

1p k k p
α = =

+
                            (2) 

 
Case 2: p = kq + 1, where q ≥ 2. The number of 

computation steps in phase 1 required by P1 through 

Pp–k equals that required by Pp–k+1 through Pp. That 

is, 
 

,
,( , , ) 1.p k
p k

n n
C n p k k

k

α
α

−
− = −             (3) 

 
Phases 2 through k + 1 require a total of (n – αp,k n)/p 

computation steps. Hence,  
 

,
,( , , ) ( , , )

p k
p k

n n
C n p k C n p k k

p
α

α
−

= − +  

, ,
1

p k p kn n n n
pk

α α− −
= − +  

,( )(1 )
1.p kn p k

kp

α+ −
= −  (4) 

 
Substituting n and p in Eq. (4) with αp,k n and p − k, 
respectively, we obtain 
 

,
, ,

(1 )
( , , ) 1.

( )
p k k

p k p k

p
C n p k k n

k p k

α
α α −−

− = −
−

    (5) 

 
From Eqs. (3) and (5) we have 

 

, , , ,( )
1 1,

( )
p k p k p k k p kn n p n n

k k p k

α α α α−− −
− = −

−
 

,
,

.
2p k

p k k

p k
p k p

α
α −

−
=

− −
                      (6) 

 
Then, let  

 
ri = ip – ki(i + 1)/2 

 
and  

si = (i + 1)p – ki(i + 1)/2. 
 
We prove by induction on i that 

 
1 ,

,
1 ,

,i i p ki k
p k

i i p ki k

r r
s s

α
α α

− −

− −

−
= −         for i ≥ 1.           (7) 

 
Base step: Since r0 = 0, s0 = p, r1 = p – k, and s1 = 

2p – k, we have 
 

1 0 ,

1 0 , ,

.
2

p k k

p k k p k k

r r p k
s s p k p

α
α α

−

− −

− −
=− − −

 

 

From Eq. (6), we have 
 

1 0 ,

,
1 0 ,

.
p k k

p k
p k k

r r

s s

α
α

α
−

−

−
=

−
 

 
Induction step: Assume  

 

1 ,

,
1 ,

t t p kt k

p k
t t p kt k

r r

s s

α
α

α
− −

− −

−
=

−
. (8) 

 
We are to show  
 

1 ( 1),

,
1 ( 1),

tt p k t k

p k
tt p k t k

r r

s s

α
α

α
+ − +

+ − +

−
=

−
.                  (9) 

 
Substituting p in Eq. (6) with p – kt, we obtain  

 

,
( 1),

.
2( ) ( )p kt k

p k t k

p kt k

p kt k p kt
α

α−
− +

− −
=

− − − −
 

 
Thus, Eq. (8) can be rewritten  
 

1
( 1),

,

1
( 1),

2 2 ( )

2 2 ( )

t t
p k t k

p k

t t
p k t k

p kt k
r r

p kt k p kt

p kt k
s s

p kt k p kt

α
α

α

−
− +

−
− +

− −
−

− − − −
=

− −
−

− − − −

 

( 1), 1

( 1), 1

(2 2 ( ) ) ( )

(2 2 ( ) ) ( )

t p k t k t

t p k t k t

r p kt k p kt r p kt k

s p kt k p kt s p kt k

α

α
− + −

− + −

− − − − − − −
=

− − − − − − −
 

1 ( 1),

1 ( 1),

(2 2 ) ( ) ( )

(2 2 ) ( ) ( )

t t t p k t k

t t t p k t k

r p kt k r p kt k r p kt

s p kt k s p kt k s p kt

α

α
− − +

− − +

− − − − − − −

− − − − − − −
=

                                                                          (10) 
 
By definition, we have 
 

rt+1 = (t + 1)p – k(t + 1)(t + 2)/2, 

rt = tp – kt(t + 1)/2, 

rt–1 = (t – 1)p – k(t – 1)t/2. 
 
These lead to 
 

rt−1 = rt – p + kt, 

rt+1 = rt + p – kt – k. 
 

Thus, 
 
rt(2p – 2kt – k) – rt−1(p – kt – k)  

= rt(2p – 2kt – k)  

– (rt – p + kt) (p – kt – k) (p – kt)(rt + p – kt – k) 

= (p – kt)rt+1.                                                         (11) 
 
By definition, we have 
 

st+1 = (t + 2)p – k(t + 1)(t + 2)/2, 

st = (t + 1)p – kt(t + 1)/2,  
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st–1 = tp – k(t – 1)t/2.  
 
These lead to 
 

st−1 = st – p + kt,  

st+1 = st + p – kt – k. 
 

Thus, 
 
st(2p – 2kt – k) – st−1(p – kt – k)  

= st(2p – 2kt – k) – (st – p + kt) (p – kt – k) 

= (p – kt)(st + p – kt – k)  

= (p – kt)st+1. (12) 
 
Using Eqs. (11) and (12), we see that Eq. (10) can 

be rewritten 
 

1 ( 1),

,
1 ( 1),

( ) ( )
.

( ) ( )

tt p k t k

p k
tt p k t k

p kt r r p kt

p kt s s p kt

α
α

α
+ − +

+ − +

− − −
=

− − −
 

 
This can be reduced to Eq. (9), and thus proves Eq. 

(7). 

Setting i = (p – k – 1)/k for Eq. (7), we have 
 

1 1,

,
1 1,

,
i i k k

p k
i i k k

r r

s s

α
α

α
− +

− +

−
=

−
        i = (p – k – 1)/k. 

 
From Eq. (2),  
 

αk+1,k = 1/(k + 1). 
 
In addition, the definition of ri implies  
 

ri = ri–1 + p – ki, 
 
and the definition of si implies  
 

si = si–1 + p – ki. 
 
Thus,  
 

1
1

,
1

1

1

1

i
i

p k
i

i

r
r p ki

k
s

s p ki
k

α

−
−

−
−

+ − −
+=

+ − −
+

 

1

1

1
1 ,          = ( 1) / .

1
1

i

i

k
r k

k i p k k
k

s k
k

−

−

+ +
+= − −

+ +
+

     (13) 

 
Since i – 1 = (p – 2k – 1)/k, from the definitions of ri 

and si, we have 
 

1

2 1 2 1 1
,

2
i

p k p k p kk
r p

k k k
−

− − − − − −
= −  

1

1 2 1 1
.

2
i

p k p k p kk
s p

k k k
−

− − − − − −
= −  

 
Thus, Eq. (13) can be written 

 

,

2 1 2 1 1
( ) 1

1 2
1 2 1 1

( ) 1
1 2

p k

p k p k p kk k
p k

k k k k
p k p k p kk k

p k
k k k k

α

− − − − − −
− + +

+=
− − − − − −

− + +
+

 

2 2

2 2

2 3 1
1

1 2
2 3 1

1
1 2

p pk k kk
k

k k
p pk k kk

k
k k

− − − −
+ +

+=
+ − − −

+ +
+  

2 2

2 2

2 3 1
1

2( 1)

2 3 1
1

2( 1)

p pk k k
k

k

p pk k k
k

k

− − − −
+ +

+
=

+ − − −
+ +

+

 

2 2

2 2

2 3 1 2( 1)( 1)

2 3 1 2( 1)( 1)

p pk k k k k

p pk k k k k

− − − − + + +
=

+ − − − + + +
 

2

2

1
.

1

p pk k

p pk k

− + +
=

+ + +
 Q.E.D. 

 

Theorem 2. C(n, p, k) =
2

2 ( )
1.

1
n p k

p kp k
+

−
+ + +

 

Proof. We consider two cases separately. 

Case 1: p = k + 1. In phase 1 of Algorithm 

A(n, p, k), P1 takes αp,k n – 1 computation steps to 

sequentially compute the prefixes of the αp,k n inputs 
assigned, and the number of computation steps 

required by the other k PEs is also αp,k n – 1. In 
phases 2 through k + 1, totally (n – αp,k n)/p 
computation steps are required to compute n – αp,k n 
values, precisely yv+1, yv+2,…, yn, by all the p PEs 

concurrently. Hence, 
  

,
,( , , ) 1 .

p k
p k

n n
C n p k n

p
α

α
−

= − +  

 

From Theorem 1, ,

1
p k p

α = ; thus,  

 

2

/ 2 1
( , , ) 1 1.

n n p pn
C n p k n

p p p
− −

= − + = −  

 
Since p = k + 1, we have 
 

2

2 1
( , , ) 2 1

2
p

C n p k n
p
−

= −  

2
2 1

( 1)
p k

n
p p k

+
= −

+ +
 

2

2 ( )
1.

1
n p k

p kp k
+

= −
+ + +

 

 
Case 2: p = kq + 1, where q ≥ 2. The number of 

computation steps in phase 1 required by Pp–k+1 

through Pp is 
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, 1.p kn n

k

α−
−  

 
As already mentioned in case 1, phases 2 through 

k + 1 require (n – αp,k n)/p computation steps. Hence, 

totally 
 
, ,( , , ) ( 1)p k p kn n n n

C n p k
pk

α α− −
= − +  

,( )(1 )
1.p kn p k

kp

α+ −
= −  

 
By Theorem 1, we then have 

 
2

2

1
( )(1 )

1
( , , ) 1

p kp k
n p k

p kp k
C n p k

kp

− + ++ −
+ + +

= −  

2

2 ( )
1.

1
n p k

p kp k
+

= −
+ + +

 Q.E.D. 

 

We can then examine what values of p and k can 

achieve the minimal computation time. Let a = bq1 

+ 1, d = eq2 + 1, and b, e, q1, q2 ≥ 1. Then  
 

( , , ) ( , , )C n a b C n d e−  

2 2

2 ( ) 2 ( )
1 1

n a b n d e
a ab b d de e

+ +
= −

+ + + + + +
 

2 2

2 2
.

( )( 1) ( 1)( )
2

( 1)( 1)
a b d de e a ab b d e

n
a ab b d de e

+ + + + − + + + +
=

+ + + + + +
 

 
The numerator above can be rewritten 

 

ad
2
 + ade + ae + a + bd

2
 + bde + be + b  

− (a2
d + abd + bd + d + a

2
e + abe + be + e) 

= ad(d − a) + ad(e − b) + (ae − bd) + (a − d) 

+ (bd
2
 − a2

e) + be(d − a) + (b − e). 
 

If p = a = d, the numerator becomes 
 

a
2
(e − b) + a(e − b) + a2

(b − e) + (b − e)  

= (e − b)(a − 1). 
 

Clearly, if e > b, then the numerator is positive, and 

thus C(n, p, b) > C(n, p, e); i.e., A(n, p, e) takes less 

computation time than A(n, p, b). 

On the other hand, if k = b = e, the numerator 

becomes  
 

ad(d − a) + b(a − d) + (a − d) + b(d2
 − a2

) 

+ b
2
 (d − a) 

= (d − a)(ad − b − 1 + ab + bd + b2
). 

 

Clearly, if d > a, then the numerator is positive, and 

thus C(n, a, k) > C(n, d, k); i.e., A(n, d, k) takes less 

computation time than A(n, a, k).  

We now summarize the effect of p and k on the 

computation time as follows. Using as many PEs as 

possible and using the maximal k, which equals    

p – 1, can achieve the minimal computation time. 

This can be expressed as the following theorem. 

 

Theorem 3. If d > a and e > b, then C(n, a, b) > 

C(n, d, b) > C(n, d, e).  

 

Theorem 4.  R(n, p, 1) = p(p − 1); 

R(n, p, k) = (2k − 1)(p – 1)(p + k – 1)/2k   for k ≥ 2. 

Proof. From Algorithm A, R(n, p, k) is the sum of 

the following four components:  

(i) The number of communication steps,       

R(v, p – k, k), when the first p – k PEs perform 

A(v, p – k, k) in phase 1.  

(ii) The number of communication steps required by 

Pp–k to send yv to the other p – 1 PEs in phase 2.  

(iii) The number of communication steps required by 

Pp to send yv+ic to the other p – 1 PEs in phase 

i + 2, for i = 1, 2,…, k – 1.  

(iv) The number of communication steps taken to 

distribute a total of kc, or n – v, values evenly 

among all the p PEs in phases 2 through k + 1. 

Note that the kc values are zi,j for i = 1, 2,…, k, 

and j = 1, 2,…, c, which are obtained in phase 1 

of Algorithm A.  

The value of R(n, p, k) depends on the values of 

p and k. Thus, we consider the following three 

cases. 

Case 1: k = 1. The algorithm has only two 

phases, and it degenerates into Algorithm L. It has 

been shown [31]  
 

R(n, p, 1) = p(p – 1). 
 

Case 2: k ≥ 2 and p = k + 1. Component (i) is 0; 

component (ii) is p – 1; component (iii) is            

(k – 1)(p – 1), and component (iv) is k(p – 1). Note 

that in phase k + 1, component (iii) has the same 

communication source and destinations as 

component (iv). These two components can become 

one in phase k + 1; that is, p − 1 communication 

steps can be reduced. Hence,  
 
R(n, p, k)  

= 0 + (p – 1) + (k – 1)(p – 1) + k(p – 1) − (p − 1) 

= (p – 1)(2k – 1),                                                  (14) 
 
which is equal to (2k – 1)(p – 1)(p + k – 1)/2k since 

p = k + 1. 
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Case 3: k ≥ 2 and p = k(i + 1) + 1, where i ≥ 1. 
Component (i) is R(v, p – k, k). Components (ii), 

(iii), and (iv) are the same as those in case 2. Thus, 

using Eq. (14), we have  
 
R(n, p, k)  

= R(αp,k n, p – k, k) + (p – 1)(2k – 1) 

= R(αp–k,k αp,k n, p – 2k, k) + (p – k – 1)(2k – 1)  

+ (p – 1)(2k – 1) 

. 

. 

. 

= R(αp–(i–1)k,k … αp–k,k αp,k n, p – ik, k)  

+ (2k – 1)[(p – (i – 1)k – 1) + ... + (p – k – 1)  

+ (p – 1)] 

= R(αp–(i–1)k,k … αp–k,k αp,k n, p – ik, k)  

+ (2k – 1)[i(p – 1) – (k + 2k + … + (i – 1)k)] 

= R(α2k+1,k … αp–k,k αp,k n, k + 1, k)  

+ (2k – 1)[i(p – 1) –
( 1)

2

ki i−
] 

= R(α2k+1,k … αp–k,k αp,k n, k + 1, k)  

+
1 2 1

(2 1)[ ( 1) ( 1) ].
2

p k p k
k p p k

k k

− − − −
− − − − −  

 
Since Eq. (14) can be rewritten  

 
R(n, k + 1, k) = k (2k – 1), 

 
which is independent of the value of n, we obtain 
 
R(n, p, k) = k (2k – 1)  

+ 
1 2 1

(2 1)[ ( 1) ( 1) ]
2

p k p k
k p p k

k k

− − − −
− − − − −  

= (2k – 1)
2 2 1

2
p p kp k

k
− + − +

 

= (2k – 1)(p – 1)(p + k – 1)/2k. Q.E.D. 

 

Note that the communication time is independent 

of n. We now use Theorem 4 to investigate what 

values of p and k can achieve the minimal 

communication time. Clearly, a smaller p results in 

less communication time.  

To see the effect of k, we first note that when k ≥ 
2, a smaller k leads to less communication time. 

Next, we compare R(n, p, 1) and R(n, p, k), where k 

≥ 2. From Theorem 4, 
 
R(n, p, 1) – R(n, p, k)  

= (p
2
 – p) – (2k – 1)(p – 1)(p + k – 1)/2k 

= (p – 1)(p – (2k
2
 – 3k + 1))/2k. 

 

Therefore, when p ≥ 2k2 – 3k + 1, R(n, p, k) ≤ 
R(n, p, 1); otherwise, R(n, p, 1) < R(n, p, k). 

We summarize the effect of k on the 

communication time as follows. If p ≥ 2k2 – 3k + 1 
and k ≥ 2, then R(n, p, k) ≤ R(n, p, 1), and R(n, p, 2) 
is the minimal number of communication steps; 

otherwise, R(n, p, k) > R(n, p, 1), and R(n, p, 1) is 

the minimal number of communication steps. 

Together with the effect of p on the communication 

time, we have the following theorem. 

 

Theorem 5. If d > a, then R(n, d, k) > R(n, a, k).      

If p ≥ 2k2 – 3k + 1 and k ≥ 2, then R(n, p, k) ≤ 
R(n, p, 1) and R(n, p, 2) ≤ R(n, p, k) < R(n, p, k + 1); 

otherwise, R(n, p, 1) < R(n, p, k) < R(n, p, k + 1). 

 

Let τ be the ratio of the time required by a 

communication step to the time required by a 

computation step. Thus, the total running time of the 

algorithm is equivalent to the time required to 

perform C(n, p, k) + τ R(n, p, k) computation steps.  

From Theorem 2, C(n, p, k) = Θ(n/p); from 

Theorem 4, R(n, p, k) = Θ(p
2
). Totally, Algorithm A 

takes 
 

C(n, p, k) + τ R(n, p, k) = Θ(n/p) + Θ(p
2
) 

 
time. When n = Ω(p

3
), n/p = Ω(p

2
); thus,  

 
C(n, p, k) + τ R(n, p, k) = Θ(n/p). 

 
Since the sequential solution for the prefix problem 

takes Θ(n) time, and Θ(n/p) × p = Θ(n), we have the 

following theorem.  

 

Theorem 6. Algorithm A is cost optimal when n = 

Ω(p
3
). 

 

Let us use two examples to gain more insight 

into Algorithm A. Suppose n = 2048, p = 511, and k 

= 255. From Theorem 2, we have C(2048, 511, 255) 

< 8. However, it is even impossible to compute the 

sum of 2048 inputs in 8 computation steps. 

Therefore, Theorem 2 does not hold under this 

situation. We need to dig further to understand and 

solve this problem.  

As a more general case, suppose n = 2048, p = 

511 = kq + 1, and q ≥ 1. From Theorem 1,  
 

v = 

2

2

2048(511 511 1)

(511 511 1)
 

k k

k k

− + +

+ + +
 

 
inputs are assigned to the first 511 – k PEs, and 

 
    n – v = 2kpn/(p

2
 + kp + k + 1)  
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 = 1022×2048k /(5112
 + 511k + k + 1)  

 < 9k  
 
inputs are assigned to the last k PEs. That is, each of 

the last k PEs has at most 9 inputs. Then, in phase 2, 

P512–k scatters at most 9 values to at most 9 of the 

511 PEs for further computation, and thus at least 

502 PEs are idle while the others are communicating 

and computing. This ineffective use of PEs happens 

in every phase except for phase 1.  

Thus, in phase 1 at least kp inputs should be 

assigned to the last k PEs, which guarantees that in 

any later phase each PE can be assigned at least one 

value to compute. Using n – v ≥ kp and Theorem 1, 

we obtain 
 
n – n(p

2
 – kp + k + 1)/(p

2
 + kp + k +1) ≥ kp, 

n ≥ (p2
 + kp + k + 1)/2. 

 
Therefore, we have following theorem.  

 

Theorem 7. To use Algorithm A(n, p, k) effectively, 

it is required that n ≥ (p2
 + kp + k + 1)/2. 

 

The same condition can be derived by another 

approach. Snir [49] has proved that the number of 

computation steps needed when using p PEs to 

compute the prefixes of n inputs, where n > p, must 

satisfy 
 

C(n, p, k) ≥ (2n – 2)/(p + 1). 
 

Thus, after assigning v inputs to the first p – k PEs, 

the number of computation steps needed to 

recursively use the p – k PEs to solve a prefix 

problem of v inputs is 
 

C(v, p – k, k) ≥ (2v – 2)/(p – k + 1) 

                          = 

2

2
2 2

1

1

1

n
p kp k

p kp k

p k

−
− + +

+ + +

− +
.  

 
In addition, by the rule of choosing v, the number of 

computation steps, C(v, p – k, k), required by the 

first p – k PEs is equal to the number of computation 

steps, (n – v)/k – 1, required by the last k PEs. That 

is, 
 

C(v, p – k, k) = (n – v)/k – 1 

           = 2pn/(p
2
 + kp + k + 1) – 1. 

 
Therefore, from the above relations, once more we 

obtain  
 

n ≥ (p2
 + kp + k + 1)/2. 

 

4 Comparisons 
Lin and Lin present a parallel prefix algorithm 

named PLL for the half-duplex multicomputer [36]; 

PLL requires 2n/p + 1.44 log2 p – 1 computation 

steps and 1.44 log2 p + 1 communication steps when 

using p PEs, where 10 ≤ p < n. The number of 

computation steps of Algorithm A is less than that 

of PLL, but the number of communication steps is 

greater than that of PLL. When τ  is small, A may 

be faster than PLL. 

Since Algorithm L is a special case of A(n, p, k), 

precisely A(n, p, 1), it takes C(n, p, 1) computation 

steps and R(n, p, 1) communication steps. We have 

shown that a larger k results in less computation 

time, i.e., C(n, p, 1) > C(n, p, k) for k ≥ 2. As for the 

communication time, we have shown that R(n, p, k) 

≤ R(n, p, 1) when p ≥ 2k
2
 – 3k + 1; otherwise, 

R(n, p, k) > R(n, p, 1). Therefore, A(n, p, k) is 

definitely faster than L when p ≥ 2k
2
 – 3k + 1 and k 

≥ 2. However, when p < 2k
2
 – 3k + 1, we must know 

the value of τ  to decide which algorithm is faster.  

 

 

5 Discussion  
It is more important to decide the best values of p 

and k that can achieve the least running time than to 

obtain the minimum computation time or 

communication time. As already mentioned, a larger 

k or p leads to less computation time. However, a 

smaller p or k results in less communication time, 

except when p ≥ 2k2 – 3k + 1 and k ≥ 2. When p ≥ 
2k

2
 – 3k + 1 and k ≥ 2, A(n, p, k) is definitely faster 

than A(n, p, 1), but it is difficult to determine 

analytically the values of p and k that result in the 

minimal running time. Fortunately, we can 

determine the minimal running time by choosing 

appropriate p and k values. 

Note that Algorithm A(n, p, k) requires that p = 

kq + 1, k ≥ 1, and q ≥ 1. Thus, when p = 98, for 

example, k can only be 1 or 97. That is, when p – 1 

is prime, there are only two combinations of k and q. 

However, when p = 97, k can be 1, 2, 3, 4, 6, 8, 12, 

16, 24, 32, 48, or 96. Since the running time of 

A(n, p, k) depends on the values of n, p, k, and τ, 
A(n, 97, k) seems to have a better chance to be 

faster than A(n, 98, k). Thus, in some cases, we may 

want to use fewer PEs to run faster. It is desirable 

that an algorithm guarantees faster execution using 

all available PEs than using fewer PEs.  

It may be possible to reduce the communication 

time of Algorithm A by using collective 

communications, such as broadcast and scatter. 

Collective communication operations can be easier 

to program and run faster than a sequence of send or 
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receive operations [53]. We can thus use broadcast 

and scatter to replace the primitive send and receive 

in Algorithm A to improve the communication time, 

and obtain one more family of algorithms.  

With the above changes, which involve only 

communications, most of the properties of 

Algorithm A presented in Section 3 are not affected. 

The communication time and running time can be 

shorter. The resulting family of algorithms are cost 

optimal when n = Ω(p
2
 log p) [35].  

 

 

6 Conclusion 
We have presented a family of parallel prefix 

algorithms A(n, p, k) run on half-duplex 

multicomputers with p PEs to solve the prefix 

problem of n inputs, where p = kq + 1, k ≥ 1, q ≥ 1, 
and n ≥ (p2

 + kp + k + 1)/2. The numbers of 

computation steps and communication steps have 

been derived. We can determine the minimal 

running time by choosing appropriate p and k 

values. The new algorithms are cost optimal when n 

= Ω(p
3
). When p ≥ 2k2 – 3k + 1 and k ≥ 2, A(n, p, k) 

is definitely faster than the previous Algorithm L. 

Otherwise, whether the proposed algorithms are 

faster than other prefix algorithms hinges on the 

ratio of the time required by a communication step 

to the time required by a computation step. 

A(n, p, k) can be modified to be another family 

using broadcasts and scatters to reduce the 

communication time. The resulting family is cost 

optimal when n = Ω(p
2
 log p).  
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