
About preflow algorithms for the minimum flow problem

LAURA CIUPALĂ ELEONOR CIUREA
Department of Computer Science Department of Computer Science
University Transilvania of Braşov University Transilvania of Braşov

Iuliu Maniu Street 50, Braşov Iuliu Maniu Street 50, Braşov
ROMANIA ROMANIA

laura_ciupala@yahoo.com e.ciurea@unitbv.ro

Abstract: - In this paper, we describe the highest-label preflow algorithm for minimum flow. This algorithm is
a special implementation of the generic preflow algorithm developed by Ciurea and Ciupală in [8], obtained by
imposing in the generic preflow algorithm the rule that the algorithm must always select an active node with the
highest distance label. Our new algorithm runs in O(n2m1/2) time, which is substantially better than the running
time of the generic preflow algorithm, that is O(n2m). Moreover, the highest-label preflow algorithm is the
fastest polynomial algorithm for minimum flow problem.

Key-Words: - Network flow; Network algorithms; Minimum flow problem; Scaling technique

1 Introduction
The literature on network flow problem is extensive.
Over the past 50 years researchers have made
continuous improvements to algorithms for solving
several classes of problems. From the late 1940s
through the 1950s, researchers designed many of the
fundamental algorithms for network flow, including
methods for maximum flow and minimum cost flow
problems. In the next decades, there are many
research contributions concerning improving the
computational complexity of network flow
algorithms by using enhanced data structures,
techniques of scaling the problem data etc.

Although it has its own applications, the
minimum flow problem was not dealt so often as the
maximum flow ([1], [2], [10], [11], [12], [13], [14])
and the minimum cost flow problem ([1], [4], [15]).
There are many problems that occur in economy
that can be reduced to minimum flow problems.

For instance, we present the machine setup
problem. A job shop needs to perform p tasks on a
particular day. It is known the start time π(i) and the
end time π’(i) for each task i, i=1,...,p. The workers
must perform these tasks according to this schedule
so that exactly one worker performs each task. A
worker cannot work on two jobs at the same time. It
is known the setup time π2(i, j) required for a worker
to go from task i to task j. We wish to find the
minimum number of workers to perform the tasks.

We can formulate this problem as a minimum
flow problem in the network G=(N, A, l, c, s, t),
where N=N1∪N2∪N3∪N4, N1={s}, N2={i | i=1,...,p},
N3={i’ | i’=1,...,p}, N4={t}, A=A1∪A2∪A3∪A4,

A1={(s, i) | i∈N2}, A2={(i, i’) | i, i’=1,...,p}, A3=
{(i’, j) | π’(i’)+π2(i’, j)≤π(j)}, A4={(i’, t) | i’∈N3},
l(s, i)=0, c(s, i)=1, for any (s, i)∈A1, l(i, i’)=1,
c(i, i‘)=1, for any (i, i’)∈A2, l(i’, j)=0, c(i’, j)=1, for
any (i’, j)∈A3, l(i’, t)=0, c(i’, t)=1, for any (i’, t)∈A4.

We solve the minimum flow problem in the
network G=(N, A, l, c, s, t) and the value of the
minimum flow is the minimum number of workers
that can perform the tasks.

The minimum flow problem in a network can be
solved in two phases:
(1) establishing a feasible flow, if there is one
(2) from a given feasible flow, establish the
minimum flow.

The problem of determining a feasible flow can
be reduced to a maximum flow problem (for details
see [1]).

For the second phase of the minimum flow
problem there are three approaches:

1. using decreasing path algorithms (see [8],
[9])

2. using preflow algorithms (see [3], [5], [8],
[9])

3. finding a maximum flow from the sink node
to the source node in the residual network
(see [2], [6]).

 The preflow algorithms for the minimum flow

are more efficient than the decreasing path
algorithms. In [8], Ciurea and Ciupală presented a
generic preflow algorithm that runs in O(n2m) time
and a special implementation of it: FIFO preflow
algorithm that runs in O(n3). In [3], Ciupală

WSEAS TRANSACTIONS on COMPUTER RESEARCH

Laura Ciupală, Eleonor Ciurea

ISSN: 1991-8755
35

Issue 1, Volume 3, January 2008

mailto:laura_ciupala@yahoo.com

developed a deficit scaling which is a special
implementation of the generic preflow algorithm for
minimum flow that pulls flow from active nodes
with sufficiently large deficits. This algorithm runs
in O(nm+n2 logC) time.

 In this paper, first we describe the known
algorithms for the minimum flow problem and after
this we introduce the highest-label preflow
algorithm for the minimum flow problem. This
algorithm is a special implementation of the generic
preflow algorithm for minimum flow (described in
[8], [9]). As its name suggests, it always pulls flow
from the active node with the highest distance label
and it runs in O(n2m1/2) time. Consequently, the
highest-label preflow algorithm is the fastest
polynomial algorithm for minimum flow problem.

2 Notation and definition
We consider a capacitated network G = (N, A, l, c, s,
t) with a nonnegative capacity c(i, j) and with a
nonnegative lower bound l(i, j) associated with each
arc (i, j)∈A. We distinguish two special nodes in the
network G: a source node s and a sink node t.

Let n=|N|, m = |A| and C = max { c(i, j) | (i, j) ∈
A}.

A flow is a function f : A →R+ satisfying the next
conditions:

f(s, N) - f(N, s) = v (1)
f(i, N) - f(N, i) = 0, i ≠ s,t (2)
f(t, N) - f(N, t) = -v (3)
l(i, j) ≤ f(i, j) ≤ c(i, j), (i, j)∈A (4)

for some v ≥ 0, where
f(i, N) = Σj f(i, j), i∈N

and
f(N, i) = Σj f(j, i), i∈N.
We refer to v as the value of the flow f.
The minimum flow problem is to determine a

flow f for which v is minimized.
For the minimum flow problem, a preflow is a

function f : A →R+ satisfying the next conditions:
f(i, N) - f(N, i) ≤ 0, i ≠ s,t (5)
l(i, j) ≤ f(i, j) ≤ c(i, j), (i, j)∈A (6)
Let f be a preflow. We define the deficit of a

node i∈N in the following manner:
e(i) = f(i, N) - f(N, i) (7)
Thus, for the minimum flow problem, for any

preflow f, we have e(i) ≤ 0, i∈N \{s, t}.
We say that a node i∈N \{s, t} is active if e(i) < 0

and balanced if e(i) = 0.
A preflow f for which
e(i) = 0, i∈N \{s, t}

is a flow. Consequently, a flow is a particular case
of preflow.

For the minimum flow problem, the residual
capacity r(i, j) of any arc (i, j)∈A, with respect to a
given preflow f, is given by

r(i, j) = c(j, i) - f(j, i) + f(i, j) - l(i, j).
By convention, if (j, i)∉A then we add arc (j, i) to
the set of arcs A and we set l(j, i) = 0 and c(j, i) = 0.
The residual capacity r(i, j) of the arc (i, j)
represents the maximum amount of flow from the
node i to node j that can be canceled. The network
Gf = (N, Af) consisting only of the arcs with positive
residual capacity is referred to as the residual
network (with respect to preflow f).

In the residual network Gf = (N, Af) the distance
function d : N →N with respect to a given preflow
f is a function from the set of nodes to the
nonnegative integers. We say that a distance
function is valid if it satisfies the following
conditions:

d(s) = 0 (8)
d(j) ≤ d(i) + 1, for every arc (i, j) ∈Af. (9)
We refer to d(i) as the distance label of node i.

Theorem 1[3](a) If the distance labels are valid,
the distance label d(i) is a lower bound on the
length of the shortest directed path from node s to
node i in the residual network.

 (b) If d(t) ≥ n, the residual network
contains no directed path from the source node to
the sink node.

We say that the distance labels are exact if for
each node i, d(i) equals the length of the shortest
path from node s to node i in the residual network.

We refer to an arc (i, j) from the residual network
as an admissible arc if d(j) = d(i) + 1; otherwise it is
inadmissible.

We refer to a node i with e(i) < 0 as an active
node. We adopt the convention that the source node
and the sink node are never active.

3 Generic preflow algorithm
This algorithm, developed by Ciurea and Ciupală in
[8], begins with a feasible flow and sends back as
much flow, as it is possible, from the sink node to
the source node. Because the algorithm decreases
the flow on individual arcs, it does not satisfy the
mass balance constraints (1), (2) and (3) at
intermediate stages. In fact, it is possible that the
flow entering in a node exceeds the flow leaving
from it. The basic operation of this algorithm is to
select an active node and to send the flow entering
in it back, closer to the source. For measuring
closeness, we will use the distance labels d(⋅). Let j

WSEAS TRANSACTIONS on COMPUTER RESEARCH Laura Ciupală, Eleonor Ciurea

ISSN: 1991-8755
36

Issue 1, Volume 3, January 2008

be a node with strictly negative deficit. If it exists an
admissible arc (i, j) we pull the flow on this arc;
otherwise we relabel the node j so that we create at
least one admissible arc.

The generic preflow algorithm for the minimum
flow problem is the following:

Generic Preflow Algorithm;
Begin

let f be a feasible flow in network G;
compute the exact distance labels d(⋅) in the
residual network Gf;
if t is not labeled then

f is a minimum flow
else

begin
for each arc (i, t)∈A do

 f(i, t) := l(i, t);
d(t) := n;
while the network contains an active node
do begin

select an active node j;
if the network contains an admissible arc
(i, j) then

pull g = min(-e(j), r(i, j)) units of
flow from node j to node i;

else d(j) := min{ d(i) | (i, j) ∈Af }+1
end

end
end.

A pull of g units of flow from node j to node i

increases both e(j) and r(j, i) by g units and
decreases both e(i) and r(i, j) by g units. We refer to
the process of increasing the distance label of node
j, d(j) := min{ d(i) | (i, j) ∈Af }+1, as a relabel
operation.

Theorem 2 If there is a feasible flow in the network
G = (N, A, l, c, s, t), the generic preflow algorithm
computes correctly a minimum flow.

Proof. The algorithm terminates when the network
does not contain any active nodes, therefore the
current preflow is a flow. Since d(t) := n, the
residual network contains no directed path from the
source node to the sink node and Theorem 1(b)
implies that the obtained flow is a minimum flow.

Actually, the algorithm terminates with optimal
residual capacities. From these residual capacities
we can determine a minimum flow in several ways.
For example, we can make a variable change: For
all arcs (i, j), let

c’(i, j) = c(i, j) - l(i, j),

r’(i, j) = r(i, j),
f’(i, j) = f(i, j) - l(i, j).
The residual capacity of arc (i, j) is
r(i, j) = c(j, i) - f(j, i) + f(i, j) - l(i, j)

Equivalently,
r’(i, j) = c’(j, i) – f’(j, i) + f’(i, j).

We can compute the value of f’ in the following
way:

f’(i, j) = max(r’(i, j) - c’(j, i), 0).
Converting back into the original variables, we
obtain the following expression:

f(i, j) = l(i, j) + max(r(i, j) - c(j, i) + l(j, i), 0).
We refer to a pull of flow from node j to node i

as a canceling pull if it deletes the arc (i, j) from the
residual network; otherwise it is a noncanceling
pull.

Theorem 3 The generic preflow algorithm runs in
O(n2m) time.

Proof. To analyze the complexity of the generic
preflow algorithm, we begin by establishing three
important results:
(1) the total number of relabel operations is at most
2 n2.
(2) the algorithm performs at most nm canceling
pulls.
(3) the algorithm performs O(n2m) noncanceling
pulls.

This results can be proved in a manner similar to
the proof of complexity of the generic preflow
algorithm for the maximum flow problem.

We can maintain the set L of active nodes
organized as simply or doubly linked list, so that the
algorithm can add, delete or select elements from it
in O(1) time. Consequently, it is easy to implement
the generic algorithm in O(n2m) time.

In [8], Ciurea and Ciupală suggested a practical
improvement. We defined a minimum preflow as a
preflow with the minimum possible flow outgoing
from the source node. The generic algorithm for
minimum flow performs pull operations and relabel
operations at active nodes until all the deficit
reaches the source node or returns to the sink node.
Typically, the algorithm establishes a minimum
preflow long before it establishes a minimum flow.
After establishing a minimum preflow, the
algorithm performs relabel operations at active
nodes until their distance label are sufficiently
higher than n so it can pull flow back to the sink
node. We can modify the generic algorithm in the
following manner: we maintain a set N’ of nodes
that satisfy the property that the residual network
contains no path from the source node s to a node in

WSEAS TRANSACTIONS on COMPUTER RESEARCH Laura Ciupală, Eleonor Ciurea

ISSN: 1991-8755
37

Issue 1, Volume 3, January 2008

N’. Initially, N’ = {t}. We add nodes to N’ in the
following way: let nb(k) be the number of nodes
whose distance label is k. We can update nb(⋅) in
O(1) steps per relabel operation. Moreover,
whenever nb(k’) = 0 for some k’, any node j with
d(j) > k’ is disconnected from the set of nodes i with
d(i) < k’ in the residual network. So, we can add any
node j with d(j) > k’ to the set N’.

We do not perform pull or relabel operations for
nodes in N’ and terminate the algorithm when all
active nodes are in N’. At this point, the current
preflow is a minimum preflow. By the flow
decomposition theory, any preflow f can be
decomposed into a sequence of at most O(n+m)
paths and cycles. Let S be such a set of augmenting
paths and cycles. Let S0 ⊆ S be a set of paths which
start at a deficit node and terminate at sink node; let
f0 be the flow contributed by these path flows. Then
f* = f + f0 will be a minimum flow.

The generic preflow algorithm does not specify a
rule for selecting active nodes. By specifying
different rules we can develop many different
algorithms, which can be better then the generic
algorithm. For example, we could select active
nodes in FIFO order or we could always select the
active node with the highest distance label or we
could select an active node with a sufficiently large
excess.

4 FIFO Preflow Algorithm for
Minimum Flow
In an iteration, the generic preflow algorithm for
minimum flow selects a node, say node j, and
performs a canceling or a noncanceling pull, or
relabels the node. If the algorithm performs a
canceling pull, then node j might still be active, but,
in the next iteration, the algorithm may select
another active node for performing a pull or a
relabel operation. We can establish the rule that
whenever the algorithm selects an active node, it
keeps pulling flow from that node until either its
deficit becomes zero or the algorithm relabels the
node. We refer to a sequence of canceling pulls
followed either by a noncanceling pull or a relabel
operation as a node examination.
 The FIFO preflow algorithm for minimum flow
developed by Ciurea and Ciupală in [8], examines
active nodes in FIFO order. The algorithm maintains
the set L of the active nodes as a queue. It selects an
active node j from the front of L, performs pulls
from this node and adds newly active nodes to the
rear of L. The algorithm terminates when the queue
of active nodes is empty.

 The FIFO preflow algorithm for the minimum
flow problem is the following:

FIFO Preflow Algorithm;
Begin
 let f be a feasible flow in network G;

compute the exact distance labels d(⋅) in the resi-
dual network Gf;

 if t is not labeled then
 f is a minimum flow

 else begin
 L := Ø;

for each arc (i, t)∈A do
begin

 f(i, t) := l(i, t);
if (e(i)<0) and (i ≠ s) then

 add i to the rear of L;
end;

 d(t) := n;
 while L ≠ Ø do
 begin

remove the node j from the front of
 the queue L;

pull/relabel(j);
 end
 end
end.

procedure pull/relabel(j);
begin

select the first arc (i, j) that enters in node j;
 B := 1;
 repeat
 if (i, j) is an admissible arc then
 begin

pull g = min(-e(j), r(i, j)) units of flow
 from node j to node i;

if (i ∉ L) and (i ≠ s) and (i ≠ t) then
 add i to the rear of L;
 end;
 if e(j) < 0 then

if (i, j) is not the last arc entering in
node j then

 select the next arc (i, j) that enters
 in node j

else begin
 d(j) := min{ d(i) | (i, j) ∈Af }+1;
 B := 0;
 end;

until (e(j) = 0) or (B = 0);
 if e(j) < 0 then
 add j to the rear of L;
end;

WSEAS TRANSACTIONS on COMPUTER RESEARCH Laura Ciupală, Eleonor Ciurea

ISSN: 1991-8755
38

Issue 1, Volume 3, January 2008

Theorem 4 If there is a feasible flow in the network
G = (N, A, l, c, s, t), the FIFO preflow algorithm
computes correctly a minimum flow.

Proof. The correctness of the FIFO preflow
algorithm follows from the correctness of the
generic preflow algorithm (Theorem 2).

Theorem 5 The FIFO preflow algorithm runs in
O(n3) time.

Proof. This theorem can be proved in a manner
similar to the proof of the complexity of the FIFO
preflow algorithm for the maximum flow.

5 Deficit Scaling Algorithm
This algorithm is also a special implementation of
the generic preflow algorithm for minimum flow
and, like all preflow algorithms for minimum flow,
it maintains a preflow at every step and proceeds by
pulling the deficits of the active nodes closer to the
source node. For measuring closeness it uses the
exact distance labels. Consequently, pulling the
deficits from the active nodes closer to the source
node means decreasing flow on admissible arcs.

Let emax = max {-e(i) | i is an active node}.
The deficit dominator is the smaller integer r

that is a power of 2 and satisfies emax ≤ r . We refer
to a node i with e(i) ≤ - r /2 as a node with large
deficit and as a node with small deficit otherwise.

The scaling deficit algorithm for the minimum
flow always pulls flow from active nodes with
sufficiently large deficits to nodes with sufficiently
small deficits in order to not allow that a deficit
becomes too large.

The deficit scaling algorithm for the minimum
flow is the following:

Deficit scaling algorithm;
begin

let f be a feasible flow in network G;
compute the exact distance labels d(⋅) in the
residual network Gf;
if t is not labeled then f is a minimum flow
else begin

 for each arc (i, t)∈ A do f(i, t) := l(i, t);
 d(t) := n;
 r :=2⎡logC⎤;
 while r ≥ 1 do
 begin

while the network contains an active
node with a large deficit do
begin

among active nodes with large
deficits, select a node j with the
smallest distance label;
if the network contains an
admissible arc (i, j) then

if i ≠ t then
pull g = min {-e(j), r(i, j),
r +e(i)} units of flow from
node j to node i;

 else
pull g = min {-e(j), r(i, j)}
units of flow from node j to
node i;

else
d(j) := min{ d(i) | (i, j) ∈Af }+1;

end
r := r /2;

end
end

end.

Let us refer to a phase of the algorithm during
which r remains constant as a scaling phase and a
scaling phase with a specific value of r as a r -
scaling phase.

Theorem 6 If there exists a feasible flow in the
network G = (N, A, l, c, s, t), then the deficit scaling
algorithm determines a minimum flow.

Proof. The algorithm starts with r :=2⎡logC⎤, C ≤ r
≤ 2C. During the r -scaling phase, emax might
increase or decrease but it must meet the condition
r /2 < emax ≤ r . When emax ≤ r /2, the algorithm
halves the value of r and begins a new scaling
phase. After 1+⎡logC⎤ scaling phases, emax becomes
0 and we obtain a minimum flow.

Actually, the algorithm terminates with optimal
residual capacities. From these optimal residual
capacities, we can determine a minimum flow as we
did in Section 3.

Theorem 7 During each r - scaling phase, the
algorithm satisfies the following two conditions:
(a) each noncanceling pull decreases the flow by at
least r /2 units
(b) emax ≤ r .

Proof. (a) We consider a noncanceling pull on arc
(i, j). Since (i, j) is an admissible arc, d(j) = d(i) + 1
> d(i). But, j is a node with a smallest distance label
among all nodes with a large deficit. Thus, e(j) ≤
- r /2 and e(i) >- r /2. Since this pull is a

WSEAS TRANSACTIONS on COMPUTER RESEARCH Laura Ciupală, Eleonor Ciurea

ISSN: 1991-8755
39

Issue 1, Volume 3, January 2008

noncanceling pull, it decreases the flow by
min {-e(j),

r +e(i)} ≥ r /2.

(b) A pull on arc (i, j) increases only the absolute
value of the deficit of node i. The new deficit of
node i is e’(i) = e(i) - min {-e(j), r(i, j), r +e(i)} ≥
e(i) - (r +e(i)) = - r . Thus, e’(i) ≥ - r and emax ≤ r .

Theorem 8 During each scaling phase, the
algorithm performs O(n2) noncanceling pulls.

Proof. We consider the potential function
F = -Σ

i∈N e(i)d(i)/ r . The initial value of F at the

beginning of the r -scaling phase is bounded by 2n2
because e(i) ≥ - r and d(i) ≤ 2n for all i ∈ N. After
the algorithm has selected node j, one of the
following two cases must apply:
Case 1. The algorithm is unable to find an
admissible arc along which it can pull flow. In this
case the distance label of node j increases by q ≥ 1
units. This increases F by at most q units because
e(i) ≥ - r . Since for each i the total increase in d(i)
throughout the running of the algorithm is bounded
by 2n, the total increase in F due to relabelings of
nodes is bounded by 2n2.
Case 2. The algorithm is able to find an admissible
arc along which it can pull flow, so it performs
either a canceling or a noncanceling pull. In either
case, F decreases. After a noncanceling pull on arc
(i, j), the flow from node i to node j decreases by at
least r /2 units and F decreases by at least 1/2 units
because d(j) = d(i) + 1. As the initial value of F at
the beginning of the scaling phase plus the increase
in F sum to at most 4n2, this case cannot occur more
than 8n2 times. Thus, the algorithm performs O(n2)
noncanceling pulls per scaling phase.

Theorem 9 The deficit scaling algorithm runs in
O(nm+n2 logC) time.

Proof. Since the algorithm performs O(logC)
scaling phases, from Theorem 8 it follows that the
algorithm performs O(n2 logC) noncanceling pulls in
total. The other operations (canceling pulls, relabel
operations and finding admissible arcs) require
O(nm) time (this can be proved in a similar way as
Ciurea and Ciupală proved the complexity of the
generic preflow algorithm in [9]). Consequently, the
deficit scaling algorithm runs in O(nm+n2 logC)
time.

6 Highest-Label Preflow Algorithm
The highest-label preflow algorithm for minimum
flow examines always an active node with the

highest distance label. The algorithm maintains the
set L of the active nodes as a priority queue, with
priority d. It selects an active node j with the highest
priority from the priority queue L, performs pulls
from this node and adds newly active nodes to L.
The algorithm terminates when the priority queue of
active nodes is empty.
 The highest-label preflow algorithm always
pulls flow from an active node with the highest
distance label. Let h = max {d(i) | i is active}. The
algorithm first examines nodes with distance label
equal to h and pulls the flow from these nodes to
nodes with distance labels equal to h - 1 and, from
these nodes, to the nodes with distance labels equal
to h – 2 and so on until the algorithm relabels a node
or it has analyzed all the active nodes. When it has
relabeled a node, the algorithm repeats the same
process. If the algorithm does not relabel any node
during n consecutive node examinations, all the
deficit reaches the source or the sink and the
algorithm terminates.

The highest-label preflow algorithm for the
minimum flow problem is the following:

Highest-Label Preflow Algorithm;
Begin
 let f be a feasible flow in network G;

compute the exact distance labels d(⋅) in the resi-
dual network Gf;

 if t is not labeled then
 f is a minimum flow

 else begin
 L := Ø;

for each arc (i, t)∈A do
begin

 f(i, t) := l(i, t);
if (e(i)<0) and (i ≠ s) then

add i with priority d(i) to the
priority queue L;

end;
 d(t) := n;
 while L ≠ Ø do
 begin

remove the node j with the highest
priority from the priority queue L;
pull/relabel(j);

 end
 end
end.

procedure pull/relabel(j);
begin

select the first arc (i, j) that enters in node j;
 B := 1;

WSEAS TRANSACTIONS on COMPUTER RESEARCH Laura Ciupală, Eleonor Ciurea

ISSN: 1991-8755
40

Issue 1, Volume 3, January 2008

 repeat
 if (i, j) is an admissible arc then
 begin

pull g = min(-e(j), r(i, j)) units of flow
 from node j to node i;

if (i ∉ L) and (i ≠ s) and (i ≠ t) then
add i with priority d(i) to the
priority queue L;

 end;
 if e(j) < 0 then

if (i, j) is not the last arc entering in
node j then

 select the next arc (i, j) that enters
 in node j

else begin
 d(j) := min{ d(i) | (i, j) ∈Af }+1;
 B := 0;
 end;

until (e(j) = 0) or (B = 0);
 if e(j) < 0 then
 add j with priority d(j) to the priority queue L;
end;

Theorem 10 If there is a feasible flow in the
network G = (N, A, l, c, s, t), the highest-label
preflow algorithm computes correctly a minimum
flow.

Proof: The correctness of the highest-label preflow
algorithm follows from the correctness of the
generic preflow algorithm.

Actually, the algorithm terminates with optimal
residual capacities. From these optimal residual
capacities, we can determine a minimum flow as we
did in Section 3.

Theorem 11 The highest-label preflow algorithm
runs in O(n2m1/2) time.

Proof. This theorem can be proved in a manner
similar to the proof of the complexity of the highest-
label preflow algorithm for the maximum flow. (see
[1]).

 Consequently, by using the priority queues
instead of queues in the FIFO preflow algorithm, we
obtained an algorithm which is substantially faster
than the FIFO preflow algorithm and the generic
preflow algorithm for minimum flow problem.

7 Conclusion
In this paper, first we described the known
algorithms for the minimum flow problem and after
this we introduced the highest-label preflow
algorithm for the minimum flow problem. This
algorithm is a special implementation of the generic
preflow algorithm for minimum flow (described in
[8]), obtained by imposing in the generic preflow
algorithm the rule that the algorithm must always
select an active node with the highest distance label.
Our new algorithm runs in O(n2m1/2) time, which is
substantially better than the running time of the
generic preflow algorithm, that is O(n2m).
Moreover, the highest-label preflow algorithm is the
fastest polynomial algorithm for minimum flow
problem. Table 1 summarizes the preflow
algorithms for determining minimum flow and their
complexities.
 Table 1
Preflow algorithm for mini-
mum flow

Running time

Generic preflow algorithm O(n2m)
FIFO preflow algorithm O(n3)
Deficit scaling algorithm O(nm+n2 logC)
Highest-label preflow algo-
rithm

O(n2m1/2)

References:
[1] R. Ahuja, T. Magnanti and J. Orlin, Network

flows. Theory, algorithms and applications,
Prentice Hall, Inc., Englewood Cliffs, NJ,
1993.

[2] J. Bang-Jensen and G. Gutin, Digraphs:
Theory, Algorithms and Applications, Springer-
Verlag, London, 2001.

[3] L. Ciupală, A deficit scaling algorithm for the
minimum flow problem, Sadhana Vol.31, No.
3, 2006, pp.1169-1174.

[4] L. Ciupală, A scaling out-of-kilter algorithm
for minimum cost flow, Control and
Cybernetics Vol.34, No.4, 2005, pp. 1169-
1174.

[5] L. Ciupală and E. Ciurea, A highest-label
preflow algorithm for the minimum flow
problem, Proceedings of the 11th WSEAS
International Conference on Computers, 2007,
pp. 565-569.

[6] L. Ciupală and E. Ciurea, An algorithm for the
minimum flow problem, The Sixth
International Conference of Economic
Informatics, 2003, pp. 167-170.

[7] L. Ciupală and E. Ciurea, An approach of the
minimum flow problem, The Fifth

WSEAS TRANSACTIONS on COMPUTER RESEARCH Laura Ciupală, Eleonor Ciurea

ISSN: 1991-8755
41

Issue 1, Volume 3, January 2008

International Symposium of Economic
Informatics, 2001, pp. 786-790.

[8] E. Ciurea and L. Ciupală, Sequential and
parallel algorithms for minimum flows,
Journal of Applied Mathematics and
Computing Vol.15, No.1-2, 2004, pp. 53-78.

[9] E. Ciurea and L. Ciupală, Algorithms for
minimum flows, Computer Science Journal of
Moldova Vol.9, No.3(27), 2001, pp. 275-290.

[10] S. Fujishige, A maximum flow algorithm using
MA ordering, Oper. Res. Lett. 31, No. 3, 176-
178, 2003.

[11] S. Fujishige and S. Isotani, New maximum
flow algorithms by MA orderings and scaling,

J. Oper. Res. Soc. Japan 46, No. 3, 243-250,
2003.

[12] A. V. Goldberg and R. E. Tarjan, A New
Approach to the Maximum Flow Problem,
Journal of ACM Vol.35, 1988, pp. 921-940.

[13] S. Kumar and P. Gupta, An incremental
algorithm for the maximum flow problem, J.
Math. Model. Algorithms 2, No.1, 1-16, 2003.

[14] A. Schrijver, On the history of the
transportation and maximum flow problems,
Math. Program. 91, No.3, 437-445, 2002.

[15] K.D. Wayne, A polynomial Combinatorial
Algorithm for Generalized Minimum Cost
Flow, Math. Oper. Res., 445-459, 2002.

WSEAS TRANSACTIONS on COMPUTER RESEARCH Laura Ciupală, Eleonor Ciurea

ISSN: 1991-8755
42

Issue 1, Volume 3, January 2008

