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Abstract: - On-line analytical processing (OLAP) queries are strongly affected by the amount data needed to be 
accessed from the disk. Therefore, there is a need to employ techniques that can facilitate efficient execution of 
these queries. There has been a lot of work to optimize the performance of relational data warehouses.  Among 
the two fragmentation techniques, vertical fragmentation is often considered more complicated than horizontal, 
it nearly impossible to obtain an optimal solution. Data partitioning concept that has been studied in the context 
of relational databases aims to reduce query execution time and facilitate the parallel execution of queries. In 
this paper, we develop a new framework based on genetic algorithm for applying the partitioning technique on 
relational DW schema (star schema) to minimize the total query execution cost. We develop an analytical cost 
model for executing a set of OLAP queries on a partitioned star schema. We conduct experiments to evaluate 
the utility of partitioning in efficiently executing OLAP queries. Finally, we show how partitioning can be used 
to facilitate parallel execution of OLAP queries. 
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1 Introduction 
Data warehousing applications typically involve 
massive and huge data that push database 
management technology to the limit, and also using 
complex queries due to the presence of join and 
aggregate operations. In addition data warehouse 
integrate massive amounts of data from multiple 
sources and are primarily used for decision support 
purposes. They have to process complex analytical 
queries for different access forms such as OLAP, 
data mining, etc.   Ensuring short query response is 
enormously difficult and can only be achieved by a 
combination of different approaches. Several 
techniques were proposed and supported by 
commercial systems such as Materialized view, 
index, sampling and parallel computing 
technologies each technique cited above represents a 
research area. Vertical and horizontal [1, 2, 4] 
partitioning are two non redundant techniques, 
several work and commercial systems show their 
utility and impact in optimizing OLAP queries. But 
they did not give the same interest to the hybrid or 
mixed partitioning. In this paper we will concentrate 
on data partitioning aspect and present a new 
approach of hybrid partitioning based on genetic 
algorithm with and without penalty [6]. The 

experiment results using benchmark APB-1 release 
II benchmark (consisting of the fact table 
ACTVARS and CUSTLEVEL, CHANLEVEL, 
TIMELEVEL and PRODLEVEL representing the 
dimensions tables) show enhancement of the 
process of partitioning in relational data warehouse 
environment.    
 
 
1.1 Contributions and organization of the 
paper  
The proposed work addresses the problem of a 
relational warehouse fragmentation and proposes a 
hybrid method (combine horizontal and vertical 
fragmentations by a genetic algorithm) that 
minimizes the query processing cost. This paper is 
divided into six sections: section 2 formulizes the 
problems in data warehouse modeled using star 
schema. Section 3 presents the genetic algorithms 
for the vertical and horizontal fragmentations. 
Sections 4 and 5 present an implementation of the 
genetic algorithms for both cases (vertical and 
horizontal). Section 6 gives the experimental results 
and concludes the paper by summarizing the results.
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2 Vertical and horizontal 
fragmentation problems  
Suppose a relational warehouse modeled by a star 
schema with d dimension tables and a fact table   F. 
Among these dimension we consider that g tables 
are fragmented ( )g d≤ . Each dimension table  

is partitioned into  fragments: 
iD

(1 i g≤ ≤ ) im

{ }1 2, ,...,
ii i imD D D , where each horizontal 

fragment  is defined as:ijD ( )i
j

ij icl
D Dσ=  with i

jcl  

and σ (1 ,1 ii g j m≤ ≤ ≤ ≤ )  represent a 
conjunction of simple predicates and the 
selection operator, respectively, Thus the 
fragmentation schema of the fact table is 
defined as follows: 

1 2 ...i i i giF F D D D= < < < <> > > > (, )1 ii m≤ ≤

R

 
with  represents the semi jointure operation. 
Using Relational algebra, vertical fragment [11] 
could be written as  for all 

<>

( ) ( )
ii attr FF π=

{ }1,..., ii∈ k verticals fragmentation replaces R  

by a set { }1,...,F Fv  of new relations schema 
such that: 

1) The attributes are distributed, i.e 

1

v

i
i

Fu F
=

=U , 

2) Each relation  over  is split into 
relations 

ir iF

( )( )1,...,
ii Fr r iπ= = v  such that 

 holds. ...i vr r r= >< ><

3) In relational algebra,  1 ...iF F Fv= ><

 
In both cases horizontal and vertical the 
problem is: Given a set of dimensions tables   

{ }1 2, ,..., dD D D D=   and a set of OLAP queries 

{ }1 2, ,..., mQ Q Q Q= where each query 

 has an access frequency. The 
problem of horizontal (vertical) fragmentation 
consists in determining set dimensions 
(attributes) to partition and generate a set of 
fragments in order to minimize to total queries 
cost. We first present the genetic algorithm 
employed in the horizontal and vertical 
fragmentation and the impact of introducing the 

penalty function into the process of 
fragmentation. 

(1iQ i m≤ ≤

 
 
3 Genetic algorithms 
The literature on genetic algorithms is very rich. 
There are many variations, but in this section, one 
present briefly the definition and concepts of a basic 
genetic algorithm. GA is a search algorithm based 
on the mechanism of natural selection and natural 
genetics and is used to search large, non-linear 
search spaces where expert knowledge is lacking or 
difficult to encode and where traditional 
optimization techniques fall short. A GA works with 
a population of individual strings (chromosomes), 
each representing a possible solution to a given 
problem. In this work each position in the 
chromosome may take on one of a finite set of 
values, and represents a variable from the user’s 
system. Each chromosome (individual) is assigned a 
fitness value according to the result of the fitness (or 
objective) function. Such highly fit chromosomes 
will survive more frequently than other in the 
population, and they are given more opportunities to 
reproduce and the offspring (child) share features 
taken from their parents. For many problems 
(manufacturing, communication, neural networks, 
etc…) genetic algorithms can often find good 
solutions (near-optimal) in around 100 generations. 
This can be many times faster than an exhaustive 
search approaches. GAs judiciously uses the idea of 
randomness when performing a search. However, it 
is important to state that genetic algorithm is not a 
simply random search algorithm. Indeed, random 
search algorithms can be inherently inefficient due 
to the directionless nature of their search. GAs are 
not directionless. They utilize knowledge from 
previous generations in order to construct a new 
generation that will approach the optimal solution. 
In other words, they use past knowledge to direct 
the search. The main input to a simple GA is a set of 
all possible points that comprise the search space for 
solution. Three basic operations that characterize 
GAs are respectively: selection, crossover and 
mutation. These operations act on a population in 
their search for an optimal solution. 

)
 
GA for vertical fragmentation:  
 
Parameter:  Population 
1: Begin 
 
2:   Generate the initial population  ( )0G
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3:     Repeat  
 
4:   1t t= +
 
5:   ( )1( ) ( 1 )G t UniformCrossover G t← −
 
6:  ( )( )2 1( )G t Mutation G t←  
 
7:   ( ) ( )2G t G t←
 
8:     Until (termination condition is satisfied) 
 
9: End  
 
3.1 Selection 
Selection is a process in which chromosomes are 
copied according to their fitness function value. 
There are many methods for selecting the best 
chromosome, the roulette wheel method is used in 
both algorithms: each chromosome is associated 
with its fitness value calculated using the cost model 
defined later, so the chromosome with high fitness 
values has   chances to be selected. 

 
 

3.2 Crossover Operation 
The traditional crossover operator randomly by 
selecting genes from parent chromosomes. In both 
situations we selected a two-point crossover 
mechanism to gives the same chances to the 
attributes with high and low number of sub domains 
(e.g. Season that has 4 sub domains) will have a 
probability greater than gender (two sub domains).  

 
Crossover algorithm:  
 
Input: Generation  G
Parameter: crossover probability  cP
1: Begin 

      2: Select pair chromosomes of randomly  G
( ),i jI I  

3:  Sample [ ]1,n d∈  

   // choose the dimension; 
thn

   // in both individuals  

4:  Sample ] [0,1u∈ ; 
 
5:   If ( then  )cu P<
 

 6:   ( )( ), ( )i jswap I m I m  
    // change partition  

    // value from  value     thm
 

 7:   End if  
 
8: End  
 
For example:  
 

 
Fig.1 crossover operation during vertical 
partitioning  
 
 

3.3 Mutation 
After a crossover is performed, the resulting 
solution might fall into a local optimum. Mutation is 
needed to create new genes (according to some user-
defined probability) that may not be present in any 
number of a population and enable the algorithm to 
reach all possible solutions in the search space. 
When creating a new generation by crossover and 
mutation the best chromosome might be lost. 
Elitism is a method which first copies the best 
chromosome (s) to the new population 
(from ( ) ( )    1G t to G t + ) and this before 
crossover and mutation application. Elitism rapidly 
increases the performance of the GA, by preventing 
loss of the best-found solution.   Example for the 
horizontal fragmentation: 
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Fig.2 

Initial chromosome has 3 fragments concerning 
attr2. After mutation process the resulting 
chromosome has only 2 fragments, almost the same 
for the vertical partitioning, mutation algorithm is:  
Input:  Generation  
Parameter: mutation probability  mP
1: Begin  
 
2: choose an individual from  G  randomly 
 
3:  repeat 
 
4:   sample ] [( )0,1m∈  

 
4:   If ( )mm P<  
 
5:        mutate the # fragment 
 
6:   end if 
 
7:  until number_of_mutation 
 
8: End  
 
For example: 

 
Fig.3 

We have in the first case 3 vertical fragments, but, 
in the second chromosome we have two (attr1 is 
located in site A  and attr2 and attr3 in site B ). In 
the same way, mutations could occur on several 
attributes of the individual. 
 
 
3.4 Genetic algorithm for the mixed 
fragmentation 
In this section, we discuss an algorithm for 
fragmenting a star schema with one fact table  
and dimension tables {

F
d }1 2, ,..., dD D D .This 

algorithm partitions dimension tables first and 
then use their fragmentation schemas to derive 
the fragments of the fact table. To partition a 
dimension table, we use the selectivity factors, 
the frequency of each query accessing this table 
and selection predicates defined on this 
dimension table. A simple predicate p is 
defined by: 

 :    ip A valueθ  
Where  is an attribute,iA { }, , , , ,θ ∈ = < ≤ > ≥ ≠ , 

( )ivalue Dom A∈ . 
The input is to the proposed algorithm are a set 
of dimension tables and one fact table, and a 
set of most frequently asked OLAP queries 

d

{ }1 2, ,..., mQ Q Q Q= with their frequencies. The 
main steps of the algorithm are:  

• Enumerate all simple predicates used by 
OLAP Queries { }1 2, ,..., mQ Q Q  

• Assign to each dimension table 
( )1iD i d≤ ≤ a set of its simple 

predicates iDSSP . 
• Each dimension table having iDSSP = ∅  

can not fragmented. 
• Application of COM_MIN algorithm 

[16,4]  to the simple predicates to 
 ( where  ) candidatesD iDSSP ≠ ∅

Starting by the horizontal fragmentation: 
For example, Consider two fragmentation attributes 
Age and Gender of dimension table customer, the 
domain of these attributes are defined as:  

( ) ] [0,120Dom age =  , ( ) { }' ', ' 'Dom Gender M F=  

The domain of this attribute ] [( 0,120 )  is then 

partitioned into three sub domains: 
] ] ] [11 120,18 , 18, 60d d= = and [ ]13 60,120d = . 
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Similarly the domain of Gender attribute is 
decomposed into two sub domains: 

( ) 21 22Dom Gender d d= ∪ .Each fragmentation 

attributes  can be presented by an array with 
cells, where  corresponds to number of its sub 

domains. The values of these cells are between 1 
and . If two cells have the same values, then they 
will be merged to form only one. The Horizontal 
fragmentation will be presented by 
multidimensional array (each array present a 
fragmentation attributes) [7]. 

iA

in in

in

For example we define two fragmentations 
attributes with there domains figure 1:  

 
Fig.4 

 
An example of a possible solution is: 

Age  1 2 1 
Gender  1 1  

Table 1 
In table 1 we can deduce that the fragmentation of 
the data warehouse is not performed using the 
attribute gender because all its sub domains have 
the same value. consequently; the warehouse will be 
fragmented using age attribute, 

1: '18 ' 60P age age< ∨ > and . 2 :18 60P age≤ ≤
Note that if we define another fragmentation 
attribute each fragment is represented by a 
conjunctive of simple predicates. Also the 
derived horizontal fragmentation is defined as 
follow: given a two relation R and , with 

containing foreign key of
S

S R let R be 
horizontally partitioned into set of 

{ }1 2, ,..., mHFs R R R , and then can derived 
horizontally partitioned into 

S

{ }1 2, ,..., mHFs S S S , where each  is given by : 

 where 
iS

i iS S R= <> ( )1 i m≤ ≤ , and  is semi 
jointure [9]. The proposed coding satisfies the 
correctness rules (completeness, reconstruction 
and disjointness):  the completeness ensures 
that all tuples of a relation are mapped into at 
least on fragment without any loss. The 
completeness of the dimension tables is 
guaranteed by the use of COM_MIN algorithm 
[16, 8]. The completeness of the derived 
horizontal fragmentation of the fact table is 
guaranteed as long as the referential integrity 

among the dimension tables and the fact table. 
The reconstruction ensures that the fragmented 
relation can be reconstructible from its 
fragments [16]. In our case, the reconstruction 
of the fact and the dimension tables are 

obtained by union operation

<>

1

N

i
i

F F
=

=U  

(Horizontal fragmentation).The disjointness 
ensures that the fragments of a relation are non-
overlapping. For the fragments of the fact table, 
the disjointness rule is guaranteed by the fact 
that any HF of the fact table has to be joined 
with only one HF of a dimension.  
Then for the vertical fragmentation, we should:  

1. Extract attributes from the queries (select 
clause). 

2. Evaluate the frequency access for each 
query.  

The most important part to apply GA is 
chromosome. As known coding the chromosome is 
crucial. To code the VP schema, we adapt the 
coding used in HF. Let { }1 2, ,...,

ii mD A A A= be a 

dimension table with attributes, where  is 
the primary key. Each fragmentation scheme 
can be presented by an array those cells are 
between 1 and . The first cell represents the 
first attribute. If two or several cells have the 
same values, this means that the attributes from 
one vertical fragment. To illustrate this coding: 

im 1A

im

The chromosome is presented in table 2 as above 
(multi-dimensional arrays) for example: 
 
 
 

Product 1 2 1 
Client 1 1  
Store 1 1 0 

   Table 2  
In table1 (product dimension), attribute1 and 
attribute3 will be in site A  and attribute2 in the site 
B  and so on for other dimensions (Client, Store).   
We present a general analytical cost model for 
processing a query over unpartitioned and 
partitioned  warehouse is given [4] as: 

( ) ( ) ( ) ( )
jM

1 i 1

Sel
, 1

ipN
F

k k j
j

F L
Cost Q valid Q S

PS= =

⎡ ⎤× ×
⎢ ⎥=
⎢ ⎥⎣ ⎦

∑ ∏

where, jM , ,F L and represent respectively 
the numbers of selection predicates defining the 

PS
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fact fragment of the sub star schema jS , the 
cardinality of the fact table(number of tuples) 

,the width, in bytes, of a tuple of a table 
and the page size of the file system, 

respectively. And also   

F
F

 
( ) { ( )1 if the sub star schema  is needed for  

0 otherwise,  i kS Q
k jvalid Q S = 2

1
                  

m

j
j

Q Cost Q
=

=∑

The total cost of executing a set of queries Q is 

given by:TC . ( ) ( ) ( )3

The selectivity factors are chosen using an 
uniform distributionUD . 
 
 
3.4.1 Penalty function  
During this process so many infeasible solutions 
may be found, but ignored, simply because they do 
not respect the constraint (e.g. their cost is too large 
or space constraint) that why, we should introduce a 
penalty function to the fitness function. There are 3 
forms:  
Subtract Mode (S) 

- ( ) ( ) ( ) ( ) ( )'   f x f x Pen x if f x Pen x= − ≥  

- ( )' 0 f x otherwi= se  
Divide Mode (D) 

- ( ) ( )
( ) ( )'   

f x
f x if Pen x

Pen x
= >1 

- ( ) ( ) ( )'   f x f x if Pen x= ≤1 
Subtract and divide mode  

( ) ( ) ( ) ( ) ( )'   f x f x Pen x if f x Pen x= − >  

( ) ( )
( ) ( ) ( ) ( )'   1  

f x
f x if Pen x and f x Pen x

Pen x
= > ≤

 
( ) ( ) ( ) ( ) ( )'   1  f x f x if Pen x and f x Pen x= ≤ ≤

 
Where  

( )'  : the new objective functionf x  

( )  : the old objective functionf x  

( )  : the penalty functionPen x  
There penalty functions also have 3 forms:  
Logarithmic penalty (LG): 

( ) ( )( )2log 1Pen x seuil Sρ= + −  
Linear penalty (LN): 

( ) ( )1Pen x seuil Sρ= + −  

Exponential penalty (EX):  
( ) ( )( )2

1Pen x seuil Sρ= + −  
 
 
4 Problem solution 
The proposed method for solving this problem of 
fragmentation in a relational data warehouse to 
minimize the execution time of OLAP queries is a 
mixed or combined fragmentation based on 
adaptative Genetic Algorithm (in both cases vertical 
and horizontal fragmentation):  
The algorithm is presented as:  
 
 
Input:  

Set of Queries:   Q

Set of a data warehouse dimensions:   D

Output: vertical and fragmentation schemes. 

Begin  

Extract (access frequencies, simple predicates)  

Start_horizontal_genetic_fragmentation () 

Start_vertical_genetic_fragmentation () 

// fragment the warehouse horizontally  

// using the generated schemes     

 // in both cases 

end 
Figure below describe different step during this 
process 
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Fig.5 proposed Genetic algorithm schema 

 
 
5 Experimental performance analysis 
In order to analyze and test the performance and 
convergence of the genetic algorithms, we use the 
dataset from the APB-1 benchmark [3], The star 
schema of this benchmark has one fact table Actvars 
and four dimensions:  
 

 
Fig.6 data warehouse schema 

 
Table 3 sizes of tables 

This warehouse has been populated using the 
generation module of APB1. This warehouse has 
been installed under oracle 10g on a Pentium 

1.8 GHz (with a memory of 256 Mo, 60Go) 
running under windows XP pro. The vertical 
fragmentation, programs developed in java, all our 
experiments run on Pentium. We have considered a 
set of OLAP queries [12]. Each query has selection 
predicates, where each one has its selectivity, for 
example: 

IV

 
 
Query 1: 
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Query 2:  

 
 
 
 
 
 
Query 3:  

 
 
 
 
 

Query 4: 

Query 5: 

 
 
 
In the first we compare the case where using only 
the horizontal fragmentation and no the case where 
no fragmentation figure 7, this result is proved by 
[4].  
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Fig.7 
And in figure 8 we study the mixed fragmentation 
and its usefulness   against horizontal fragmentation. 
We can see that it present good solution more than 
using only HF.   
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Fig.8 

Also we want to see the impact of the numbers of 
vertical fragments to the performance figure 9. 
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Fig.9 

And utility of introducing a penalty function [5, 6] 
to some infeasible solutions during the algorithm 
figure 10.  
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Fig.10 

  
 
6 Conclusions 
As a network service, a data warehouse system 
collects data from different remote data sources and 
disseminates high-quality data analysis to decision 
makers locally and remotely, also data warehouse 
(DWs) become larger and larger make the amount 
of the time taken to execute to complex OLAP gets 
larger. Hence, there is a need for developing 
techniques that can facilitate efficient OLAP query 
execution for large DWs. In this regard, we take a 
fresh look at data partitioning and show its utility in 
efficiently executing OLAP queries. In this paper 
we present a complete algorithm for vertical and 
horizontal fragmentation using genetic algorithm we 
showed that plays a significant role in design of a 
data warehouse system using our cost model for 
evaluating the cost of frequently queries performed 
in a top of the partitioned relational data warehouse 
scheme in order to enhance physical design. Our 
experiments results show that our method can 
provide a significantly better solution than previous 
algorithms in terms of minimization of query 
processing cost [4, 7]. There are many other future 
works especially query nature (use aggregate 
function SUM, AVG, COUNT, STDDEV, 
VAR…..).  
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