
Algorithms for data warehouse design to enhance decision-making

ZIYATI ELHOUSSAINE, DRISS ABOUTAJDINE, EL QADI ABDERRAHIM
 Mohammed V University GSCM-LRIT

Agdal-Rabat
MAROC

ziyati@gmail.com
aboutaj@fsr.ac.ma

elqadi@est-umi.ac.ma
http://www.fsr.ac.ma/GSCM/

Abstract: - On-line analytical processing (OLAP) queries are strongly affected by the amount data needed to be
accessed from the disk. Therefore, there is a need to employ techniques that can facilitate efficient execution of
these queries. There has been a lot of work to optimize the performance of relational data warehouses. Among
the two fragmentation techniques, vertical fragmentation is often considered more complicated than horizontal,
it nearly impossible to obtain an optimal solution. Data partitioning concept that has been studied in the context
of relational databases aims to reduce query execution time and facilitate the parallel execution of queries. In
this paper, we develop a new framework based on genetic algorithm for applying the partitioning technique on
relational DW schema (star schema) to minimize the total query execution cost. We develop an analytical cost
model for executing a set of OLAP queries on a partitioned star schema. We conduct experiments to evaluate
the utility of partitioning in efficiently executing OLAP queries. Finally, we show how partitioning can be used
to facilitate parallel execution of OLAP queries.

Key-Words: - Partitioning, warehouse, OLAP queries, Genetic algorithm, penalty function, query optimization.

1 Introduction
Data warehousing applications typically involve
massive and huge data that push database
management technology to the limit, and also using
complex queries due to the presence of join and
aggregate operations. In addition data warehouse
integrate massive amounts of data from multiple
sources and are primarily used for decision support
purposes. They have to process complex analytical
queries for different access forms such as OLAP,
data mining, etc. Ensuring short query response is
enormously difficult and can only be achieved by a
combination of different approaches. Several
techniques were proposed and supported by
commercial systems such as Materialized view,
index, sampling and parallel computing
technologies each technique cited above represents a
research area. Vertical and horizontal [1, 2, 4]
partitioning are two non redundant techniques,
several work and commercial systems show their
utility and impact in optimizing OLAP queries. But
they did not give the same interest to the hybrid or
mixed partitioning. In this paper we will concentrate
on data partitioning aspect and present a new
approach of hybrid partitioning based on genetic
algorithm with and without penalty [6]. The

experiment results using benchmark APB-1 release
II benchmark (consisting of the fact table
ACTVARS and CUSTLEVEL, CHANLEVEL,
TIMELEVEL and PRODLEVEL representing the
dimensions tables) show enhancement of the
process of partitioning in relational data warehouse
environment.

1.1 Contributions and organization of the
paper
The proposed work addresses the problem of a
relational warehouse fragmentation and proposes a
hybrid method (combine horizontal and vertical
fragmentations by a genetic algorithm) that
minimizes the query processing cost. This paper is
divided into six sections: section 2 formulizes the
problems in data warehouse modeled using star
schema. Section 3 presents the genetic algorithms
for the vertical and horizontal fragmentations.
Sections 4 and 5 present an implementation of the
genetic algorithms for both cases (vertical and
horizontal). Section 6 gives the experimental results
and concludes the paper by summarizing the results.

WSEAS TRANSACTIONS on COMPUTER RESEARCH Ziyati Elhoussaine, Driss Aboutajdine and El Qadi Abderrahim

ISSN: 1991-8755 111 Issue 3, Volume 3, March 2008

mailto:aboutaj@fsr.ac.ma

2 Vertical and horizontal
fragmentation problems
Suppose a relational warehouse modeled by a star
schema with d dimension tables and a fact table F.
Among these dimension we consider that g tables
are fragmented ()g d≤ . Each dimension table

is partitioned into fragments:
iD

(1 i g≤ ≤) im

{ }1 2, ,...,
ii i imD D D , where each horizontal

fragment is defined as:ijD ()i
j

ij icl
D Dσ= with i

jcl

and σ (1 ,1 ii g j m≤ ≤ ≤ ≤) represent a
conjunction of simple predicates and the
selection operator, respectively, Thus the
fragmentation schema of the fact table is
defined as follows:

1 2 ...i i i giF F D D D= < < < <> > > > (,)1 ii m≤ ≤

R

with represents the semi jointure operation.
Using Relational algebra, vertical fragment [11]
could be written as for all

<>

() ()
ii attr FF π=

{ }1,..., ii∈ k verticals fragmentation replaces R

by a set { }1,...,F Fv of new relations schema
such that:

1) The attributes are distributed, i.e

1

v

i
i

Fu F
=

=U ,

2) Each relation over is split into
relations

ir iF

()()1,...,
ii Fr r iπ= = v such that

 holds. ...i vr r r= >< ><

3) In relational algebra, 1 ...iF F Fv= ><

In both cases horizontal and vertical the
problem is: Given a set of dimensions tables

{ }1 2, ,..., dD D D D= and a set of OLAP queries

{ }1 2, ,..., mQ Q Q Q= where each query

 has an access frequency. The
problem of horizontal (vertical) fragmentation
consists in determining set dimensions
(attributes) to partition and generate a set of
fragments in order to minimize to total queries
cost. We first present the genetic algorithm
employed in the horizontal and vertical
fragmentation and the impact of introducing the

penalty function into the process of
fragmentation.

(1iQ i m≤ ≤

3 Genetic algorithms
The literature on genetic algorithms is very rich.
There are many variations, but in this section, one
present briefly the definition and concepts of a basic
genetic algorithm. GA is a search algorithm based
on the mechanism of natural selection and natural
genetics and is used to search large, non-linear
search spaces where expert knowledge is lacking or
difficult to encode and where traditional
optimization techniques fall short. A GA works with
a population of individual strings (chromosomes),
each representing a possible solution to a given
problem. In this work each position in the
chromosome may take on one of a finite set of
values, and represents a variable from the user’s
system. Each chromosome (individual) is assigned a
fitness value according to the result of the fitness (or
objective) function. Such highly fit chromosomes
will survive more frequently than other in the
population, and they are given more opportunities to
reproduce and the offspring (child) share features
taken from their parents. For many problems
(manufacturing, communication, neural networks,
etc…) genetic algorithms can often find good
solutions (near-optimal) in around 100 generations.
This can be many times faster than an exhaustive
search approaches. GAs judiciously uses the idea of
randomness when performing a search. However, it
is important to state that genetic algorithm is not a
simply random search algorithm. Indeed, random
search algorithms can be inherently inefficient due
to the directionless nature of their search. GAs are
not directionless. They utilize knowledge from
previous generations in order to construct a new
generation that will approach the optimal solution.
In other words, they use past knowledge to direct
the search. The main input to a simple GA is a set of
all possible points that comprise the search space for
solution. Three basic operations that characterize
GAs are respectively: selection, crossover and
mutation. These operations act on a population in
their search for an optimal solution.

)

GA for vertical fragmentation:

Parameter: Population
1: Begin

2: Generate the initial population ()0G

WSEAS TRANSACTIONS on COMPUTER RESEARCH Ziyati Elhoussaine, Driss Aboutajdine and El Qadi Abderrahim

ISSN: 1991-8755 112 Issue 3, Volume 3, March 2008

3: Repeat

4: 1t t= +

5: ()1() (1)G t UniformCrossover G t← −

6: ()()2 1()G t Mutation G t←

7: () ()2G t G t←

8: Until (termination condition is satisfied)

9: End

3.1 Selection
Selection is a process in which chromosomes are
copied according to their fitness function value.
There are many methods for selecting the best
chromosome, the roulette wheel method is used in
both algorithms: each chromosome is associated
with its fitness value calculated using the cost model
defined later, so the chromosome with high fitness
values has chances to be selected.

3.2 Crossover Operation
The traditional crossover operator randomly by
selecting genes from parent chromosomes. In both
situations we selected a two-point crossover
mechanism to gives the same chances to the
attributes with high and low number of sub domains
(e.g. Season that has 4 sub domains) will have a
probability greater than gender (two sub domains).

Crossover algorithm:

Input: Generation G
Parameter: crossover probability cP
1: Begin

 2: Select pair chromosomes of randomly G
(),i jI I

3: Sample []1,n d∈

 // choose the dimension;
thn

 // in both individuals

4: Sample] [0,1u∈ ;

5: If (then)cu P<

 6: ()(), ()i jswap I m I m
 // change partition

 // value from value thm

 7: End if

8: End

For example:

Fig.1 crossover operation during vertical
partitioning

3.3 Mutation
After a crossover is performed, the resulting
solution might fall into a local optimum. Mutation is
needed to create new genes (according to some user-
defined probability) that may not be present in any
number of a population and enable the algorithm to
reach all possible solutions in the search space.
When creating a new generation by crossover and
mutation the best chromosome might be lost.
Elitism is a method which first copies the best
chromosome (s) to the new population
(from () () 1G t to G t +) and this before
crossover and mutation application. Elitism rapidly
increases the performance of the GA, by preventing
loss of the best-found solution. Example for the
horizontal fragmentation:

WSEAS TRANSACTIONS on COMPUTER RESEARCH Ziyati Elhoussaine, Driss Aboutajdine and El Qadi Abderrahim

ISSN: 1991-8755 113 Issue 3, Volume 3, March 2008

Fig.2

Initial chromosome has 3 fragments concerning
attr2. After mutation process the resulting
chromosome has only 2 fragments, almost the same
for the vertical partitioning, mutation algorithm is:
Input: Generation
Parameter: mutation probability mP
1: Begin

2: choose an individual from G randomly

3: repeat

4: sample] [()0,1m∈

4: If ()mm P<

5: mutate the # fragment

6: end if

7: until number_of_mutation

8: End

For example:

Fig.3

We have in the first case 3 vertical fragments, but,
in the second chromosome we have two (attr1 is
located in site A and attr2 and attr3 in site B). In
the same way, mutations could occur on several
attributes of the individual.

3.4 Genetic algorithm for the mixed
fragmentation
In this section, we discuss an algorithm for
fragmenting a star schema with one fact table
and dimension tables {

F
d }1 2, ,..., dD D D .This

algorithm partitions dimension tables first and
then use their fragmentation schemas to derive
the fragments of the fact table. To partition a
dimension table, we use the selectivity factors,
the frequency of each query accessing this table
and selection predicates defined on this
dimension table. A simple predicate p is
defined by:

 : ip A valueθ
Where is an attribute,iA { }, , , , ,θ ∈ = < ≤ > ≥ ≠ ,

()ivalue Dom A∈ .
The input is to the proposed algorithm are a set
of dimension tables and one fact table, and a
set of most frequently asked OLAP queries

d

{ }1 2, ,..., mQ Q Q Q= with their frequencies. The
main steps of the algorithm are:

• Enumerate all simple predicates used by
OLAP Queries { }1 2, ,..., mQ Q Q

• Assign to each dimension table
()1iD i d≤ ≤ a set of its simple

predicates iDSSP .
• Each dimension table having iDSSP = ∅

can not fragmented.
• Application of COM_MIN algorithm

[16,4] to the simple predicates to
 (where) candidatesD iDSSP ≠ ∅

Starting by the horizontal fragmentation:
For example, Consider two fragmentation attributes
Age and Gender of dimension table customer, the
domain of these attributes are defined as:

()] [0,120Dom age = , () { }' ', ' 'Dom Gender M F=

The domain of this attribute] [(0,120) is then

partitioned into three sub domains:
]]] [11 120,18 , 18, 60d d= = and []13 60,120d = .

WSEAS TRANSACTIONS on COMPUTER RESEARCH Ziyati Elhoussaine, Driss Aboutajdine and El Qadi Abderrahim

ISSN: 1991-8755 114 Issue 3, Volume 3, March 2008

Similarly the domain of Gender attribute is
decomposed into two sub domains:

() 21 22Dom Gender d d= ∪ .Each fragmentation

attributes can be presented by an array with
cells, where corresponds to number of its sub

domains. The values of these cells are between 1
and . If two cells have the same values, then they
will be merged to form only one. The Horizontal
fragmentation will be presented by
multidimensional array (each array present a
fragmentation attributes) [7].

iA

in in

in

For example we define two fragmentations
attributes with there domains figure 1:

Fig.4

An example of a possible solution is:

Age 1 2 1
Gender 1 1

Table 1
In table 1 we can deduce that the fragmentation of
the data warehouse is not performed using the
attribute gender because all its sub domains have
the same value. consequently; the warehouse will be
fragmented using age attribute,

1: '18 ' 60P age age< ∨ > and . 2 :18 60P age≤ ≤
Note that if we define another fragmentation
attribute each fragment is represented by a
conjunctive of simple predicates. Also the
derived horizontal fragmentation is defined as
follow: given a two relation R and , with

containing foreign key of
S

S R let R be
horizontally partitioned into set of

{ }1 2, ,..., mHFs R R R , and then can derived
horizontally partitioned into

S

{ }1 2, ,..., mHFs S S S , where each is given by :

 where
iS

i iS S R= <> ()1 i m≤ ≤ , and is semi
jointure [9]. The proposed coding satisfies the
correctness rules (completeness, reconstruction
and disjointness): the completeness ensures
that all tuples of a relation are mapped into at
least on fragment without any loss. The
completeness of the dimension tables is
guaranteed by the use of COM_MIN algorithm
[16, 8]. The completeness of the derived
horizontal fragmentation of the fact table is
guaranteed as long as the referential integrity

among the dimension tables and the fact table.
The reconstruction ensures that the fragmented
relation can be reconstructible from its
fragments [16]. In our case, the reconstruction
of the fact and the dimension tables are

obtained by union operation

<>

1

N

i
i

F F
=

=U

(Horizontal fragmentation).The disjointness
ensures that the fragments of a relation are non-
overlapping. For the fragments of the fact table,
the disjointness rule is guaranteed by the fact
that any HF of the fact table has to be joined
with only one HF of a dimension.
Then for the vertical fragmentation, we should:

1. Extract attributes from the queries (select
clause).

2. Evaluate the frequency access for each
query.

The most important part to apply GA is
chromosome. As known coding the chromosome is
crucial. To code the VP schema, we adapt the
coding used in HF. Let { }1 2, ,...,

ii mD A A A= be a

dimension table with attributes, where is
the primary key. Each fragmentation scheme
can be presented by an array those cells are
between 1 and . The first cell represents the
first attribute. If two or several cells have the
same values, this means that the attributes from
one vertical fragment. To illustrate this coding:

im 1A

im

The chromosome is presented in table 2 as above
(multi-dimensional arrays) for example:

Product 1 2 1
Client 1 1
Store 1 1 0

 Table 2
In table1 (product dimension), attribute1 and
attribute3 will be in site A and attribute2 in the site
B and so on for other dimensions (Client, Store).
We present a general analytical cost model for
processing a query over unpartitioned and
partitioned warehouse is given [4] as:

() () () ()
jM

1 i 1

Sel
, 1

ipN
F

k k j
j

F L
Cost Q valid Q S

PS= =

⎡ ⎤× ×
⎢ ⎥=
⎢ ⎥⎣ ⎦

∑ ∏

where, jM , ,F L and represent respectively
the numbers of selection predicates defining the

PS

WSEAS TRANSACTIONS on COMPUTER RESEARCH Ziyati Elhoussaine, Driss Aboutajdine and El Qadi Abderrahim

ISSN: 1991-8755 115 Issue 3, Volume 3, March 2008

fact fragment of the sub star schema jS , the
cardinality of the fact table(number of tuples)

,the width, in bytes, of a tuple of a table
and the page size of the file system,

respectively. And also

F
F

() { ()1 if the sub star schema is needed for

0 otherwise, i kS Q
k jvalid Q S = 2

1

m

j
j

Q Cost Q
=

=∑

The total cost of executing a set of queries Q is

given by:TC . () () ()3

The selectivity factors are chosen using an
uniform distributionUD .

3.4.1 Penalty function
During this process so many infeasible solutions
may be found, but ignored, simply because they do
not respect the constraint (e.g. their cost is too large
or space constraint) that why, we should introduce a
penalty function to the fitness function. There are 3
forms:
Subtract Mode (S)

- () () () () ()' f x f x Pen x if f x Pen x= − ≥

- ()' 0 f x otherwi= se
Divide Mode (D)

- () ()
() ()'

f x
f x if Pen x

Pen x
= >1

- () () ()' f x f x if Pen x= ≤1
Subtract and divide mode

() () () () ()' f x f x Pen x if f x Pen x= − >

() ()
() () () ()' 1

f x
f x if Pen x and f x Pen x

Pen x
= > ≤

() () () () ()' 1 f x f x if Pen x and f x Pen x= ≤ ≤

Where

()' : the new objective functionf x

() : the old objective functionf x

() : the penalty functionPen x
There penalty functions also have 3 forms:
Logarithmic penalty (LG):

() ()()2log 1Pen x seuil Sρ= + −
Linear penalty (LN):

() ()1Pen x seuil Sρ= + −

Exponential penalty (EX):
() ()()2

1Pen x seuil Sρ= + −

4 Problem solution
The proposed method for solving this problem of
fragmentation in a relational data warehouse to
minimize the execution time of OLAP queries is a
mixed or combined fragmentation based on
adaptative Genetic Algorithm (in both cases vertical
and horizontal fragmentation):
The algorithm is presented as:

Input:

Set of Queries: Q

Set of a data warehouse dimensions: D

Output: vertical and fragmentation schemes.

Begin

Extract (access frequencies, simple predicates)

Start_horizontal_genetic_fragmentation ()

Start_vertical_genetic_fragmentation ()

// fragment the warehouse horizontally

// using the generated schemes

 // in both cases

end
Figure below describe different step during this
process

WSEAS TRANSACTIONS on COMPUTER RESEARCH Ziyati Elhoussaine, Driss Aboutajdine and El Qadi Abderrahim

ISSN: 1991-8755 116 Issue 3, Volume 3, March 2008

Fig.5 proposed Genetic algorithm schema

5 Experimental performance analysis
In order to analyze and test the performance and
convergence of the genetic algorithms, we use the
dataset from the APB-1 benchmark [3], The star
schema of this benchmark has one fact table Actvars
and four dimensions:

Fig.6 data warehouse schema

Table 3 sizes of tables

This warehouse has been populated using the
generation module of APB1. This warehouse has
been installed under oracle 10g on a Pentium

1.8 GHz (with a memory of 256 Mo, 60Go)
running under windows XP pro. The vertical
fragmentation, programs developed in java, all our
experiments run on Pentium. We have considered a
set of OLAP queries [12]. Each query has selection
predicates, where each one has its selectivity, for
example:

IV

Query 1:

WSEAS TRANSACTIONS on COMPUTER RESEARCH Ziyati Elhoussaine, Driss Aboutajdine and El Qadi Abderrahim

ISSN: 1991-8755 117 Issue 3, Volume 3, March 2008

Query 2:

Query 3:

Query 4:

Query 5:

In the first we compare the case where using only
the horizontal fragmentation and no the case where
no fragmentation figure 7, this result is proved by
[4].

WSEAS TRANSACTIONS on COMPUTER RESEARCH Ziyati Elhoussaine, Driss Aboutajdine and El Qadi Abderrahim

ISSN: 1991-8755 118 Issue 3, Volume 3, March 2008

0

1000

2000

3000

4000

5000

6000

Q1 Q3 Q5 Q7 Q9
Q11

Q13

Horizontal fragmt

No Fragmt

Fig.7
And in figure 8 we study the mixed fragmentation
and its usefulness against horizontal fragmentation.
We can see that it present good solution more than
using only HF.

0

500

1000

1500

2000

2500

3000

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Mixted Fragmt

Horizontal fragmt

Fig.8

Also we want to see the impact of the numbers of
vertical fragments to the performance figure 9.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Q
1

Q
2

Q
3

Q
4

Q
5

Q
6

Q
7

Q
8

Q
9

Q
11

Q
12

Q
13

Q
15

9 Partitions
8 Partitions
7 Partitions

Fig.9

And utility of introducing a penalty function [5, 6]
to some infeasible solutions during the algorithm
figure 10.

0
500

1000
1500
2000
2500
3000
3500
4000
4500

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Horizontal fragmt

Penalizd Mixed fragmt

Fig.10

6 Conclusions
As a network service, a data warehouse system
collects data from different remote data sources and
disseminates high-quality data analysis to decision
makers locally and remotely, also data warehouse
(DWs) become larger and larger make the amount
of the time taken to execute to complex OLAP gets
larger. Hence, there is a need for developing
techniques that can facilitate efficient OLAP query
execution for large DWs. In this regard, we take a
fresh look at data partitioning and show its utility in
efficiently executing OLAP queries. In this paper
we present a complete algorithm for vertical and
horizontal fragmentation using genetic algorithm we
showed that plays a significant role in design of a
data warehouse system using our cost model for
evaluating the cost of frequently queries performed
in a top of the partitioned relational data warehouse
scheme in order to enhance physical design. Our
experiments results show that our method can
provide a significantly better solution than previous
algorithms in terms of minimization of query
processing cost [4, 7]. There are many other future
works especially query nature (use aggregate
function SUM, AVG, COUNT, STDDEV,
VAR…..).

References:
[1] A. Y. Noaman and K. Barker. A horizontal

fragmentation algorithm for the fact relation in
a distributed data warehouse. In the 8th
International Conference on Information and
knowledge Management (CIKM’90),
November 1999, pages 154-161.

WSEAS TRANSACTIONS on COMPUTER RESEARCH Ziyati Elhoussaine, Driss Aboutajdine and El Qadi Abderrahim

ISSN: 1991-8755 119 Issue 3, Volume 3, March 2008

[2] A. Sanjay, V. R. Narasayya, and B. Yang.
Integrating vertical and horizontal partitioning
into automated physical database design.
Proceedings of the ACM SIGMOD
International conference on Management of
Data, June 2004, pages 359-370.

[3] OLAP Council. Apb-1 olap benchmark, release
ii.
http://www.olapcouncil.org/research/bmarkly.h
tml 1998.

[4] L. Bellatreche, K. Boukhalfa, and H. I. abdalla.
Saga: A combination of combination of genetic
and simulated annealing algorithms for
physical data warehouse design. In 23rd British
National Conference on databases, July 2006,
(212-219).

[5] C. Zhang et J. Yang. Genetic algorithm for
materialized view selection in data warehouse
environments. Proceeding of the International
conference on Data Warehousing and
knowledge discovery (DAWAK’99),
September 1999, pages 116-125.

[6] Yu, J. X., C.-H. Choi, et G. Gou (2004),
Materialized view selection as constrained
evolution optimization. IEEE Transactions on
Systems, Man, and Cybernetics, Part 3 33(4),
pp 448-467.

[7] L. Bellatreche, K. Boukhalfa, La fragmentation
dans les entrepôts de données une approche
basée sur les algorithmes génétiques, Revue des
nouvelles Technologies de l’information
(EDA’2005), juin 2005, pages 141-160.

[8] S. Ceri, M. Negri, and G. Pelagatti. Horizontal
data partitioning in database design.
Proceedings of the ACM SIGMOD
International Conference on Management of
Data. SIGPLAN Notices, pages 128–136,
1982.

[9] Z. ELhoussaine, K.boukhalfa, L.Bellatreche
Sélection de structures d'optimisation non
redondantes dans les entrepôts de données
relation. The 8th International Symposium on
programming and Systems (ISPS’2007)

[10] A. Paterson. The design and development of
social science data warehouse: A case study of
the human resources development data
warehouse project of the human sciences
research council, South Africa. Data science
journal, 2:12-24, February 2003.

[11] M. Gorlfarelli, S. Rizzi. Designing the data
warehouse: key steps and crucial issues,
journal of computer science and Information
Management, vol. 2, n. 3, 1999.

[12] A. Gupta, V. Harinarayan, and D. Quass.
Aggregate query processing in data

warehousing environments, Proc. 21st Very
Large Database conf. (VLDB95), 1995, pp.
358-369.

[13] M. Mitchell, S. Forrest and J. Holland. The
Royal Road Algorithms: Fitness Landscapes
and GA Performance. Toward a practice of
autonomous Systems : Proceedings of the first
European Conference on Artificial Life,
Cambridge, MA, MIT Press, 1991.

[14] J.Windom. Research problems in data
warehousing Proceeding of the fourth
International Conference on Information and
Knowledge Management (CIKM), Baltimore,
MD, November 1995,pp. 25-30.

[15] J. Muthuraj, S. Chakravarthy, R. Varadarajan,
and S. B. Navathe, A formal approach to the
vertical partitioning problem in distributed
database design, in Proc. The second
International Conference on Parallel and
Distributed Information Systems, San Diego,
CA, USA, Jan 1993.

[16] M. T. Özsu and P. Valduriez. Principals of
Distributed database. Prentice Hall, 1991.

[17] A. Datta, B. Moon, and H. Thomas. A case for
parallelism in data warehousing and OLAP. In
the 9th international workshop on database and
expert system applications (DEXA98), pages
226-231, August 1998.

[18] L. Bellatreche, M. Schneider, H. Lorinquer,
and M. Mohania, “Bringing together
partitioning, materialized views and indexes to
optimize performance of relational data
warehouses,” Proceeding of the International
Conference on Data Warehousing and
Knowledge Discovery (DAWAK’2004), pp.
15–25, September 2004.

[19] S. Papadomanolakis and A. Ailamaki,
“Autopart: Automating schema design for large
scientific databases using data partitioning,”
Proceedings of the 16th International
Conference on Scientific and Statistical
Database Management (SSDBM 2004), pp.
383–392, June 2004.

WSEAS TRANSACTIONS on COMPUTER RESEARCH Ziyati Elhoussaine, Driss Aboutajdine and El Qadi Abderrahim

ISSN: 1991-8755 120 Issue 3, Volume 3, March 2008

http://www.olapcouncil.org/research/bmarkly.html
http://www.olapcouncil.org/research/bmarkly.html

