

A Web-Based Metadata Schema Repository

YEN-CHUN LIN, HSIANG-AN WANG, CHIEN-CHUNG HUANG, WEI CHEN

Department of Computer Science and Information Engineering

National Taiwan University of Science and Technology

43 Keelung Road, Sec. 4, Taipei 106

TAIWAN

yclin747@gmail.com, {d9215004, m9215052}@mail.ntust.edu.tw, arc1108@yahoo.com.tw

http://faculty.csie.ntust.edu.tw/~yclin/yclin.htm

Abstract: - The metadata schema of a digital archive describes the structure and attributes of metadata. Analysis

and definition of metadata schema for a new digital archive must be carefully carried out and determined at the

first stage of development. To ease the task, we used an Extensible Markup Language (XML) structure to

represent the metadata schema, and then designed and implemented a metadata schema repository to store

metadata schemas as XML documents in a native XML database. The metadata schema repository supports

storage, creation, search, and access management of metadata schemas. A user can access the repository through

a Web browser. With this repository, projects and organizations can share their metadata schemas over the

Internet. Since the metadata schema must be displayed on a Web browser, we also present the method of

translating the XML representation of metadata schema into the HyperText Markup Language document.

Key-Words: - Digital archive, Extensible Markup Language, HyperText Markup Language, Metadata schema

repository, Native XML database, Web-based

1 Introduction
Digital archives are archives in the digital form.

Through them we store and manage valuable

digitized resources of, for example, cultural heritage

and artifacts. The digital form makes archives easily

preserved permanently and widely accessible over

the Internet.

Analysis of metadata plays an important role in

constructing digital archives. Metadata is “data

which describes attributes of a resource” [1], and is

required “to find, access, use, and manage

information resources” [2]. The result of metadata

analysis is crucial because it has an impact on the

content construction process, the accuracy of query

results, the feasibility of data exchange with other

systems, and the feasibility of the construction of

value-added applications. Therefore, the definition of

metadata schema, which describes the structure and

attributes of metadata, for a new digital archive

should be carefully determined at an early stage.

It is not an easy task to analyze and define a

metadata schema. Creating a metadata schema

requires a great amount of time and effort [3]. It

usually takes four months to two years to create one

[4]. Metadata analyzers and content providers should

collaborate to decide the metadata schema. They

usually need to consult related projects and

international metadata standards. Software tools for

assisting the management, analysis, comparison, and

creation of metadata schemas are desirable.

ULIS Open Metadata Registry [5] and CORES [6]

have been presented to manage metadata schemas.

The former can only take care of the Dublin Core

metadata schema [7]. The latter can handle many

metadata schemas, but not metadata schemas with a

hierarchical structure. Another drawback of CORES

is that it cannot be used to create or edit schemas over

the Internet. These two tools use the Resource

Description Framework Schema language [8] to

describe metadata schemas.

In this paper, we present a Web-based metadata

schema repository for storing and managing various

metadata schemas. The repository is accessible

through Web browsers, such as Firefox and

Microsoft Internet Explorer, over the Internet, and is

useful for retrieving and creating metadata schemas.

Users can query existing metadata schemas stored in

the repository and create new metadata schemas. We

store metadata schemas in Extensible Markup

Language (XML) documents [9], which are suited to

represent hierarchical metadata schema structures.

Additionally, the structure of metadata schemas can

be easily modified. Therefore, the repository can help

reduce the time and effort in creating suitable

metadata schemas and ultimately help develop

user-friendly digital archive systems efficiently.

WSEAS TRANSACTIONS on COMPUTER RESEARCH

Yen-Chun Lin, Hsiang-An Wang,
Chien-Chung Huang and Wei Chen

ISSN: 1991-8755 Issue 4, Volume 3, April 2008
203

Table 1. Part of the Construction table.

Table 2. Part of the Attribute table

Element Required Repeatability Attribute Provider

Main ＊ Person

Type Menu Person

Name Person

Title
Other

Remarks

◎

 Person

In Section 2, we introduce a metadata schema

representation with three tables. Section 3 describes

our XML version of the metadata schema introduced

in Section 2. In Section 4, we present the architecture

of our metadata schema repository. Section 5

explains the main functions of the metadata schema

repository by showing some useful operations.

Section 6 introduces the translation method from our

XML documents into HyperText Markup Language

(HTML) ones for displaying metadata schemas on a

Web browser. Section 7 concludes this paper.

2 Metadata Schema Tables
A metadata schema can be described with three

tables [10]; this representation is often used in

Taiwan. The specification of the Han Dynasty

Woodslip Metadata Schema is used for illustration in

the following [11]. Table 1 shows part of the

Construction table. The Element column is used for

naming metadata elements. In this example, the

Element has a hierarchical structure. Its root, Title,

has two subelements named Main and Other, and

Other has three subelements named Type, Name, and

Remarks. The Alias column is for the Chinese

version of the Element column. The Data Type

column describes the data types of atomic elements,

which are at the lowest level of the hierarchy of the

Element. Here, Varchar means characters of variable

length. The Size column describes the maximum size

of atomic elements in number of characters.

Table 2 shows part of the Attribute table. The

Element column has the same meaning as that in the

Construction table. In the Required column, the

symbol “＊” indicates that the atomic element to the

left, Main, must be provided. In the Repeatability

column, the symbol “ ◎ ” specifies that the

corresponding element, Other, can have more than

one occurrence. In the Attribute column, the Menu

indicates that the value of the corresponding atomic

element should be selected from a predefined

pull-down menu displayed on the monitor. The

Provider column describes that the value of an atomic

element of the Element is to be filled in by a human

or generated automatically by the digital archive

system.

Table 3 shows part of the DC-correspondence

table. It gives the mapping between the metadata

schema and the Dublin Core standard. For example,

each of the four atomic elements corresponds to Title

defined by the Dublin Core.

3 Metadata Schema in XML
As a markup language, XML has self-defined tags,

and thus is flexible and extensible. It has the merit of

easy change of document structure and content, and

Element Alias Data Type Size

Main 主要名稱 Varchar 50

Type 類型 Varchar 20

Name 名稱 Varchar 50

Title

Other

Remarks

品

名 其

他
備註 Varchar 50

WSEAS TRANSACTIONS on COMPUTER RESEARCH Yen-Chun Lin, Hsiang-An Wang,
Chien-Chung Huang and Wei Chen

ISSN: 1991-8755 Issue 4, Volume 3, April 2008
204

Table 3. Part of the DC-correspondence table

is well suited for describing data with a complex

structure [9]. Since a metadata schema usually is

complex, has many items, and is subject to change,

XML is suited to representation of metadata

schemas.

Therefore, instead of using Tables 1-3, we use the

XML document shown in Fig. 1 to include essentially

the same information. Line 2 shows that the Project

element has a Name attribute with value Woodslip.

This information is beyond the scope of the three

tables and represents the project name with which the

metadata schema associates. Lines 3-6, for example,

show metadata schema elements Title and Main;

XML attributes are used to represent metadata

schema element attributes: Alias, Data Type, and

Size of Main, as well as other related information.

In order to store and manage XML documents

efficiently and to reduce the complexity of software

development, an appropriate database management

system is required. Two main categories of database

systems are usually used to store XML documents.

One is XML-enabled relational database systems,

and the other is native XML database systems [12].

The former must map XML schemas into relational

database schemas. Before being saved in the

database, XML documents are transformed based on

a mapping rule. A drawback of this approach is the

loss of comments and the order of elements.

Moreover, if the structure of XML documents is

modified, the mapping must be redefined, which is

usually time-consuming. Even worse, it is generally

difficult, if not impossible, to retrieve and recover

from the relational database the original XML

document with a complex structure.

In contrast, the native XML database has several

benefits. It is intended for storing XML documents;

an XML document is a basic unit of storage. With

such a database, no schema mapping is needed.

Hence, we may access XML documents with their

original structures and contents intact. Using an

XML document as a basic storage unit enables the

flexibility of changing metadata schema structure.

Therefore, we use a native XML database to store

XML documents.

<?xml version="1.0" encoding="Big5"?>

<Project Name="Woodslip" Creator="admin" Public="Y">

<Title Alias="品名“ Required=“ ” Repeatability=“ “ >
<Main Alias=“主要名稱” Data_Type=“Varchar” Size=“50”
Required=“＊” Repeatability=“ “Attribute=“ ”
Provider=“填表者” DC-Element=“Title”>
</Main>

<Other Alias="其他" Required=“ ” Repeatability="◎">
<Type Alias=“類型” Data_Type=“Varchar” Size=“20”
Required=“ ” Repeatability=“ “ Attribute=“Select_List”

Provider=“填表者” DC-Element=“Title“>
</Type>

<Name Alias=“名稱” Data_Type=“Varchar” Size=“50”
Required=“ ” Repeatability=“ “ Attribute=“ ”

Provider=”填表者” DC-Element=“Title”>
</Name>

<Remarks Alias=“備註” Data_Type=“Varchar”
Size=“50” Required=“ ” Repeatability=“ “ Attribute=“ ”

Provider=”填表者” DC-Element=“Title”>
</Remarks>

</Other>

</Title>

</Project>

 Fig. 1. Metadata schema of Tables 1-3 and related
information described in XML.

4 Architecture of the Metadata

Schema Repository
Fig. 2 shows the architecture of our metadata schema

repository. It consists of three tiers: Web browser,

Web server, and native XML database system. Web

browsers serve as the user interface, and no plug-ins

or other application programs are required at the

client side.

Metadata schemas

(XML documents)

Database

Web server

Metadata schema

searching

Metadata schema

creation

Access management

Web

browser

Fig. 2. Architecture of metadata schema repository.

Element Dublin Core Element

Main Title

Type Title

Name Title
Title

Other

Remarks Title

WSEAS TRANSACTIONS on COMPUTER RESEARCH Yen-Chun Lin, Hsiang-An Wang,
Chien-Chung Huang and Wei Chen

ISSN: 1991-8755 Issue 4, Volume 3, April 2008
205

The Web server acts as an intermediary between

the Web browser and database. The Web server

performs the main functions of the metadata schema

repository. Apache Tomcat is used to build the Web

server by performing Java servlets and JavaServer

Pages (JSP) [13]. The repository is developed with

Java SDK, JSP, and Java API for XML Processing

(JAXP) [14]. JAXP is a Java XML application

programming interface, which provides the

capability of validating and parsing XML documents.

The native XML database system is based on the

open-source eXist [15]. The system supports XQuery

to query XML documents directly [16]. The database

stores existing, well-known metadata schemas,

including standards such as Dublin Core and

Categories for the Description of Works of Art [17],

as well as newly created metadata schemas.

5 Functions and Operations of

Repository
The metadata schema repository consists of the

following three main functions.

(1) Metadata schema retrieval.
It retrieves metadata schemas that match

a keyword such as an element name.

Queries are transformed into the

XQuery statements to retrieve metadata

schemas from the database. The

schemas in XML are translated into

HTML and displayed on the Web

browser.

(2) Metadata schema creation.
Users can create new metadata schemas

from scratch or by modifying existing

ones in the repository. Created schemas

can be saved to the repository or to

personal computers.

(3) Metadata schema access management.
Access to metadata schemas is

classified. Unauthorized users are not

allowed to retrieve, modify, or delete

any data.

The user interface of the metadata schema

repository is shown in Fig. 3. It consists of three

areas. On the north-west corner is the Function Area,

which displays the functions available to users:

Browse Metadata Schema, Search Metadata Schema,

and Create Metadata Schema. Users can click to use

them.

The Operation Area, located to the right of the

Function Area, enables users to provide input data

after choosing a function. The Schema Area,

occupying most of browser window, is for displaying

a metadata schema, which is retrieved from the

repository or is being created.

We now consider the functions provided by the

Function Area. To view a schema, users can click

Browse Metadata Schema to scan through all

schemas in the repository. Alternatively, they can

click Search Metadata Schema and enter a keyword

to search for matched metadata schemas. Users can

also click Create Metadata Schema to build a new

metadata schema from scratch.

The Operation Area enables the user to enter a

keyword and select Project Name, Element Name,

Alias, Data Type, Size, or DC-Element field name

from a pop-up menu to retrieve all the metadata

schemas that have a field name matching the

keyword. For example, suppose a user enters the

keyword Title and chooses Element Name from the

pop-up menu, and this request is sent to the Web

server. The Web server then translates the request

into the XQuery language to fetch the corresponding

XML documents from the database. The search result

displayed in the Schema Area, for example, is shown

in Fig. 4.

The metadata schema creation process is shown in

Fig. 5. After logging into the repository, users can

choose either to create from scratch or to modify an

existing schema. To create from scratch, users must

first enter the project name and the element name to

create a root element. Alternatively, to create by

using an existing metadata schema, users must first

select a metadata schema. After that, users can

choose an element to add a subelement, modify

contents, or delete an element. When the

modification is completed, the schema can be saved

with a new name into the repository.

To modify an existing metadata schema, the user

has to click Create Metadata Schema in the Function

Area shown in Fig. 3, and then clicks Modify

Metadata Schema that appears in the Operation Area.

After that, all schema names are shown in the

Operation Area, and the user chooses a metadata

schema to use. The contents of the metadata schema

are then shown in the Schema Area. The user can

click a hyperlinked element below Element Name to

modify. A “★” is prefixed to the clicked element. For

example, the Submit element in Fig. 6 has been

selected.

Three buttons of Add, Modify, and Delete below

the selected element are used to add a new

child-element to this element, modify contents of the

element, or delete the element. Their operations are

described in the following.

(1) Add a child-element.
The user first clicks the Add button to

display a form (Fig. 7) in the operation

WSEAS TRANSACTIONS on COMPUTER RESEARCH Yen-Chun Lin, Hsiang-An Wang,
Chien-Chung Huang and Wei Chen

ISSN: 1991-8755 Issue 4, Volume 3, April 2008
206

Operation Area

Function Area

Schema Area

Fig. 3. User interface of the metadata schema repository.

Fig. 4. Result of searching for metadata schemas with Title in Element Name.

WSEAS TRANSACTIONS on COMPUTER RESEARCH Yen-Chun Lin, Hsiang-An Wang,
Chien-Chung Huang and Wei Chen

ISSN: 1991-8755 Issue 4, Volume 3, April 2008
207

Fig. 5. Metadata schema creation process.

area. After entering the element name

and filling in the form, the user presses

the Submit button to generate a

child-element.

(2) Modify an element.
The user clicks the Modify button in Fig.

6 to show the contents of an element

(Fig. 8) in the operation area for

modification. Clicking the Modify

button in Fig. 8 will save the changes.

(3) Delete an element.
Clicking the Delete button deletes the

element.

In addition to the functions mentioned above, the

user can search for a specific element and add the

element to be a new element of the new metadata

schema. For example, after selecting the Submit

element, the user can click Add New Element By

Search Result (Fig. 6), and then search for metadata

schemas with Citation element name. Fig. 9 shows

the result of searching for the Citation element name.

The element, as well as each of its children, has an

Add button beside it. The user can click any Add

button to add an element to become a new

child-element of element Submit.

Fig. 6. The Submit element selected for update.

Create from scratch

or by modifying?

Retrieve schema

from repository

Modify an existing

metadata schema
Create from

scratch

YN

Create root

element

Modify

metadata schema?

Select an

element

Modify

Save into repository

WSEAS TRANSACTIONS on COMPUTER RESEARCH Yen-Chun Lin, Hsiang-An Wang,
Chien-Chung Huang and Wei Chen

ISSN: 1991-8755 Issue 4, Volume 3, April 2008
208

Fig. 7. A form for adding a new child-element.

Fig. 8. A form for modifying an existing element.

Fig. 9. Result of searching for the Citation element name.

<?xml version="1.0" encoding=“Big5"?>

<Storage_Place Alias="典藏位置" Repeatability="" >

<Name Alias="名稱" Data_Type="Varchar" Size="30" Required="＊" Repeatability=""

Attribute="Select_List" Provider="Person" DC-Element="Description" > </Name>

<Number Alias="編號" Data_Type="Varchar" Size="30" Required="＊" Repeatability=""

Attribute="Select_List" Provider="Person" DC-Element="Description" > </Number>

</Storage_Place>

Fig. 10. An XML document.

WSEAS TRANSACTIONS on COMPUTER RESEARCH Yen-Chun Lin, Hsiang-An Wang,
Chien-Chung Huang and Wei Chen

ISSN: 1991-8755 Issue 4, Volume 3, April 2008
209

Fig. 11. A table displayed on the browser based on the XML document shown in Fig. 10.

6 Translating XML into HTML
XML documents are not suited for the human to read.

To view them with a Web browser, we need to

translate the XML data into HTML. Taking the XML

document in Fig. 10 as an example, we want to

display it as the table shown in Fig. 11 on the

browser. Fig. 11 is in fact generated by the browser

from the HTML data shown in Fig. 12, which is

translated from the XML document shown in Fig. 10.

The upper and lower parts of Fig. 11 correspond to

the upper and lower parts of Fig. 12, respectively.

To produce the upper part of Fig. 12, we need to

set the value for the three colSpan attributes in the

<td> tags for the three columns named Element

Name, Alias, and Repeatability. This is because the

elements in these columns are hierarchical. The <td>

tags for the other columns Data Type, Size, Required,

Attribute, Provider, and DC-Element do not have the

colSpan attribute. We found that the value of colSpan

equals the number of layers in the XML document.

As Fig. 10 shows, the root element, which is

Storage_Place, is at layer 1. When an element has at

least a child element, the number of layers grows by

1. Clearly, from Fig. 10 we can see the number of

layers of this XML document is 2. Therefore, each of

the three values of the colSpan attributes in Fig. 12

has been set to 2.

To produce the lower part of Fig. 12, we need to

set the value for the rowSpan attribute in the <td>

tags for three elements, such as Storage_Place. This

is because the three elements are hierarchical. We

noticed that the value of rowSpan equals the number

of child-elements of the element. As Fig. 10 shows,

the element Storage_Place has two child-elements

Name and Number. Therefore, as shown in Fig. 12,

the value of rowSpan in <td> tag of Storage_Place,

for example, is 2.

The program that translates the XML document

into HTML is written with the Document Object

Model (DOM) [18] package from JAXP. DOM is a

<table border="1">

<tr>

<td bgColor="#c0c0c0" colSpan="2">Element Name</td>

<td bgColor="#c0c0c0" colSpan="2">Alias</td>

<td bgColor="#c0c0c0">Data Type</td>

<td bgColor="#c0c0c0">Size</td>

<td bgColor="#c0c0c0">Required</td>

<td bgColor="#c0c0c0" colSpan="2">Repeatability</td>

<td bgColor="#c0c0c0">Attribute</td>

<td bgColor="#c0c0c0">Provider</td>

<td bgColor="#c0c0c0">DC-Element</td>

</tr>

<tr>

<td rowSpan="2">Storage_Place</td>

<td>Name</td>

<td rowSpan="2">典藏位置</td>
<td>名稱</td>
<td>Varchar</td>

<td>30</td>

<td>＊</td>
<td rowSpan="2"> </td>

<td> </td>

<td>Select_List</td>

<td>Person</td>

<td>Description</td>

</tr>

<tr>

<td>Number</td>

<td>編號</td>
<td>Varchar</td>

<td>30</td>

<td>＊</td>
<td> </td>

<td> </td>

<td> </td>

<td>Description</td>

</tr>

</table>

 Fig. 12. HTML data translated from the XML

document shown in Fig. 10 to display

the table shown in Fig. 11.

WSEAS TRANSACTIONS on COMPUTER RESEARCH Yen-Chun Lin, Hsiang-An Wang,
Chien-Chung Huang and Wei Chen

ISSN: 1991-8755 Issue 4, Volume 3, April 2008
210

language-neutral interface that enables a program to

dynamically access and update XML documents. The

translator needs to count the number of layers and the

number of child-elements of each element and then

finds out the name of each element to create the

HTML file.

7 Conclusions
For easing the creation of metadata schemas of

digital archives, we have presented an XML structure

to represent the metadata schema, and designed and

implemented a metadata schema repository to store

metadata schemas as XML documents in a native

XML database. The metadata schema repository

supports analysis, creation, storage, search, and

access management of metadata schemas. The

repository can contribute to sharing and reusing of

metadata schemas over the Internet, and serve as a

centralized portal for reusing and creating metadata

schemas. A user can access it through any Web

browser. Ultimately, the repository is useful for fast

construction of digital archive systems.

Since the metadata schema must be displayed on a

Web browser, we need to translate the XML

representation of metadata schema into the HTML

version. For this, we have also presented the key to

such a translation.

Some further research directions are as follows.

(1) Intelligent mechanism to help metadata

schema construction.

When the need for more metadata

schemas increases, it is desirable to

have an intelligent mechanism to

automatically analyze the

characteristics of each element and the

relations between elements of metadata

schemas. Thereby, suggestions for

metadata schemas can be offered. Users

should find these suggestions useful in

constructing metadata schemas. The

good tool should be continuously

improved based on feedbacks from

users.

(2) Performance evaluation of the metadata

schema repository.

When a repository contains many

metadata schemas, we should find out

the performance bottleneck, if any. We

can test whether the metadata schema

repository can efficiently support many

concurrent user operations.

(3) XML-based digital archive systems.

At present, most digital archive systems

use a relational database system to store

data. Thus, data structures and

programs must be modified when the

metadata schema changes. This would

require a large amount of time and

effort. If we store metadata in XML

documents, we can increase the

flexibility of data structures to lower

the cost of maintenance.

Acknowledgment

This research was supported in part by the National

Science Council of Taiwan under contract

NSC 94-2422-H-011-001.

References:

[1] L. Dempsey, ROADS to desire: Some UK and

other European metadata and resource discovery

projects, D-Lib, Vol. 2, 1996, http://

www.dlib.org/dlib/july96/07dempsey.html.

[2] R. Wendler, LDI update: Metadata in the library,

Harvard University Library Notes, 1999, pp.

4-5, http://hul.harvard.edu/publications/hul_

notes_pdfs/HULN_1286.pdf.

[3] L.M. Chan, M.L. Zeng, Metadata

interoperability and standardization － A study

of methodology, Part I: Achieving

interoperability at the schema level, D-Lib, Vol.

12, 2006, http://www.dlib.org/dlib/june06/

06contents.html.

[4] Y.-N. Chen, S.-J. Chen, S.C. Lin, A metadata

lifecycle model for digital libraries:

Methodology and application for an

evidence-based approach to library research, in

Proceedings of 69th IFLA General Conference

and Council, Berlin, Germany, 2003,

http://www.ifla.org/IV/ifla69/papers/141e-Chen

_Chen_Lin.pdf.

[5] M. Nagamori, T. Baker, T. Sakaguchi, S.

Sugimoto, K. Tabata, A multilingual metadata

schema registry based on RDF schema, in

Proceedings of International Conference on

Dublin Core and Metadata Applications, Tokyo,

Japan, 2001, pp. 209-212.

[6] R. Heery, P. Johnston, C. Fülöp, A. Micsik,

Metadata schema registries in the partially

Semantic Web: the CORES experience, in

Proceedings of Dublin Core Conference,

Seattle, WA, 2003, pp. 11-18.

[7] Dublin Core Metadata Initiative,

http://dublincore.org/.

[8] W3C, Resource Description Framework (RDF),

http://www.w3.org/RDF/.

WSEAS TRANSACTIONS on COMPUTER RESEARCH Yen-Chun Lin, Hsiang-An Wang,
Chien-Chung Huang and Wei Chen

ISSN: 1991-8755 Issue 4, Volume 3, April 2008
211

[9] E.R. Harold, W.S. Means, XML in a Nutshell,

3rd ed., O'Reilly, Sebastopol, CA, 2004.

[10] Metadata Architecture and Application Team,

Guideline for Metadata System Analysis and

Specification, http://www.sinica.edu.tw/

~metadata/news/md_spec-diy_v0-6.pdf.

[11] Metadata Architecture and Application Team,

Han Dynasty Wooden Slips Metadata

Requirement Specification, http://www.sinica.

edu.tw/~metadata/project/filebox/stone-HangJa

n/stone_HangJan_spec_v1-0.pdf.

[12] R. Bourret, Native XML databases in the real

world, in Proceedings of XML 2005 Conference

& Exhibition, Atlanta, GA, 2005,

http://www.idealliance.org/proceedings/xml05/s

hip/58/Native_XML_Databases.PDF.

[13] J. Brittain, I.F. Darwin, Tomcat: The Definitive

Guide, O'Reilly, Sebastopol, CA, 2003.

[14] Java API for XML Processing (JAXP),

http://java.sun.com/xml/jaxp/index.jsp .

[15] A.B. Chaudhri, A. Rashid, R. Zicari, XML Data

Management: Native XML and XML-Enabled

Database Systems, Addison-Wesley, Boston,

MA, 2003.

[16] W3C, XQuery 1.0: An XML query language,

http://www.w3.org/TR/xquery/.

[17] M. Baca, P. Harpring, Categories for the

Description of Works of Art (CDWA), http://

www.getty.edu/research/conducting_research/st

andards/cdwa/.

[18] W3C, Document Object Model (DOM),

http://www.w3.org/DOM/.

WSEAS TRANSACTIONS on COMPUTER RESEARCH Yen-Chun Lin, Hsiang-An Wang,
Chien-Chung Huang and Wei Chen

ISSN: 1991-8755 Issue 4, Volume 3, April 2008
212

