
 1

Hardware IP for Scheduling of Periodic tasks in

Multiprocessor Systems

HABIBULLAH JAMAL and ZEESHAN A. KHAN

Department of Electrical Engineering

University of Engineering and Technology, Taxila

Pakistan

drhjamal@uettaxila.edu.pk, zakhanpk@yahoo.com

Abstract: - The article presents an Intellectual Property (IP) for scheduling of multiprocessor

systems that is designed using FPGA. The purpose of the IP is to minimize the processor time

for scheduling activity by implementing the functionality in hardware. The algorithm

implemented clusters the similar tasks on the same processor. Processors not in use are switched

to power saving mode and they are only turned on if there is no other processor to take on the

required activity.

Key-words: - FPGA, Hardware scheduler, multiprocessor systems, real-time systems,

scheduling algorithm.

1 Introduction

A Real-Time Operating System (RTOS)

allows processing of real-time applications

in an optimal and timely manner. In an

embedded multiprocessor system, RTOS is

required to schedule the activities of the

processors. Real time systems are

categorized as hard real time and soft real

time systems. Hard real time is a property

related to the timeliness of a computation in

the system. A hard real time constraint in

the system is one for which there is no

value to a late computation and the effects

of a late computation can be catastrophic to

the system. A soft real time system can

tolerate some late answers to soft real time

computations [1].

A real-time operating system (RTOS) must

guarantee that scheduling is done feasibly

given sufficient capacity is available [2]. A

hardware Intellectual Property (IP) can be

used for implementing the scheduling,

inter-process communication (such as

semaphores) and time management control

(such as time ticks and delays) from the

software OS-kernel to hardware unit. [3]. In

this way, overhead can be significantly

reduced by migrating kernel services to

hardware. This will significantly improve

the response time by increasing the CPU

utilization [2].

In the area of real-time systems, scheduling

algorithms have been implemented in

hardware [4, 5]. Most of the hardware

implementations have used only one

scheduling criterion [6] while few of them

have proposed dynamic reconfiguration to

include more than one scheduling criteria

implementation [7].

Here, our target is to design and implement

multiprocessor hardware scheduler to be

used in VoIP applications where several IPs

for voice encoders/decoders have been

developed and we schedule different tasks

so that similar tasks are clustered onto one

processor/IP increasing its average

utilization.

The paper consists of four sections. In the

second section, multiprocessor hardware

WSEAS TRANSACTIONS on COMPUTER RESEARCH Habibullah Jamal and Zeeshan A. Khan

ISSN: 1991-8755 131 Issue 3, Volume 3, March 2008

 2

scheduler architecture is presented. In the

third section, implementation and

experimental results for the coprocessor are

discussed. Finally, the fourth section

concludes the paper.

2 Multiprocessor Hardware

Scheduler

Multiprocessor hardware scheduler (MHS)

is designed to handle the scheduling of non-

resident tasks in multiprocessor systems.

Non-resident task is the one whose code is

fetched from the specified memory

location. Our scheduler is designed for

scheduling onto four homogenous

processors with similar computational

capacity.

The architecture consists of a processor

selection controller which selects the

processor such that tasks of similar type are

scheduled on same processor so that code

fetches are minimized and memory does

not becomes the bandwidth bottleneck.

The block diagram of the architecture is

shown in Figure 1. Main components of the

scheduler are:

1) Task Table

2) Processor Selection Controller

3) Processor’s Task Queue

4) Processor Status Table

Fig. 1: Block Diagram of Multiprocessor

Hardware Scheduler

2.1. The Task Table

The architecture consists of a task queue

that contains the input tasks with respect to

their deadline time. Each task table entry is

of 32 bits and architecture can support a

maximum of 500 task entries in its table.

This determines the maximum number of

task entries that will be processed by the

scheduler. The input task table entry

contains all the information necessary

during the scheduling process such as worst

case execution time (WCET), task type and

memory location of non-resident tasks. The

format is shown in Figure 2. Our scheduler

supports up to five types of tasks. That is

why, each task is specified by 3 bits and 5

bits specify worst-case execution time in

number of clock cycles. All the tasks are

non-resident tasks so the code is to be

fetched from the 24 bit memory location

specified in the input task entry.

Fig. 2: Input Task Format

2.2. The Processor Selection Controller

Once a task table entry is given as an input

to the processor selection controller, the

controller selects the optimal processor

queue. If the current task is specified by the

type PRESENT, then the controller

prioritizes the processors with respect to

descending number of PRESENT tasks

present in their queues. All the processors

are searched for the required time slot with

respect to the mentioned priority. If no slot

is found in the highest priority processor

queue, it abandons the search on that

processor queue and the next processor

queue is searched for the time slot. Once

the required slot on a processor queue is

found, it abandons the search and schedules

WSEAS TRANSACTIONS on COMPUTER RESEARCH Habibullah Jamal and Zeeshan A. Khan

ISSN: 1991-8755 132 Issue 3, Volume 3, March 2008

 3

the task on that time slot. The main theme

of the algorithm is to minimize the number

of code fetches by scheduling the tasks of

same type onto one processor.

2.3. The Processor’s Task Queue

Each processor task queue contains the

tasks that are to be scheduled on that

particular processor. We can have a

maximum of 50 task entries in the queue of

each processor. Once a processor completes

the execution of a task, the next task in the

queue is scheduled on the processor. This

way the processing of all the tasks in the

queue continues in a first-in, first-out

manner.

2.4. The Processor Status Table

The processor status table helps in making

the right decision for selecting the

processor. It is basically a storage element

that contains information for number of

tasks of each type present in the queue of

each processor. A typical entry of the table

is shown in Figure 3. The data of status

table is updated when a task is either

removed or entered in the queue of the

processor.

Fig. 3: Processor Status Entry Format

3 Implementation and

Experimental Results

The architecture described in previous

section is successfully synthesized and

simulated using Xilinx ISE and ModelSim.

The results obtained are briefly described in

the following sections.

3.1. Synthesis Results

The prescribed MHS architecture is

implemented using Xilinx ISE tool for

Spartan III xc3s1000 device. For the sake

of synthesis and simulation, five different

types of tasks (namely type A, B, C, D and

E) are supported by the multiprocessor

hardware scheduler those were to be

scheduled on four different processors. The

outcomes of the synthesis are presented in

table 1 and 2, respectively.

TABLE 1

DEVICE UTILISATION SUMMARY

Selected Spartan III Device

3s1000ft256-4

Parameter Utilized Total %age

Utilized

#Slices 284 7680 3%

#Flip Flops 240 15360 1%

#4 input

LUTs

545 15360 3%

#Bonded

IOBs

33 173 19%

#GCLKs 1 8 12%

TABLE 2

MACRO STATISTICS FOR HDL

SYNTHESIS REPORT

#FSM 1

#Registers 20

#Latches 575

#Counters 4

#Shift Registers 44

#Multiplexers 20

#Adders/Subtractors 74

#Comparators 1

3.1. Simulation Results

The synthesized architecture is simulated

using ModelSim and the results show that

similar type of tasks tends to be scheduled

on one processor queue. This is evident

from simulation waveform for 1st

Processor Queue given in Figure 4. This

figure shows that at the present moment

most of the tasks present in the 1st

processor queue are of type D while tasks

of type C and E are also present in

WSEAS TRANSACTIONS on COMPUTER RESEARCH Habibullah Jamal and Zeeshan A. Khan

ISSN: 1991-8755 133 Issue 3, Volume 3, March 2008

 4

minority. Similar pattern is seen on the

queue of other three processors [8].

Figure 5 shows real-time simulation graph

of number of tasks in the queue of each

processor from 0-12.5µsec. The result

clearly shows that fair amount of tasks are

given to each processor so that queue of

any processor does not become the

bandwidth bottleneck.

Fig. 4: Simulation for Input Queue of 1
st

Processor

Fig. 5: Multiprocessor Status Graph

4 Conclusions

A hardware implementation of a scheduling

coprocessor on an FPGA for multiprocessor

system is presented. The hardware

scheduler schedules the task so that code

fetch overhead is minimized by clustering

similar tasks onto one processor. The

performance profile of the algorithm is

promising enough to inspire more work in

this field.

References:

[1] Steve Furr, “What Is Real Time and

Why Do I Need It?” available online at

http://www.qnx.com.

[2] Vincent J. Mooney III and Douglas M.

Blough, “A Hardware-Software Real-Time

Operating System Framework for SoCs,”

IEEE Design and Test of Computers, pp

44-51, November-December 2002.

[3] A. Daleby and K. Ingström, Technical

Reference Manual for RTU Operating

System Accelerator, Västerås, Sweden,

2002.

[4] S. Moon, J. Rexford and K. Shin,

“Scalable hardware priority queue

architectures for high-speed packet

switches,” in Proceedings of IEEE

Transactions on Computer, vol. 49, no.11,

pp.1215 –1227, November 2000.

[5] D. Picker and R. Fellman, “A VLSI

priority packet queue with inheritance and

overwrite,” IEEE Transactions on Very

Large Scale Integration (VLSI) Systems,

vol. 3 no. 2, pp. 245–253, June 1995.

[6] Byung Kook Kim and Kang G. Shin,

“Scalable Hardware Earliest-Deadline-First

Scheduler for ATM Switching Networks,”

in Proceedings of 9th Real-Time Systems

Symposium, December 1997, pp 210-218.

[7] P. Kuacharoen, M. Shalan and V.

Mooney, “A Configurable Hardware

Scheduler for Real-time Systems,” in

Proceedings of International Conference on

Engineering of Reconfigurable Systems and

Algorithms, 2003.

[8] Zeeshan Ali Khan, “A Hardware

Implementation of Scheduling Scheme for

Multiprocessor Systems,” M.Sc. thesis,

Department of Electrical Engineering,

University of Engineering and Technology,

Taxila, Pakistan, 2007.

WSEAS TRANSACTIONS on COMPUTER RESEARCH Habibullah Jamal and Zeeshan A. Khan

ISSN: 1991-8755 134 Issue 3, Volume 3, March 2008

	Text1:
	Text2:
	Text3:
	Text4:

