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Abstract: - In this paper, we describe the highest-label preflow algorithm for minimum flow. This algorithm is 
a special implementation of the generic preflow algorithm developed by Ciurea and Ciupală in [8], obtained by 
imposing in the generic preflow algorithm the rule that the algorithm must always select an active node with the 
highest distance label. Our new algorithm runs in O(n2m1/2) time, which is substantially better than the running 
time of the generic preflow algorithm, that is O(n2m). Moreover, the highest-label preflow algorithm is the 
fastest polynomial algorithm for minimum flow problem. 
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1 Introduction 
The literature on network flow problem is extensive. 
Over the past 50 years researchers have made 
continuous improvements to algorithms for solving 
several classes of problems. From the late 1940s 
through the 1950s, researchers designed many of the 
fundamental algorithms for network flow, including 
methods for maximum flow and minimum cost flow 
problems. In the next decades, there are many 
research contributions concerning improving the 
computational complexity of network flow 
algorithms by using enhanced data structures, 
techniques of scaling the problem data etc. 

Although it has its own applications, the 
minimum flow problem was not dealt so often as the 
maximum flow ([1], [2], [10], [11], [12], [13], [14]) 
and the minimum cost flow problem ([1], [4], [15]). 
There are many problems that occur in economy 
that can be reduced to minimum flow problems.  

For instance, we present the machine setup 
problem. A job shop needs to perform p tasks on a 
particular day. It is known the start time π(i) and the 
end time π’(i) for each task i, i=1,...,p. The workers 
must perform these tasks according to this schedule 
so that exactly one worker performs each task. A 
worker cannot work on two jobs at the same time. It 
is known the setup time π2(i, j) required for a worker 
to go from task i to task j. We wish to find the 
minimum number of workers to perform the tasks. 

We can formulate this problem as a minimum 
flow problem in the network G=(N, A, l, c, s, t), 
where N=N1∪N2∪N3∪N4, N1={s}, N2={i | i=1,...,p}, 
N3={i’ | i’=1,...,p}, N4={t}, A=A1∪A2∪A3∪A4, 

A1={(s, i) | i∈N2}, A2={(i, i’) | i, i’=1,...,p}, A3=    
{(i’, j) | π’(i’)+π2(i’, j)≤π(j)}, A4={(i’, t) | i’∈N3}, 
l(s, i)=0, c(s, i)=1, for any (s, i)∈A1, l(i, i’)=1,       
c(i, i‘)=1, for any (i, i’)∈A2, l(i’, j)=0, c(i’, j)=1, for 
any (i’, j)∈A3, l(i’, t)=0, c(i’, t)=1, for any (i’, t)∈A4. 

We solve the minimum flow problem in the 
network G=(N, A, l, c, s, t) and the value of the 
minimum flow is the minimum number of workers 
that can perform the tasks. 

The minimum flow problem in a network can be 
solved in two phases: 
(1)   establishing a feasible flow, if there is one 
(2) from a given feasible flow, establish the 
minimum flow. 

The problem of determining a feasible flow can 
be reduced to a maximum flow problem (for details 
see [1]). 

For the second phase of the minimum flow 
problem there are three approaches: 

1. using decreasing path algorithms (see [8], 
[9]) 

2. using preflow algorithms (see [3], [5], [8], 
[9]) 

3. finding a maximum flow from the sink node 
to the source node in the residual network 
(see [2], [6]). 

 
 The preflow algorithms for the minimum flow 

are more efficient than the decreasing path 
algorithms. In [8], Ciurea and Ciupală presented a 
generic preflow algorithm that runs in O(n2m) time 
and a special implementation of it: FIFO preflow 
algorithm that runs in O(n3). In [3], Ciupală 
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developed a deficit scaling which is a special 
implementation of the generic preflow algorithm for 
minimum flow that pulls flow from active nodes 
with sufficiently large deficits. This algorithm runs 
in O(nm+n2 logC) time.     

 In this paper, first we describe the known 
algorithms for the minimum flow problem and after 
this we introduce the highest-label preflow 
algorithm for the minimum flow problem. This 
algorithm is a special implementation of the generic 
preflow algorithm for minimum flow (described in 
[8], [9]). As its name suggests, it always pulls flow 
from the active node with the highest distance label 
and it runs in O(n2m1/2) time. Consequently, the 
highest-label preflow algorithm is the fastest 
polynomial algorithm for minimum flow problem. 

 
 
2 Notation and definition 
We consider a capacitated network G = (N, A, l, c, s, 
t) with a nonnegative capacity c(i, j) and with a 
nonnegative lower bound l(i, j) associated with each 
arc (i, j)∈A. We distinguish two special nodes in the 
network G: a source node s and a sink node t. 

Let n=|N|, m = |A| and C = max { c(i, j) | (i, j) ∈ 
A}. 

A flow is a function f : A →R+ satisfying the next 
conditions: 

f(s, N) - f(N, s) = v    (1) 
f(i, N) - f(N, i) = 0, i ≠ s,t   (2) 
f(t, N) - f(N, t) = -v    (3) 
l(i, j) ≤ f(i, j) ≤ c(i, j), (i, j)∈A  (4) 

for some v ≥ 0, where 
f(i, N) = Σj f(i, j), i∈N 

and 
f(N, i) = Σj  f(j, i), i∈N. 
We refer to v as the value of the flow f. 
The minimum flow problem is to determine a 

flow f for which v is minimized. 
For the minimum flow problem, a preflow is a 

function f : A →R+  satisfying the next conditions: 
f(i, N) - f(N, i) ≤ 0, i ≠ s,t   (5) 
l(i, j) ≤ f(i, j) ≤ c(i, j), (i, j)∈A  (6) 
Let f be a preflow. We define the deficit of a 

node i∈N in the following manner: 
e(i) = f(i, N) - f(N, i)    (7) 
Thus, for the minimum flow problem, for any 

preflow f, we have e(i) ≤ 0, i∈N \{s, t}. 
We say that a node i∈N \{s, t} is active if e(i) < 0 

and balanced if e(i) = 0. 
A preflow f for which  
e(i) = 0, i∈N \{s, t} 

is a flow. Consequently, a flow is a particular case 
of preflow. 

For the minimum flow problem, the residual 
capacity  r(i, j) of any arc (i, j)∈A, with respect to a 
given preflow f,  is given by  

r(i, j)  = c(j, i) - f(j, i) + f(i, j) - l(i, j). 
By convention, if (j, i)∉A then we add arc (j, i) to 
the set of arcs A and we set l(j, i) = 0 and c(j, i) = 0. 
The residual capacity r(i, j) of the arc (i, j) 
represents the maximum amount of flow from the 
node i to node j that can be canceled. The network 
Gf  = (N, Af) consisting only of the arcs with positive 
residual capacity is referred to as the residual 
network (with respect to preflow f). 

In the residual network Gf  = (N, Af) the distance 
function  d : N →N  with respect to a given preflow 
f  is a function from the set of nodes to the 
nonnegative integers. We say that a distance 
function is valid if it satisfies the following 
conditions: 

d(s) = 0      (8) 
d(j) ≤ d(i) + 1, for every arc (i, j) ∈Af.  (9) 
We refer to d(i) as the distance label of node i. 

 
Theorem 1[3](a) If the distance labels are valid, 
the distance label d(i) is a lower bound on the 
length of the shortest directed path from node s to 
node i in the residual network. 

 (b)  If d(t) ≥ n, the residual network 
contains no directed path from the source node to 
the sink node. 
 

We say that the distance labels are exact if for 
each node i, d(i) equals the length of the shortest 
path from node s to node i  in the residual network. 

We refer to an arc (i, j) from the residual network 
as an admissible arc if d(j) = d(i) + 1; otherwise it is  
inadmissible. 

We refer to a node i with e(i) < 0 as an active 
node. We adopt the convention that the source node 
and the sink node are never active. 
 
 
3 Generic preflow algorithm 
This algorithm, developed by Ciurea and Ciupală in 
[8], begins with a feasible flow and sends back as 
much flow, as it is possible, from the sink node to 
the source node. Because the algorithm decreases 
the flow on individual arcs, it does not satisfy the 
mass balance constraints (1), (2) and (3) at 
intermediate stages. In fact, it is possible that the 
flow entering in a node exceeds the flow leaving 
from it. The basic operation of this algorithm is to 
select an active node and to send the flow entering 
in it back, closer to the source. For measuring 
closeness, we will use the distance labels d(⋅). Let j 
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be a node with strictly negative deficit. If it exists an 
admissible arc (i, j) we pull the flow on this arc; 
otherwise we relabel the node j so that we create at 
least one admissible arc.  

The generic preflow algorithm for the minimum 
flow problem is the following: 
 
Generic Preflow Algorithm; 
Begin 

let  f  be a feasible flow in network G; 
compute the exact distance labels d(⋅) in the 
residual network Gf;  
if t is not labeled then 

f  is a minimum flow 
else 

begin 
for each arc (i, t)∈A do 

 f(i, t) := l(i, t); 
d(t) := n; 
while  the network contains an active node  
do begin 

select an active node j; 
if the network contains an admissible arc   
(i, j) then 

pull g = min(-e(j), r(i, j)) units of  
flow from node j to node i; 

else d(j) := min{ d(i) | (i, j) ∈Af }+1 
end 

end 
end. 

 
A pull of g units of flow from node j to node i 

increases both e(j) and r(j, i) by g units and 
decreases both e(i) and r(i, j) by g units. We refer to 
the process of increasing the distance label of node 
j, d(j) := min{ d(i) | (i, j) ∈Af }+1, as a relabel 
operation. 
 
Theorem 2 If there is a feasible flow in the network 
G = (N, A, l, c, s, t), the generic preflow algorithm 
computes correctly a minimum flow. 
 
Proof. The algorithm terminates when the network 
does not contain any active nodes, therefore the 
current preflow is a flow. Since d(t) := n, the 
residual network contains no directed path from the 
source node to the sink node and Theorem 1(b) 
implies that the obtained flow is a minimum flow. 
 

Actually, the algorithm terminates with optimal 
residual capacities. From these residual capacities 
we can determine a minimum flow in several ways. 
For example, we can make a variable change: For 
all arcs (i, j), let  

c’(i, j) = c(i, j) - l(i, j), 

r’(i, j) = r(i, j), 
f’(i, j) = f(i, j) - l(i, j). 
The residual capacity of arc (i, j) is  
r(i, j) = c(j, i) - f(j, i) + f(i, j) - l(i, j) 

Equivalently,  
r’(i, j) = c’(j, i) – f’(j, i) + f’(i, j). 

We can compute the value of f’ in the following 
way: 

f’(i, j) = max(r’(i, j) - c’(j, i), 0). 
Converting back into the original variables, we 
obtain the following expression:  

f(i, j) = l(i, j) + max(r(i, j) - c(j, i) + l(j, i), 0). 
We refer to a pull of flow from node j to node i 

as a canceling pull if it deletes the arc (i, j) from the 
residual network; otherwise it is a noncanceling 
pull. 
 
Theorem 3 The generic preflow algorithm runs in 
O(n2m) time. 
 
Proof. To analyze the complexity of the generic 
preflow algorithm, we begin by establishing three 
important results: 
(1) the total number of relabel operations is at most 
2 n2. 
(2) the algorithm performs at most nm canceling 
pulls.  
(3) the algorithm performs O(n2m) noncanceling 
pulls. 

This results can be proved in a manner similar to 
the proof of complexity of the generic preflow 
algorithm for the maximum flow problem. 

We can maintain the set L of active nodes 
organized as simply or doubly linked list, so that the 
algorithm can add, delete or select elements from it 
in O(1) time. Consequently, it is easy to implement 
the generic algorithm in O(n2m) time.  
 

In [8], Ciurea and Ciupală suggested a practical 
improvement. We defined a minimum preflow as a 
preflow with the minimum possible flow outgoing 
from the source node. The generic algorithm for 
minimum flow performs pull operations and relabel 
operations at active nodes until all the deficit 
reaches the source node or returns to the sink node. 
Typically, the algorithm establishes a minimum 
preflow long before it establishes a minimum flow. 
After establishing a minimum preflow, the 
algorithm performs relabel operations at active 
nodes until their distance label are sufficiently 
higher than n so it can pull flow back to the sink 
node. We can modify the generic algorithm in the 
following manner: we maintain a set N’ of nodes 
that satisfy the property that the residual network 
contains no path from the source node s to a node in 
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N’. Initially, N’ = {t}. We add nodes to N’ in the 
following way: let nb(k) be the number of nodes 
whose distance label is k. We can update nb(⋅) in 
O(1) steps per relabel operation. Moreover, 
whenever nb(k’) = 0 for some k’,  any node j with 
d(j) > k’ is disconnected from the set of nodes i with 
d(i) < k’ in the residual network. So, we can add any 
node j with d(j) > k’ to the set N’.  

We do not perform pull or relabel operations for 
nodes in N’ and terminate the algorithm when all 
active nodes are in N’. At this point, the current 
preflow is a minimum preflow. By the flow 
decomposition theory, any preflow f can be 
decomposed into a sequence of at most O(n+m) 
paths and cycles. Let S  be such a set of augmenting 
paths and cycles. Let S0 ⊆ S be a set of paths which 
start at a deficit node and terminate at sink node; let 
f0 be the flow contributed by these path flows. Then 
f* = f + f0 will be a minimum flow.  

The generic preflow algorithm does not specify a 
rule for selecting active nodes. By specifying 
different rules we can develop many different 
algorithms, which can be better then the generic 
algorithm. For example, we could select active 
nodes in FIFO order or we could always select the 
active node with the highest distance label or we 
could select an active node with a sufficiently large 
excess.   

 
 

4 FIFO Preflow Algorithm for 
Minimum Flow 
In an iteration, the generic preflow algorithm for 
minimum flow selects a node, say node j, and 
performs a canceling or a noncanceling pull, or 
relabels the node. If the algorithm performs a 
canceling pull, then node j might still be active, but, 
in the next iteration, the algorithm may select 
another active node for performing a pull or a 
relabel operation. We can establish the rule that 
whenever the algorithm selects an active node, it 
keeps pulling flow from that node until either its 
deficit becomes zero or the algorithm relabels the 
node. We refer to a sequence of canceling pulls 
followed either by a noncanceling pull or a relabel 
operation as a node examination.  
 The FIFO preflow algorithm for minimum flow 
developed by Ciurea and Ciupală in [8], examines 
active nodes in FIFO order. The algorithm maintains 
the set L of the active nodes as a queue. It selects an 
active node j from the front of L, performs pulls 
from this node and adds newly active nodes to the 
rear of L. The algorithm terminates when the queue 
of active nodes is empty.  

 The FIFO preflow algorithm for the minimum 
flow problem is the following: 
 
FIFO Preflow Algorithm; 
Begin 
  let f  be a feasible flow in network G; 

compute the exact distance labels d(⋅) in the resi-  
dual network Gf; 

 if t is not labeled then  
 f is a minimum flow 

 else begin 
  L := Ø; 

for each arc (i, t)∈A do 
begin 

 f(i, t) := l(i, t); 
if  (e(i)<0) and (i ≠ s) then 

   add i to the rear of L; 
end; 

  d(t) := n; 
  while L ≠ Ø do 
  begin 

remove the node j from the front of 
    the queue L; 

pull/relabel(j); 
  end 
 end 
end. 
 
procedure pull/relabel(j); 
begin 

select the first arc (i, j) that enters in node j; 
 B := 1; 
 repeat 
  if (i, j) is an admissible arc then  
  begin 

pull g = min(-e(j), r(i, j)) units of flow  
   from node j to node i; 

if (i ∉ L) and (i ≠ s) and (i ≠ t) then  
   add i to the rear of L; 
  end; 
  if e(j) < 0  then  

if (i, j) is not the last arc entering in 
node j then 

   select the next arc (i, j) that enters 
   in node j 

else begin 
   d(j) := min{ d(i) | (i, j) ∈Af }+1; 
   B := 0; 
   end; 

until (e(j) = 0) or (B = 0); 
 if  e(j) < 0 then 
  add j to the rear of L; 
end; 
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Theorem 4  If there is a feasible flow in the network 
G = (N, A, l, c, s, t), the FIFO preflow algorithm 
computes correctly a minimum flow. 
 
Proof. The correctness of the FIFO preflow 
algorithm follows from the correctness of the 
generic preflow algorithm (Theorem 2).  
 
Theorem 5 The FIFO preflow algorithm runs in 
O(n3) time. 
 
Proof. This theorem can be proved in a manner 
similar to the proof of the complexity of the FIFO 
preflow algorithm for the maximum flow.  
 

 
5 Deficit Scaling Algorithm 
This algorithm is also a special implementation of 
the generic preflow algorithm for minimum flow 
and, like all preflow algorithms for minimum flow, 
it maintains a preflow at every step and proceeds by 
pulling the deficits of the active nodes closer to the 
source node. For measuring closeness it uses the 
exact distance labels. Consequently, pulling the 
deficits from the active nodes closer to the source 
node means decreasing flow on admissible arcs. 

Let emax = max {-e(i) | i is an active node}. 
The deficit dominator is the smaller integer r  

that is a power of 2 and satisfies emax  ≤ r  . We refer 
to a node i with e(i) ≤ - r /2  as a node with large 
deficit and as a node with small deficit  otherwise. 

The scaling deficit algorithm for the minimum 
flow always pulls flow from active nodes with 
sufficiently large deficits to nodes with sufficiently 
small deficits in order to not allow that a deficit 
becomes too large. 

The deficit scaling algorithm for the minimum 
flow is the following: 
 
Deficit scaling algorithm; 
begin 

let f  be a feasible flow in network G; 
compute the exact distance labels d(⋅) in the 
residual network Gf; 
if t is not labeled then f  is a minimum flow 
else begin 

 for each arc (i, t)∈ A do f(i, t) := l(i, t); 
 d(t) := n; 
 r :=2⎡logC⎤; 
 while r ≥ 1 do 
 begin 

while the network contains an active 
node with a large deficit do 
begin 

among active nodes with large 
deficits, select a node j with the 
smallest distance label;  
if the network contains an 
admissible arc (i, j) then  

if i ≠ t  then 
pull g = min {-e(j), r(i, j), 
r +e(i)} units of flow from 
node j to node i; 

       else 
pull g = min {-e(j), r(i, j)} 
units of flow from node j to 
node i; 

else 
d(j) := min{ d(i) | (i, j) ∈Af }+1; 

end 
r := r /2; 

end 
end 

end. 
 

Let us refer to a phase of the algorithm during 
which r  remains constant as a scaling phase and a 
scaling phase with a specific value of r  as a r -
scaling phase. 
 
Theorem 6 If there exists a feasible flow in the 
network G = (N, A, l, c, s, t),  then the deficit scaling 
algorithm determines a minimum flow. 
 
Proof. The algorithm starts with r :=2⎡logC⎤, C ≤ r  
≤ 2C. During the r -scaling phase, emax might 
increase or decrease but it must meet the condition 
r /2 < emax ≤ r . When emax ≤ r /2, the algorithm 
halves the value of r and begins a new scaling 
phase. After 1+⎡logC⎤ scaling phases, emax becomes 
0 and we obtain a minimum flow. 
 

Actually, the algorithm terminates with optimal 
residual capacities. From these optimal residual 
capacities, we can determine a minimum flow as we 
did in Section 3. 
 
Theorem 7 During each r  - scaling phase, the 
algorithm satisfies the following two conditions: 
(a) each noncanceling pull decreases the flow by at 
least r /2 units 
(b) emax ≤ r . 
 
Proof. (a) We consider a noncanceling pull on arc 
(i, j). Since (i, j) is an admissible arc, d(j) = d(i) + 1 
> d(i). But, j is a node with a smallest distance label 
among all nodes with a large deficit. Thus, e(j) ≤      
- r /2 and e(i) >- r /2. Since this pull is a 
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noncanceling pull, it decreases the flow by          
min {-e(j), 

 
r +e(i)} ≥ r /2. 

(b) A pull on arc (i, j) increases only the absolute 
value of the deficit of node i. The new deficit of 
node i is e’(i) = e(i) - min {-e(j), r(i, j), r +e(i)} ≥ 
e(i) - ( r +e(i)) = - r . Thus, e’(i) ≥ - r and emax ≤ r . 
 
Theorem 8 During each scaling phase, the 
algorithm performs O(n2) noncanceling pulls. 
 
Proof. We consider the potential function          
F = -Σ

      
i∈N e(i)d(i)/ r . The initial value of F at the 

beginning of the r -scaling phase is bounded by 2n2 
because e(i) ≥ - r and d(i) ≤ 2n for all i ∈ N. After 
the algorithm has selected node j, one of the 
following two cases must apply: 
Case 1. The algorithm is unable to find an 
admissible arc along which it can pull flow. In this 
case the distance label of node j increases by q ≥ 1 
units. This increases F by at most q units because 
e(i) ≥ - r . Since for each i the total increase in d(i) 
throughout the running of the algorithm is bounded 
by 2n, the total increase in F due to relabelings of 
nodes is bounded by 2n2. 
Case 2. The algorithm is able to find an admissible 
arc along which it can pull flow, so it performs 
either a canceling or a noncanceling pull. In either 
case, F decreases. After a noncanceling pull on arc 
(i, j), the flow from node i to node j decreases by at 
least r /2 units and F decreases by at least 1/2 units 
because d(j) = d(i) + 1. As the initial value of F at 
the beginning of the scaling phase plus the increase 
in F sum to at most 4n2, this case cannot occur more 
than 8n2 times. Thus, the algorithm performs O(n2) 
noncanceling pulls per scaling phase. 
 
Theorem 9 The deficit scaling algorithm runs in 
O(nm+n2 logC) time. 
 
Proof. Since the algorithm performs O(logC)  
scaling phases, from Theorem 8 it follows that the 
algorithm performs O(n2 logC) noncanceling pulls in 
total. The other operations (canceling pulls, relabel 
operations and finding admissible arcs)  require 
O(nm) time (this can be proved in a similar way as 
Ciurea and Ciupală proved the complexity of the 
generic preflow algorithm in [9]). Consequently, the 
deficit scaling algorithm runs in O(nm+n2 logC)  
time.  
 
 
6  Highest-Label Preflow Algorithm 
The highest-label preflow algorithm for minimum 
flow examines always an active node with the 

highest distance label. The algorithm maintains the 
set L of the active nodes as a priority queue, with 
priority d. It selects an active node j with the highest 
priority from the priority queue L, performs pulls 
from this node and adds newly active nodes to L. 
The algorithm terminates when the priority queue of 
active nodes is empty. 
 The highest-label preflow algorithm always 
pulls flow from an active node with the highest 
distance label. Let h = max {d(i) | i  is active}. The 
algorithm first examines nodes with distance label 
equal to h and pulls the flow from these nodes to 
nodes with distance labels equal to h - 1 and, from 
these nodes, to the nodes with distance labels equal 
to h – 2 and so on until the algorithm relabels a node 
or it has analyzed all the active nodes. When it has 
relabeled a node, the algorithm repeats the same 
process. If the algorithm does not relabel any node 
during n consecutive node examinations, all the 
deficit reaches the source or the sink and the 
algorithm terminates. 

The highest-label preflow algorithm for the 
minimum flow problem is the following: 
 
Highest-Label Preflow Algorithm; 
Begin 
  let f  be a feasible flow in network G; 

compute the exact distance labels d(⋅) in the resi-  
dual network Gf; 

 if t is not labeled then  
 f is a minimum flow 

 else begin 
  L := Ø; 

for each arc (i, t)∈A do 
begin 

 f(i, t) := l(i, t); 
if  (e(i)<0) and (i ≠ s) then 

add i with priority d(i) to the 
priority queue L; 

end; 
  d(t) := n; 
  while L ≠ Ø do 
  begin 

remove the node j with the highest 
priority from the priority queue L; 
pull/relabel(j); 

  end 
 end 
end. 
 
 
procedure pull/relabel(j); 
begin 

select the first arc (i, j) that enters in node j; 
 B := 1; 
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 repeat 
  if (i, j) is an admissible arc then  
  begin 

pull g = min(-e(j), r(i, j)) units of flow  
   from node j to node i; 

if (i ∉ L) and (i ≠ s) and (i ≠ t) then  
add i with priority d(i) to the 
priority queue L; 

  end; 
  if e(j) < 0  then  

if (i, j) is not the last arc entering in 
node j then 

   select the next arc (i, j) that enters 
   in node j 

else begin 
   d(j) := min{ d(i) | (i, j) ∈Af }+1; 
   B := 0; 
   end; 

until (e(j) = 0) or (B = 0); 
 if  e(j) < 0 then 
   add j with priority d(j) to the priority queue L; 
end; 
 
Theorem 10 If there is a feasible flow in the 
network G = (N, A, l, c, s, t), the highest-label 
preflow algorithm computes correctly a minimum 
flow. 
 
Proof:  The correctness of the highest-label preflow 
algorithm follows from the correctness of the 
generic preflow algorithm.  
 

Actually, the algorithm terminates with optimal 
residual capacities. From these optimal residual 
capacities, we can determine a minimum flow as we 
did in Section 3. 
 
Theorem 11 The highest-label preflow algorithm 
runs in O(n2m1/2) time. 
 
Proof. This theorem can be proved in a manner 
similar to the proof of the complexity of the highest-
label preflow algorithm for the maximum flow. (see 
[1]). 
 
 Consequently, by using the priority queues 
instead of queues in the FIFO preflow algorithm, we 
obtained an algorithm which is substantially faster 
than the FIFO preflow algorithm and the generic 
preflow algorithm for minimum flow problem. 
 
 
 
 

7 Conclusion 
In this paper, first we described the known 
algorithms for the minimum flow problem and after 
this we introduced the highest-label preflow 
algorithm for the minimum flow problem. This 
algorithm is a special implementation of the generic 
preflow algorithm for minimum flow (described in 
[8]), obtained by imposing in the generic preflow 
algorithm the rule that the algorithm must always 
select an active node with the highest distance label. 
Our new algorithm runs in O(n2m1/2) time, which is 
substantially better than the running time of the 
generic preflow algorithm, that is O(n2m). 
Moreover, the highest-label preflow algorithm is the 
fastest polynomial algorithm for minimum flow 
problem. Table 1 summarizes the preflow 
algorithms for determining minimum flow and their 
complexities. 
     Table 1 
Preflow algorithm for mini- 
mum flow 

Running time 

Generic preflow algorithm O(n2m) 
FIFO preflow algorithm O(n3) 
Deficit scaling algorithm O(nm+n2 logC) 
Highest-label preflow algo-
rithm 

O(n2m1/2) 
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