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Abstract: - This paper presents solutions for increasing environmental robustness of a Romanian language 
continuous speech recognizer, previously developed. All state-of-the-art automatic speech recognizers (ASR) 
are data-driven and rely heavily on huge speech data for estimating the model parameters.  Most of the 
available speech corpora used for this training phase contain clean speech recorded in low noise and 
reverberation free environments with high quality audio equipment. However, in real-world ASR are facing 
various acoustic conditions, speech signal being degraded by noise, reverberations, convolution distortions, etc. 
The acoustic mismatches between the training conditions and testing conditions are the main cause of ASR 
performance degradation. For instance, the word error rate may be an order of magnitude higher in an office 
environment than in a clean laboratory environment. There are a lot of methods and techniques aiming to keep 
the ASR performances at an acceptable in various acoustic conditions. In this paper we are presenting a special 
strategy called multistyle training for building a robust Romanian language ASR system. The method is based 
on training the recognizer with degraded speech signal obtained by adding to clean speech various levels 
artificial noise. Experimental results presented, prove that this scheme strongly increase the system robustness 
to additive noise. The system architecture based on context-dependent HMM phonemes is also described in 
detail. 
 
Key-Words: - continuous speech recognition, environmental robustness, multistyle training, context dependent 
models, hidden Markov models 
 
1   Introduction 
Automatic speech recognition is still a subject for 
scientific research world-wide because it can offer 
cheap solutions in man-machine interaction. The 
recognition performances were increased every year 
in the last decades. A big challenge that both 
commercial and research ASRs have to address is 
the recognition robustness. There are various 
environmental factors that lead to speech signal 
degradation from the time it leaves the mouth until 
it reaches in digital format. 

Most of the speech corpora contain clean speech 
recorded in low-noise reverberation-free conditions 
[7], [8]. Speech recognition systems performances 
trained with clean speech are known to degrade 
significantly in the real world applications [9] due to 
several factors that affect the speech signal such as 
additive noise (fans, air conditioning, door slams, 
keyboard or mouse clicks, etc.) or channel 
distortions (reverberations, microphone frequency 
response, A/D converter input filter, etc). There are 
two important strategies for increasing systems 
robustness: speech enhancement (e.g., spectral noise 

subtraction, echo cancellation) and acoustical 
model-based methods (e.g. adaptation techniques, 
parallel model combination, multistyle training).  

The speech recognizer proposed in this paper is 
based on mainly two environmental methods:  
• Cepstral mean normalization (CMN) – reduces 
convolutive channel distortion 
• Multistyle training – adapts the models to additive 
stationary noise  

Experimental results prove that system 
robustness is greatly improved for a wide range of 
the signal to noise ratio (SNR). Although we have 
modeled white Gaussian noise only, the method can 
be applied for any type of additive noise that could 
corrupt speech in various acoustic environments. 

In this paper, the speech recognizer architecture 
is described first. The Romanian language ASR uses 
phoneme-based hidden Markov models (HMMs) 
with Gaussian distribution. Also a voice activity 
detector is used for real-time recognition in the 
testing phase. Then context-dependent (CD) 
modeling is used for training first order CD HMMs 
(triphones) in order to increase the ASR 
performances. This CD modeling is a very 
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important aspect to be discussed as all recognition 
experiments were performed using both context 
independent (CI) and context dependent models. 
 
 
2   Speech recognizer architecture 
 
 
2.1 Continuous speech recognition 
In the last years, considerable progress in large 
vocabulary continuous speech recognition (CSR) 
has been made [10]. Actual laboratory systems are 
capable of transcribing continuous speech from any 
speaker with average error rates under 5%. If 
speaker adaptation is allowed the error rate could be 
under 1% after few minutes of speech. Most of these 
speech recognizers are based on hidden Markov 
models (HMM) or hybrids HMM-Artificial Neural 
Networks (ANN). Unfortunately, for practical 
systems performances are worse because of 
environmental conditions and the way speakers 
speak.   

Robust spontaneous speech recognition is still an 
elusive goal and actual systems are from far too 
complex for the performances they are deliver [4]. 

In previously published work [1], [2], [11], [19] 
it has been described the Romanian language 
continuous speech recognizer used for experiments 
presented in this paper. The ASR was build using a 
very well known toolkit [5].  

The ASR system presented here [2] is based on 
statistical modeling of time-varying speech 
sequences with a well known and effective 
statistical modeling technique called Hidden 
Markov Model (HMM). The ASR building process 
is shown in Fig.1. 
 

 
Fig. 1 Romanian language ASR 

 

Each Romanian phoneme was modeled with a 
three-state HMM and a left-right topology, using 
multiple-mixture Gaussian continuous distribution 
(Fig. 2). 
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Fig. 2 Left-right topology HMM 
 

The covariance matrices are diagonal in order to 
reduce the resources required for the output 
probability computation [19]. 

The ASR is based on 34 Romanian phonemes. 
First, context-independent HMM are trained and 
tested. Then, embedding expert knowledge about 
Romanian language in the form of phonetic 
questions, a set of context-dependent HMM are 
trained and refined. 

There are few things that have to be mentioned 
regarding Romanian language phonetics. Although 
for most of the world languages, the orthographic 
representation is not phonetic, starting with 1880 
Romanian language became mostly phonetic rather 
than etymologic as it was considered before. Its 
phonetic behavior is similar to the other Romance 
languages like Italian, Spanish, Portuguese, etc. 
 
 
2.2 Voice activity detection 

A very important characteristic of our ASR was 
the capability to perform in real time in order to test 
it in real conditions and to embed it in various 
applications. In order to perform such a task, the 
system needed a voice activity detector (VAD). It 
reduces the continuous speech recognition effort by 
separating the speech/silence parts from speech 
signal. 

The ASR VAD uses a two level algorithm which 
first classifies each frame of data as either speech or 
silence and then applies a heuristic to determine the 
start and end of each utterance.  

The detector classifies each frame as speech or 
silence based only on the log energy of the signal. A 
frame has a length of 20 ms (320 samples, at a 16 
kHz sampling rate). 
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Fig. 3 Real-time voice activity detector applied to 

speech signal 
 

When the energy value exceeds a threshold, the 
frame is marked as speech otherwise as silence. The 
threshold is made up of two components which are 
adjusted automatically within a calibrating 
procedure. The detector is adjusting adaptively its 
parameters from the current acoustic environment 
prior to speech recognition process itself. 
 
 
2.3 Context dependent modeling 
First option in building the ASR is to train context-
independent models (monophones) from the training 
data. The transcription of the wave files is usually 
available at word level. The phonetic dictionary 
makes possible the transcription of the utterances at 
phoneme level. Such context independent 
monophones have the advantage of a good coverage 
of the data (each phoneme occurs few hundred times 
during few minutes of speech). Consequently CI 
models are trainable but they are not consistent. 

The context dependent models ensure a better 
modeling accuracy, but the number of models 
increases heavily and there is much less training 
data for each model. In large vocabulary speech 
recognition, many contexts have only few 
occurrences in the training data that is insufficient 
for a robust parameter estimation of the 
corresponding models; there are also contexts that 
have no occurrence in the training set, the so-called 
“unseen contexts”. To handle these problems, first 
model – based tying was proposed [13]. State tying 
proved to be more efficient [14], [15] so that we 
have also adopted this strategy. The contextually 
equivalent sets of HMM states are determined in our 
approach applying the phonetic decision trees. 

In context independent phoneme modeling each 
word results as a concatenation of the component 
phonemes; therefore a model is necessary for each 
phoneme. The Romanian language has 34 
phonemes, requiring 34 different context-
independent models. 

In current speech, the words are not simple 
strings of independent phonemes: as effect of co 
articulation, the immediate neighbor – phonemes, 

for instance the preceding and the following one, 
affect each phoneme in the word. This immediate 
neighbor – phonemes are called respectively the left 
and the right context; a phoneme constitutes with 
the left and right context a triphone [4] For example 
in the triphone “Z – o + k”, (SAMPA- transcription 
[6] for the Romanian word ”joc”), the phoneme “o” 
has as left context “Z” and as right context “k”. 

For each such a triphone a model must be 
trained: in Romanian that will give a number which 
equals 343 = 39305 acoustic models! The number of 
parameters to be estimated for such a huge system 
became prohibitive. First, for the recognition task 
presented in this paper we have modeled only word 
internal triphones, neglecting the co-articulation 
effect between words. Secondly, a state tying 
procedure conducted to a significant decrease in 
system parameters without loosing the modeling 
accuracy. 

 
 

Fig.4. Triphone State tying  for CI phoneme “a” 
 
If triphones are used in place of single phonemes 

(monophones), the number of needed models increases and 
the problem of insufficient training data arise. One of the 
most efficient solutions for this problem consists in tying the 
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acoustically similar states of the models built for triphones 
corresponding to each context. 

For example, in figure 1, three models are 
representing two different contexts of the phoneme 
“a”, namely the triphones “k – a + S”, “g – a + z”, “n 
– a + j”. One may observe that the acoustically 
similar states are grouped into clusters. The models 
at the logical level are different, but at the physical 
level they partially share their distributions.  In 
Figure 1, for untied states, there are 9 sets of 
distributions for the three triphones, while for the 
tied states, the same triphone share only 5 sets of 
distribution. The number of parameters has been 
reduced still keeping model specificity [20]. This 
tying process is in fact a compromise between the 
system complexity and system specificity. 

 
 

Fig. 5 Phonetic decision tree example 
 
The choice of the states and the clustering in 
phonetic classes are achieved by mean of phonetic 
decision trees [14].  

A phonetic decision tree built as a binary tree, is 
shown in figure 2 and has in the root node all the 
training frames to be tied, in other words all the 
contexts of a phoneme. To each node of the tree, 
beginning with the parent – nodes, is associated a 
phonetic question Qi concerning the contexts of the 
phoneme. Possible questions are, for example: is the 
left context a vowel? (L = vowel?), is the right 
context the phoneme <u> (R = u?); the first question 
designates a class of phonemes while the second 
only a single phonetic element (monotonal). 

Depending on the answer, yes or no, child nodes 
are created and the appropriate speech frames are 
placed in them. New questions are further applied 
for the child nodes, and the frames are divided again.  

The questions are selected in order to increase the 
log likelihood of the data after splitting. Splitting is 
stopped when increasing in log likelihood is less 
than an imposed threshold, leading to a leaf node. In 
such leaf nodes are concentrated all states having the 
same answer to the question made along the path 
from the root node and therefore states reaching the 
same leaf node can be tied as regarded acoustically 
similar. For each leaf node pair the occupancy must 
be calculated in order to merge insufficient occupied 
leaf nodes. 

A decision tree is built for each state of each 
phoneme. The sequential top down construction of 
the decision trees is realized automatically, with an 
algorithm selecting the questions Qi from a large set 
Q of 130 phonetic questions based on phonetic 
knowledge on Romanian language. 
 
 
2.4 Decoding 
The main stages of the Romanian language ASR 
speech recognition process in the testing phase are 
presented in Fig. 6.  

The unknown speech waveform is converted by 
the acoustic front-end into a sequence of acoustic 
vectors consisting in 12 mel-frequency cepstral 
coefficients (MFCC) accompanied by their first and 
second order derivatives. 
 

 
Fig. 6 Continuous Speech Recognition Stages 

 
Phoneme-based context dependent (CD) HMMs 
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considered. A number of 34 Romanian language 
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phoneme-based context independent (CI) models are 
trained in the first stage. 

It is well known that CI models do not capture 
the inherent speech variability mainly due to the co 
articulation effect albeit they are trainable. The 
recognition system is furthermore refined and first 
order CD models (triphones) are trained.  
 
 
3   The acoustical environment 
In practice, real world speech differs from clean 
speech, being degraded by the acoustical 
environment, which could be defined as the 
transformations that affects speech from the time it 
leaves the mouth until it is in digital format. A 
recognition system is called robust if its accuracy 
does not significantly degrade under mismatched 
conditions. There are two classes of environmental 
factors that could corrupt speech:  

- Additive noise: computer fans, air conditioning, 
door slams, other people speech. 

- Channel distortion: reverberations, frequency 
response of the microphone or analog-to-digital 
converter (CAD). 

In most cases, white noise is useful as a 
conceptual entity, but it seldom occurs in practice. 
Most of the noise captured by microphones is 
colored, since its spectrum is not flat (white). For 
example, pink noise is a particular type of colored 
noise that has a low-pass nature, as it has more 
energy at the low frequencies while rolling of at 
higher frequencies and it could be generated by a 
computer fan or an automobile engine. 

Acoustical environment model is presented in 
Fig. 7, and the relation between corrupted speech 
[ ]my  and clean speech [ ]mx  is given by:  

 
[ ] [ ] [ ] [ ]mnmhmxmy +∗=  (1) 

 
where [ ]mn  is the additive noise and [ ]mh is the 
impulse response of the environment. 
 

 
 

Fig. 7 Acoustical environment model 
 

Regarding the convolution component [ ]mh , the 
most important factors that could affect the digital 
form of the speech are reverberation and microphone 

transfer function. Techniques such as Adaptive Echo 
Cancellation (AEC) have been successfully applied 
for reducing the reverberation.  

In frequency domain, using discrete Fourier 
transform (DFT) in K2  points for digital signals, 
using the short term analysis [17]: 
 

( ) ( ) ( ) ( )
( ) ( ) ( ){ }kkk

kkkk
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*

2222

Re2+

+=  (2) 

 
where Y , X , H  and Z  are DFT of y , x , h  and 
z , respectively. 

The last term of eq. (1) may be neglected as x  
and z  signals may be considered statistically 
independent. In practical computing of the speech 
signal parameters, a bank of M  filters is used, so 
that we may consider that:  
 

( ) ( ) ( ) ( ) MifZfHfXfY iiii ,1,2222 =+≅ (3) 
 
where i is the bank filter index. 

It is important to notice that we assumed the filter 
impulse response length ][nh  is smaller than the 
analysis window length N2 . That is why ASR 
systems obtain poor results in rooms with long 
reverberation time, such as empty rooms with sound 
reflecting walls. 

For MFCC analysis, on the logarithmic scale, it 
can be proved that: 
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Most of the ASR systems are using cepstral 

coefficients, so that we can evaluate the effect of 
these distortions on the speech signal distorted by 
both noise and reverberations. 

We define c  as the discrete cosines transform 
(DCT) operator that is applied to the log-spectrum of 
a particular signal passed through the bank filter 
mentioned above. Signal vectors 1+M  sized are 
given by: 
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It is defined the non-linear function ( )⋅g : 
 

( ) ( )( )( )ww cCCcg 1exp1ln −+=  (6) 
 

We can identify: 
 

( ) ( ) ( )( )( )( )
( )hxz

iii

cccg
fYfYfZC

−−

=−−+ 222 lnlnlnexp1ln  (7) 

 
From   eq. (5), (6) and (7) results: 

 
( )hxzhxy cccgccc −−++=  (8) 

 
This formula emphasize the fact that the distorted 

speech signal MFC coefficients (MFCC) are a 
combination of the MFC coefficients of the 
following signals: clean speech signal, environment 
impulse response function and noise signal [22]. 

It is well known the fact that MFCC of the 
speech signal, xc  have a Gaussian distribution.[18] 

Obviously, one may observer from eq. (8) that 
MFCC of the speech signal distorted by the acoustic 
environment is not Gaussian anymore, because of 
non-linearity of the ( )g  function. 

Assuming the case of no-reverberation, we may 
simplify the eq. (8) :  
 

( )( )xzxy cccc −++= exp1ln  (9) 
 

 
 

Fig.8 Modeling distorted signal with Gaussian 
mixtures. 

 

Both  xc  and zc  are assumed to have normal 
distribution. Monte Carlo simulation performed 
proved that for small variances of the speech MFCC 
comparing to noise MFCC,  yc  has normal 
distribution. For state of the art ASRs this condition 
is met as they are working with mixtures of 
Gaussians. The variances of the mixtures are 
comparable with noise variances [17]. 

The emission distribution of the HMM of 
Romanian language ASR presented in this paper are 
modeled by Gaussian mixtures (Fig. 8). 

The microphone is also very important for the 
speech acquisition. Head-mounted, close-talking 
microphones are recommended for most of the 
speech recognition system as they capture less of the 
surrounding noise (Fig. 9). 

In order to eliminate the speech variability caused 
by different digital-analog converters (DAC), it 
could be included within the head-set and connected 
by USB. Another promising strategy for speech 
acquisition is to use array of microphones. The idea 
is to use more than one microphone, estimate the 
relative phase of the signal arriving to each of the 
element array and than to compute the angle of the 
arrival. After locating the speaker, all other 
perturbing signals arriving from other directions or 
distances are rejected. The major drawbacks of the 
multi-microphone systems are that they require 
additional computation to enhance speech and, on 
the other hand, they also need special hardware 
(multiple microphones input). 

 
Fig. 9 Microphones used for speech recognition: 
array (a), USB close-talking (b), close-talking(c), 

desktop (d) 
 
In order to reduce the serious mismatch between 

the training and test conditions that often causes 
dramatic degradation of the accuracy of the 
recognizers, three major categories of techniques are 
used: 

- Inherently robust parameters for speech, such 
as Perceptual Linear Prediction (PLP) 
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- speech enhancement including AEC, noise 
spectral subtraction (NSS) [12], algorithms based on 
arrays of microphones 

- model based methods for noise compensation  
In this paper we are presenting experimental 

results for model based techniques. The major 
problem for the speech recognizer is the mismatch 
between the training data (usually, noise-free high 
quality speech) and test data (environmental 
conditions).  

 
 
Fig. 10 MFCC vs. time for a) clean speech (SNR>40 

dB) and b) corrupted speech (SNR=10 dB) 
 

In order to simplify the problem we have referred 
especially to the additive noise. The simplest 
approach for this problem is to train the system with 
the same signal-to-noise ration (SNR) as in the test 
condition. 

The training data may be easily processed by 
adding to the clean speech noise artificially 
generated with the same distribution as the noise 
from the test conditions. Consequently, noisy 
MFCCs are generated (Fig.10). 

Experiments presented here prove that such a 
matched system performs quite well, much better 
than the system trained with clean speech, anyway. 
This simple strategy works only if the test conditions 
are known and stationary but fails in any other 
situations.  

Classical adaptation techniques such as 
Maximum Posterior Probability Estimation (MAP) 
or Maximum Likelihood Linear Regression (MLLR) 
could be used to adapt a clean, speaker-independent 
recognizer to a particular speaker or to a particular 
environment. After few thousands of adaptation 
phrases, the recognition system is adapted to the new 
condition. Adaptation to new conditions approaches 
are time consuming and sometimes the applications 
don’t allow them.  

In order to increase the environmental robustness 
of the Romanian language continuous speech 
recognizer we have adopted the so called multistyle 
training. Various SNR phrases are produced by 
adding artificial noise to the clean speech and then 
the system is trained with the whole collection. 

4   Experimental results 
4.1 Romanian language continuous 
speech recognizer 
The speech recognizer has an architecture that is 
described by Fig.1. The acoustical front-end 
provides 12 mel-frequency cepstral coefficients 
(MFCC) for each frame of 25 ms, at 100 frames/s 
rate. Prior to signal parameterization input signal is 
preemphasized by a filter with the transfer function: 
 

( ) 197.01 −−= zzH  (9) 
 

Each frame is weighted by a Hamming window. 
Acoustic vectors are augmented by the first and 
second variation coefficients. 

For acoustical modeling we have used phone-
based HMMs with three states in a left-right 
topology. Continuous Gaussian output distribution 
with diagonal variance matrices has been adopted. 
CI models parameters for all 34 Romanian language 
phonemes were estimated. 

The main steps of the training procedure for the 
context independent models are: 

- HMM initialization - all models are identical 
- Baum-Welch parameter re-estimation: 3 to 5 

iterations (a threshold of 0.01 in log-likelihood was 
used for convergence) for composite models 

- Viterbi forced alignment: when the training 
dictionary contain multiple pronunciations, the one 
with the best alignment score is selected 

- Baum-Welch parameter re-estimation: 3 to 5 
iterations. 

Then, in order to increase the system accuracy, 
first-order context-dependent (CD) models, the so-
called triphones, have been also trained. We used 
phonetic decision trees in order to cluster acoustical 
similar states in a top-down fashion based on data 
likelihood criteria. Expert knowledge from 
Romanian language phonetics has been used by 
means of over 130 phonetic questions in order to 
determine contextually equivalent classes of HMM 
states. Training stage was based on uniform model 
initialization with the global speech mean and 
variance. Models are than differentiated by the well-
known embedded Baum-Welch procedure.  

Time-synchronous Viterbi beam search was the 
strategy for decoding the unknown utterances. 
Pruning the search space by beam search was very 
useful for reducing the computation time.  

 
4.2 Romanian language continuous 

speech recognizer 
The HMMs have three emitting states plus two 

confluent non-emitting states. The entry state and 

 

 b) 

a) 
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the exit state are the glue in building up the 
composite HMM needed for parameter estimation. 
The output distribution for each emitting state 
determines the likelihood of the observation data 
generated by that state. In our case, we have 
considered single Gaussian continuous density 
probability function. 

Within the HMM paradigm, both training and 
recognition procedures require estimation of the 
“best” state sequence. For training this is needed to 
form new estimates of the model parameters and for 
recognition the likelihood of the path is used to 
decide between alternative recognition hypotheses. 
The state sequence and its likelihood can be found in 
one of two ways: probabilistically, using total 
likelihood and deterministically using maximum 
likelihood.  

Probabilistic state sequence estimation consists 
in computing the total likelihood of a single 
utterance. Consequently we can find the posterior 
probability for each observation to be generated by 
each state. This posterior probability for a state j  to 
be occupied at a given time t  is called occupancy 
and the well-known forward-backward algorithm [1] 
can compute it. It is computed with the formula: 

( )
L

tt
OOOjtxt jj

Tj
)()(

,...,)(Pr)( 21
βα

γ
⋅

===  (8) 

where iO  is the observation vector at time i , L   
is the total likelihood of the data, i.e : 

( )TOOOL ,...,Pr 21=    (9) 
and )(tiα , )(tjβ  are the forward and backward 

probability, respectively. 
Once, the γ  coefficients are computed, there is a 

need for finding some better estimates of the model 
parameters. By the Baum-Welch procedure the 
increase in the total likelihood of the observation 
data, L  is granted [14]. 

 For the training process we need not only 
the acoustical data (vectors extracted from the 
speech form) but also the associated phonetic 
transcription. Most of the speech corpuses provide 
transcription for the acoustical data at the word 
level. Phonetic transcription can be achieved 
automatically using a pronunciation dictionary. The 
basic unit for the training data is the sentence (or 
phrases) uttered by one speaker, also called 
utterance. Regarding the phonetic transcription there 
are two distinct situations:  
 a) Training data is segmented, i.e. the 
phonetic transcription contains also information 
about the class (words or phonemes) boundaries; 

b) Training data in un-segmented, i.e. class 
boundaries are not known. 

 
 
For language modeling (LM), a loop-grammar 

(Fig. 11.) was adopted, as it is known to be the most 
difficult task. The reason for choosing this uniform 
unigram LM is that the system is sensible to any 
improvements in acoustic modeling.  

 
 

Fig. 11 N-words loop grammar 
 

Recordings were performed with a good 
quality microphone in noise-free conditions, with a 
SNR > 40 dB.  This clean system has an word error 
rate (WER) of 14,84 % for monophones and 10,04% 
for triphones.  
 
 
4.3 Increasing system robustness 
The clean system (trained with clean speech) WER 
has seriously degraded when we have tested it in 
mismatch conditions.  

For both training and test data we have generated 
different SNRs phrases in a range between 0 and 25 
dB. We have made three groups of experiments for 
both triphones and monophones: 

Clean system: trained with clean speech tested 
for each SNR 

Matched systems: trained and tested with the 
same SNR 

Multistyle training: trained with all phrases 
(clean + various SNRs) and tested for each SNR 

Although the first situation (a) is not met so often 
for speech corpuses because segmentation and 
labelling is a laborious time-consuming procedure, 
usually performed manually, in our experiments on a 
Romanian Language speech corpus, we have 
segmented a small number of utterances and used 
them for initialization of phoneme-based HMMs. 

For most of the continuous speech recognition 
tasks and corpuses like Resource Management 
(RM), Wall Street Journal (WSJ), etc. there is a huge 
amount of acoustical training and testing data, 

W1 

W2 

WN 

. 

. 

. 
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consisting in thousands of sentences spoken from 
tens of speakers, covering hundreds of hours of 
speech. Segmenting speech data for such tasks is an 
overwhelming process, only a small part of the 
corpus having class boundary information. 

 
 

 
Fig. 12. Initialization scheme within continuous 

speech recognizer architecture  
 
In this paper we have used phoneme boundaries 

information for initialization the HMM, covering a 
small percentage (10%) from the whole database. 
The experiments were performed on a Romanian 
Language corpus consisting in over 4000 utterances 
spoken by 11 speakers.  

We will describe now the initialization process. 
We modeled each Romanian phoneme with a three-
state HMM with a left-right topology, using single-
mixture Gaussian continuous distribution. The 
covariance matrices are diagonal in order to reduce 
the resources required for the output probability 
computation. 

The HMM initialization is based on the concept 
that the models are the generators of the speech 
vectors. Every training example can be viewed as 
the output of a HMM whose parameters are to be 
estimated.  

The first method used for initialization of the 
models is based on the fact that phoneme boundaries 
are known, so an initial training is performed for 
each HMM separately. If the state that generated 
each vector in the training data was known, then the 
unknown means and variances could be estimated by 
averaging all the vectors associated with each state. 
Similarly, the transition matrix could be estimated 

by counting the number of time slots that each state 
is occupied. The main steps could be seen in Fig. 3. 

The process is performed in an iterative fashion. 
First the training data corresponding to a single 
model is uniformly segmented and each successive 
segment is associated with successive state. Of 
course this makes sense only for the left-right 
topology, otherwise another approach has to be used 
(for ergodic models). 

The second method for HMM initialization is 
based on making all the models identical initially 
and then performing embedded training as described 
in section IV. The idea is simple: the global speech 
(i.e. all training utterances) mean and covariance is 
computed and these values are used to initialize the 
entire set of HMMs, consequently all these being 
identical. Further, embedded training is used in order 
to differentiate models. 

After the models were initialized by one of the 
methods presented above, the main training 
procedure for building the phoneme based system 
revolves around the concept of embedded training. 
Unlike the initialization, embedded training 
simultaneously updates all of the HMMs in a system 
using all of the training data. We will further 
describe this process. First, a complete initialized set 
of HMMs is loaded. Any training utterance has an 
associated phonetic transcription in which only the 
sequence of modeled is taking into account, 
boundary information (if any) being ignored. That 
means segmented data could also be used in 
embedded training.  

Every utterance is processed in turn as fallows: 
the sequences of models provided by the phonetic 
transcription are used to construct a composite 
HMM by concatenating instances (Fig. 4) of the 
phone based HMMs. Then, the forward-backward 
algorithm is applied and the sums needed to form the 
weighted averages are accumulated. 

When all the utterances have been processed, the 
new parameters estimates are formed from the 
weighted sums and the updated HMM set is now 
available for a new iteration. A very important 
remark is when the system is flat (after second 
initialization method) a uniform segmentation is 
assumed. 

The mathematical details of embedded Baum-
Welch re-estimation are given in [14]. 

For each re-estimation iteration, there is a good 
practice to monitor the performance of the models 
on the test data and stop training when no further 
improvements are obtained. In our experiments we 
have traced the average of the log-likelihood per 
frame, and established a stop iteration threshold of 
0.1. 

Training data 
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Fig. 13. Initialization HMM algorithm based on 

segmented training data 
 
We have found that 2 to 5 iterations are enough 

when training phones models and increasing this 
number of iterations has some drawbacks: 

- Computation time is longer 
- Over-training can occur (models can become 

to closely matched to the training data and 
fail to generalize well on unseen data) 

 
Table 1 WER for the clean system 

Word error rate Signal to 
noise 
ratio CI CD 

0 94,65 97,56
3 96,30 96,20
5 96,30 95,77
12 88,00 84,23
10 83,00 77,00
13 70,14 66,50
15 66,86 53,99
17 53,33 44,20
20 39,62 29,67
22 34,44 20,33
25 22,86 19,15
30 19,02 15,66

>40 14,84 10,04

In Table 1, one may see that the clean system 
performances are significantly degrading as the SNR 
is decreasing. Obviously, such a system is not robust 
at all, having a 30 - 40 % WER for normal room 
conditions with a SNR of 20 dB.  

In Table 2 are presented the experimental results 
for the matched systems and multistyle trained 
system.  

 

Table 2 WER for matched and multistyle systems 

CI-HMM CD-HMM 
SNR Multi-

style 
Matche
d 

Multi-
style 

Matched

0 72,11 46,95 71,55 42,91 
5 51,08 34,93 32,77 26,29 
10 32,02 26,76 15,96 19,72 
15 21,97 19,91 9,01 17 
20 19,53 17,93 8,36 14,08 
25 20,85 15,31 8,64 12,68 
>40 33,43 14,84 10,05 10,04 

 
Comparative plots are given in Fig. 14 and 15 for 

all experiments conditions included both CI and CD 
models, respectively. 

Fig.14 WER vs. SNR, for clean system, multistyle 
training and matched systems (monophones) 

 
Fig.15 WER vs. SNR, for clean system, multistyle 
training and matched systems (triphones) 
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Comparative to the matched systems, multistyle 
training does not require knowledge of the specific 
noise level and thus is a viable alternative to the 
theoretical lower bound of matched conditions. 

One could see the multistyle trained system is 
clearly more robust than the clean system, being 
almost as good as the matched system. For the 
monophone case (Fig.14.), the multistyle system has 
the best performance in 15-25 dB range as it was 
trained with 0,5,10,15,20,25 and >40 dB. 

The same behavior has the multistyle system for 
the triphone case (Fig.15.) except that WER is 
biased below the matched system. Because of the 
diversity of the training data, the resulting multistyle 
trained system is more robust to varying noise 
conditions. 
 
5 Conclusion 

In this paper we have presented some solutions 
for increasing the robustness of a Romanian 
language continuous speech recognizer previously 
developed. ASR system is based on phoneme HMM 
in either context independent or context dependent 
form.  

We have presented the architecture of the ASR 
system insisting on few important aspects such as: 
continuous speech recognition, voice activity 
detection for real time applications and context 
dependent modeling. HMM is state-of-the art 
technology that offers very good performances for 
continuous speech recognition having powerful tools 
for parameters estimation (such as embedded Baum-
Welch procedure) and for speech decoding (Viterbi 
beam search).  

By using context dependent models, ASR word 
error rate decreases significantly as they are 
capturing the inherent phoneme variability in speech 
signal (caused by co-articulation). The procedure for 
triphone training uses phonetic questions for 
building binary decision trees. This includes expert 
knowledge about phoneme characteristics, specific 
to Romanian language. The context-dependent 
models generated are more specific (but less 
trainable) but with a better accuracy in speech 
recognition. In our experiments the best WER was 
19,53% for CI models and 8,36% for CD models, in 
the case of multistyle training, proving a relative 
decrease with more than 100%. 

According to the aspects presented in the 
initialization stage, we may conclude that flat start 
initialization of HMM followed by embedded 
training is good enough (even better than the 
initialization using segmented speech) to initialize 
and train the phone models.  

Comparing the results for the presented 
initialization methods flat start conveys to better 
performance than the hand-labelled segmentation in 
terms of word recognition rate (WRR), for M system 
the gain is 4,3 percents absolute and 6,75% relative 
while for F system the gain is 3,8% absolute and 
8,49% relative. The results could be explained by 
the fact that only 10% from the training data was 
segmented and used for the first method. This 
quantity seems to be not enough for best 
performance, while the uniform segmentation after 
the second initialization method realizes a partial 
alignment for enough phonemes from the training 
utterance. Then, in the subsequent iterations, the 
models align as intended. Consequently, there is no 
need for class boundary information in order to 
initialize each model independently. 

It is well known that several environmental 
factors could affect recognition performances in real 
world applications. In most cases they are critical 
and the system accuracy is degrading in mismatch 
conditions. In order to keep the system accuracy 
even for high levels of additive noise, we have 
adopted the so called multistyle training. The ASR 
system is trained with utterances affected by various 
levels of artificial additive white Gaussian noise. 
Consequently, the level of SNR of the training 
phrases was within a specific range encountered in 
real situations: 0 to 25 dB. The system was expected 
to have good performances in these conditions for 
testing phrases. The experiments proved that very 
good error rate was obtained at the half of that range 
while decreasing at the ends. Still the multistyle 
trained system had very good results comparing to 
the clean system (trained only with noise free speech 
signal) but slightly worse than the matched systems 
that offer a generally lower bound for the WER.  

The main advantage of the multistyle training 
strategy over the matched systems is that it needs 
only one single ASR that is capable to keep his 
accuracy in a wide range of SNR. The matched 
systems are distinct ASRs trained for every specific 
condition, requiring more memory resources and an 
additional procedure for SNR estimation in order to 
select the proper recognition system. 
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