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Abstract:
In this article we construct different pseudo-random sequences using cellular automata where the local tran-

sition functions are based on balanced functions which are obtained from bent functions.
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1 Introduction
Pseudo-random number sequences are needed in

many important applications, such as Monte Carlo
techniques, Brownian dynamics, and stochastic op-
timization methods. Cellular automata (CA) offer a
number of advantages over other methods as random
number generators such as algorithmic simplicity and
easy hardware implementation.

Cellular automata were first introduced by von
Neumann and later by Wolfram [11] as simple models
for physical, biological and computational systems.
CA have previously been used as encrypting devices
by Wolfram [13] and by Nandi, Kar and Chaudhuri
[3]. Gutowitz [2] and Guam [1] used CA for public-
key cryptography.

The pseudo-random sequence generator based on
CA has been extensively studied in the last decades.
In 1986, Wolfram [13] first applied CA in pseudoran-
dom number generation. After, other authors as Hort-
ensius, Tsalides, Sipper and Perrenoud used the CA to
generate the pseudorandom sequences used in cryp-
tography [6, 9, 14]. But those methods are based on
artificial methods to construct CA rules. The main dis-
advantage of those methods is that they are involved
in large tedious work. Another valid method is intro-
duced by Sipper and Tomassini [6], they used genetic
algorithm to find the best CA randomizer rules auto-
matically. A series of research work has been done to
generate pseudo-random sequences.

In this article, we construct pseudo-random se-

quence generator using a one-dimensional finite CA
where the local transition functions are based on bal-
anced functions which are obtained from bent func-
tions. The use of bent functions can generate more
security due to their good cryptographic properties.

The rest of the paper is organized as follows. In
Section 2 we introduce some basic concepts about cel-
lular automata, pseudo-random sequences generators,
and bent functions and the notation we will use. In
Section 3 we describe three different pseudo-random
sequence generators based on cellular automata and
in Section 4 we present some of our main results. Fi-
nally, we provide some conclusions in Section 5.

2 Preliminaries
In this section we introduce the main concepts re-

lated to cellular automata, pseudo-random sequence
generators and bent functions.

2.1 Cellular Automata
Cellular automata were originally conceived by

Ulam and von Neumann in the 1940s to provide a for-
mal framework for investigating the behavior of com-
plex, extended systems [10, 7]. A cellular automa-
ton is a discrete dynamical system. Space, time, and
the states of the system are discrete. Each point in a
regular spatial lattice, called a cell, can have any one
of a finite number of states. The states of the cells
in the lattice are updated according to a local rule.
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That is, the state of a cell at a given time depends
only on its own state one time step previously, and
the states of its nearby neighbors at the previous time
step (see [12, 8]). All cells on the lattice are updated
synchronously. Thus the state of the entire lattice ad-
vances in discrete time steps.

The most used CA are finite and one-dimensional.
More precisely, a one-dimensional finite CA can be
defined as a 4-tuple A = (C,S, V, f). C is the cellu-
lar space formed by a linear array of m cells; each cell
is denoted by 〈i〉, 0 ≤ i ≤ m−1. S is the (finite) state
set, that is, the set of all possible values of the cells;
usually, if the CA considered is finite with k states,
then S = Zk. V is the set of cells which states in the
instant t influence in state of the cell considered in the
instant t + 1; in this work and for the particular case
of the one-dimension CA, we will consider for every
cell 〈i〉 ∈ C, its neighborhood Vr as the ordered set
given by

Vr = {〈i− r〉, . . . , 〈i〉, . . . , 〈i + r〉}.

Moreover, the local transition function f :
S(2r+1) → S is the function determining the evolu-
tion of the CA throughout the time, i.e., the changes
of the states of every cell taking the states of its neigh-
bors into account; hence, if a

(t)
i ∈ S stands for the

state of the cell 〈i〉 at time t, and V
(t)
i is the set of the

states of the cell 〈i〉 at that time; the next state of the
cell is given by

a
(t+1)
i = f

(
a

(t)
i−r, . . . , a

(t)
i , . . . , a

(t)
i+r

)
(1)

As the cellular space is finite, boundary conditions
must be established in order to ensure that the evo-
lution of the cellular automata is well-defined.

The set of states of all cells at time t is called the
configuration at time t and it is represented by the
vector

C(t) =
(
a

(t)
0 , a

(t)
1 , . . . , a

(t)
m−1

)
∈ Sn.

In particular, C(0) is the initial configuration. Hence,
the evolution of A is the following sequence(

C(1), C(2), . . .
)

.

If we denote by C the set of all possible configurations
of A, then the global function of A is a linear trans-
formation, Φ : C → C, that yields the configuration
at the next time step during the evolution of the CA;
that is, C(t+1) = Φ(C(t)). If Φ is bijective then there

exists another cellular automaton, A−1, called its in-
verse, whose global function is Φ−1. When such in-
verse cellular automaton exists, A is called reversible
and the evolution backwards is possible (see [][24]).
In general, the evolution of a CA considers that the
state of every cell at time t + 1 depends on the state
of its neighborhood at time t, V

(t)
r . Nevertheless, one

can consider that this evolution also depends on the
states of other cells at times t + 1, t + 2, etc. In this
case, the transition function given in (1) can be repre-
sented in the following way

a
(t+1)
i =

k∑
h=0

f (t−h)V (t−h)
r

where each f (t−h) is a specific local transition func-
tion.

2.2 Pseudo-random sequence generator
Definition 1: A random bit generator is a device or
algorithm, which outputs a sequence of statistically
independent and unbiased binary digits.

A random bit generator can be used to generate uni-
formly distributed random numbers. Random se-
quence generation is difficult to do in computer, since
computers are deterministic devices. Thus, is the
same random generator is run twice on computer,
identical results are received. Random sequence gen-
erator are in used, but they can be difficult to generate.
Because of this difficulties, random sequence genera-
tor in a computer is usually only pseudo-random se-
quence generator (see [15]).

Definition 2: A pseudo-random bit generator
(PRBG) is a deterministic algorithm which, given
a truly random binary sequence of length m, outputs
a binary sequence of length k � m which “appears”
to be random. The input to the PRBG is called the
seed and the output is called a pseudo-random bit
sequence or pseudo-random sequence.

The output of a PRBG is not random, in fact the num-
ber of possible output sequences of length k is at most
all small fraction 2m/2k, as the PRBG produces al-
ways the same output sequence for one (fixed) seed.
The motivation for using a PRBG is that it might
be too expensive to produce true random numbers
of length k, e.g. by coin flipping, so just a smaller
amount of random bits is produced and then a pseudo-
random bit sequence is produced out of the m truly
random bits. Good random properties of the gener-
ator are convenient to prevent statistical attacks; but
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moreover, it is necessary that the generator must be
cryptographically secure.

In order to gain confidence in the “randomness” of
a pseudo-random sequence, statistical tests are con-
ducted on the produced sequences. In our study, we
have considered the seven main statistic tests which
allow us to check, if a generated random or pseudo-
random sequence inhibits certain statistical properties

1. Frequency Test (Monobit Test): The focus of
the test is the proportion of zeros and ones for
the entire sequence. The purpose of this test is
to determine whether the number of ones and
zeros in a sequence are approximately the same
as would be expected for a truly random se-
quence. The test assesses the closeness of the
fraction of ones to ?, that is, the number of ones
and zeros in a sequence should be about the
same. All subsequent tests depend on the pass-
ing of this test; there is no evidence to indicate
that the tested sequence is non-random.

2. Serial Test (Two-bit Test): The purpose of the
serial test is to determine if the number of oc-
currences of 00, 01, 10 and 11 as subsequences
of the tested string are approximately the same,
as expected from a random bit string.

3. Poker Test: Let p be a positive integer such that⌊
k
q

⌋
≥ 5 · (2q), and let r =

⌊
k
q

⌋
. Divide the se-

quence s into r non-overlapping parts each of
length p, and let nj be the number of occur-
rences of the jth type of sequence of length p,
1 ≤ j ≤ 2p. The poker test determines whether
the sequences of length p each appear approxi-
mately the same number of times in s, as would
be expected for a random sequence.

4. Runs Test: The runs distribution test compare
the distribution of the numbers of ones (blocks)
and zeros (gaps) with that expected under ran-
domness. The runs test can be used to sup-
port results from the previous tests. Failure of
the runs test indicates that there is a bad dis-
tribution of runs lengths or that there are no
runs recorded above a certain length that are ex-
pected top occur for streams of the sample size.
The zero frequencies recorded will result in a
higher chi-square statistic thus giving a smaller
significance probability.

5. Autocorrelation Test: The purpose of this test
is to check for correlations between the se-
quence s and (non-cyclic) shifted versions of it.

6. The Linear Complexity Text The linear com-
plexity test checks of the minimum of bits
needed to reconstruct the whole stream. Every
finite stream, s, can be produced by a LFSR.
The length of the shortest LFSR which will pro-
duce the stream is said to be the linear complex-
ity of the stream. If the value of LC is L then 2L
consecutive terms can be used to reconstruct the
whole sequence using the Berlekamp Massey
algorithm. Hence, in order to avoid stream re-
construction, the LC value should be large.

7. Maurer’s Universal Test: The basic idea be-
hind Maurer’s universal test is that it should not
be to possible to significantly compress the out-
put sequence of a random bit generator. Thus,
if a sample output sequence s of a bit genera-
tor can be significantly compressed, the gener-
ator should be rejected as being defective. In-
stead of actually compressing the sequence s,
the universal statical test computes a quantity
that is related to the length of the compressed
sequence.

The above descriptions just give the basic ideas of
the tests.

2.3 Bent functions
A Boolean function of n variables is a mapping

g : Zn
2 −→ Z2. We call the truth table of g the

(0, 1)-sequence of length 2n given by

ξg = (g(u0), g(u1), . . . , g(u2n−1)).

The Hamming distance between two (0, 1)-
sequences α and β, denoted by d(α,β), is the num-
ber of postions where the two sequences differ. If
g(x) and h(x) are Boolean functions and ξg and ξh

are the corresponding truth table, the Hamming dis-
tance between g and h, denoted by d(g, h), is the
Hamming distance between the (0, 1)-sequences ξg

and ξh.
A (0, 1)-sequence is balanced if it contains an

equal number of 0s and 1s; so, a Boolean function
is balanced if its truth table is balanced.

We say that g ∈ Bn is an affine function if it takes
the form

g(x) = 〈a,x〉 ⊕ b

where a ∈ Zn
2 and b ∈ Z2. If b = 0, we say that f is

a linear function.
We define the nonlinearity of a function g ∈ Bn

as
NL(g) = min{d(g, ϕ) | ϕ ∈ An}
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where An is the set of all affine functions. The non-
linearity of g is upper bounded (see [5]) by

NL(f) ≤ 2n−1 − 2
n
2
−1.

We call bent functions the Boolean functions that
achieve the maximum nonlinearity (see [5]). Conse-
quently, bent functions only exist for n even.

The following result (see [4, 5]), that we quote for
further references, gives us a characterization of a bent
function.

Theorem 1: Let g(x) be a Boolean function of n
variables. The following statements are equivalent:

1. g(x) is a bent function.

2. For any a ∈ Zn
2 \ {0}, the Boolean function

g(x)⊕ g(a⊕ x) is balanced.

3. 1⊕ g(x) is also bent function; moreover, this is
the complementary function of g.

3 Models
In this section we present three different pseudo-

random sequence generators based on cellular au-
tomata where the local transition function, f , is gen-
erate from bent functions.

3.1 Model 1
In the first model of pseudo-random sequence

generator, we have considered the CA defined by the
4-tuple A = (C,S, V, f), where

1. C is the cellular space formed by a linear array
of m = 256 cells. Initially, we fix a random
initial configuration vector

C(0) =
(
a

(0)
0 , a

(0)
1 , . . . , a

(0)
m−1

)
.

2. S is the finite set of states k, where S = Zk,
with k = 10000.

3. For every cell 〈i〉 ∈ C, we have taken V2, i.e,
the set given by

V2 = {〈i− 2〉, 〈i− 1〉, 〈i〉, 〈i + 1〉, 〈i + 2〉}

.

4. The local transition function, f , is based on
bent functions in the following way. By The-
orem 1 we know that the function defined by
g(x) ⊕ g(a ⊕ x), for any a ∈ Zn

2 \ {0} being
g a bent function, is balanced. So, in this case,

we take as f this balanced function defined by
bent functions of 4 variables and in some spe-
cific cases we take the complementary function,
1⊕ g(x).

It is well know that in the case n = 4, the
number of bent functions is 896, although we
only consider the half, 448, so that, these are
the main functions, being the rest the comple-
mentary functions.

In each state t for t > 0, we need to take a
bent function, g(x), and a value a to construct
the function g(a⊕x). We fix the bent function
g(x) in the following way. Take the decimal
representation of the configuration at time t−1,
compute it module 448 and add 1; the resulting
number will be in the range of the bent func-
tions, and we consider the bent function associ-
ated to this number. We distinguish two cases
to fix the function f of our CA.

Let a = t mod 2n.

• If a 6= 0, then f(x) = g(x)⊕ g(a⊕ x).

• If a = 0, then f(x) = 1⊕ g(x).

Then we keep the values C(k)(n/2) which gener-
ate the pseudo-random sequence.

3.2 Model 2
In this model and the next, we have taken the same

C, S, V , but change the way to choose the local tran-
sition function f .

Initially we fix a bent function of 4 variables,
g(x), and a value of a inside the range [1, 2n − 1].
Here, we do not distinguish different cases accord-
ing to the state to choose f ; however we always take
as local transition function the balanced function de-
fined by the bent function fixed; that is, f(x) =
g(x)⊕ g(a⊕ x).

With these parameters we generate a different
pseudo-random sequence for each bent function and
for each value of a. As in the previous model, we keep
the values C(k)(n/2) which generate our pseudo-
random sequence.

3.3 Model 3
Finally, this model perform a mixed model using

the previous ones.
First, we fix a bent function of 4 variables, g(x)

and for each function we generate a different pseudo-
random sequence.

We have a different local transition function f ac-
cording to the value a chosen. We take a in the fol-
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lowing way. For l = 0, 1, . . . ,
⌊

k
2n

⌋
a = t mod l(2n − 1)

At the end, we obtain of the same way the pseudo-
random sequence generator.

4 Results
In this section we report the main results that

we have obtained from the three models of pseudo-
random sequence generators explained in the previous
section. We have considered random seed vectors for
the different models. As a minimum security require-
ment the length k of the seed to a PRBG should be
large enough to make brute-force search over all seeds
infeasible for an attacker. The length of the seeds that
we have considered in our work is m = 256.

In the first model, we use all bent functions and
all values of a for each seed. In this case, all the se-
quences that we have obtained for the different seeds
pass all our tests.

In the second model, for each bent function we fix
a value for a and we check some random seeds for
these. In this model and the next, we have taken as
valid functions those that at least six of the ten seeds
pass all the tests. Let us see some particular cases. In
the following table we can observe the percentage of
valid bent functions for ours, for some values of the
as.

a percentage of valid bent functions
1 58%
2 66%
3 56%
9 61%
15 64%

The seeds that we took in these examples were ran-
dom, therefore we have different seeds in each case.
In a future work we will study the behaviour of the
bent functions for the different values of a using the
same seeds.

Studying all cases for the different values of a, we
can bring that around 63% of the bent function pass all
the tests.

In the last model, for each bent function we check
some seeds. In this case we do not distinguish be-
tween the values of a because for each bent function
and for each seed we take all the values of a. The re-
sults that we have obtained are that around 35% of the
bent function pass all the tests.

5 Conclusions
If we observe the previous results it seems to be

that the best model to generate pseudo-random se-
quences based on cellular automata using bent func-
tions is the first model, where we use all bent func-
tions and the different values for a for each seed
taken. However, the others models are worse. Conse-
quently, we can conclude that use a unique bent func-
tion to generate the local transition function of a CA
is worse than work with all or with a big number of
bent functions in the different states.

Now, our research is based on the study of some
particular bent functions that have had good behaviour
in all the models that we have explained, and then to
observe which generate the best results.
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