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Abstract: Grid scheduling, that is, the allocation of distributed computational resources to user applications, is
one of the most challenging and complex task in Grid computing. The problem of allocating resources in Grid
scheduling requires the definition of a model that allows local and external schedulers to communicate in order to
achieve an efficient management of the resources themselves. To this aim, some economic/market-based models
have been introduced in the literature, where users, external schedulers, and local schedulers negotiate to optimize
their objectives. In this paper, we propose a tender/contract-net model for Grid resource allocation, showing the
interactions among the involved actors. The performance of the proposed market-based approach is experimentally
compared with a round-robin allocation protocol.
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1 Introduction
Grids are distributed computational systems that al-
low users to access resources owned by different orga-
nizations [7]. Grid scheduling, that is, the allocation
of distributed computational resources to user applica-
tions, is one of the most challenging and complex task
in Grid computing. Nowadays, several are the real-life
applications in which Grids are involved; some prac-
tical fields are protein folding [9], weather modeling
[12], and satellite image processing [11].
One of the most known framework for Grid schedul-
ing is the one introduced by Ranganathan and Fos-
ter in [13]. In this architecture, users submit requests
for task execution from any one of a number of sites.
At each site, besides the local computing system, the
system model is composed by three components: an
External Scheduler(ES), responsible for determining
a particular site where a submitted task can be exe-
cuted; aLocal Scheduler(LS), responsible for deter-
mining the order in which tasks are executed at that
particular site; aDataset Scheduler(DS), responsible
for determining if and when to replicate data and/or
delete local files (see, e.g., [3] for Dataset Scheduler
strategies).
Resource site contains, in general, heterogeneous
computing resources interconnected by vendor-
independent networks.
In general, on receipt of a task request, the ES inter-
rogates the LSs to ascertain whether the task can be

executed on the available resources and meet the user-
specified due date. If this is the case, a specific site
in which executing that task is chosen. Otherwise, the
ES attempts to locate a LS of a site, controlled by an-
other ES, that can meet the task processing require-
ments, through search mechanisms. If a LS cannot
be located within a preset number of search steps, the
task request is either rejected or passed to another LS
that can minimize the due date failure depending on
a task request parameter. When a suitable site is lo-
cated, the task request is passed from the ES to this
site and is managed by the associated LS.
Within such a framework, most of the related work
in Grid computing dedicated to resource management
and scheduling adopts a conventional style where a
scheduling component decides which tasks are to be
executed at which site based on certain cost functions
(Legion [6], AppLeS [15], NetSolve [5]). Such cost
functions are often driven by system-centric param-
eters that enhance system throughput and utilization
rather than improving the utility of task processing.
Another important class of models to manage Grid
computing environment is that of economic models
in which the scheduling decision is not done stati-
cally by a single scheduling entity but directed by the
end users requirements. Whereas a conventional cost
model often deals with software and hardware costs
for running applications, the economic model primar-
ily charges the end user for resources that they con-
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sume based on the value they derive from it. Pric-
ing based on the demand of users and the supply of
resources is the main driver in the competitive, eco-
nomic market model. Moreover, in economic mod-
els, differently from what happens for the external-
local scheduler architecture aforementioned, the two
main actors driving the Grid marketplace are: Grid
Service Providers (GSPs), representing the resource
owners (i.e., the producers), playing the same role
as the LSs in the Ranganathan and Forster frame-
work, and Grid Resource Brokers (GRBs), represent-
ing the users (i.e., the consumers) in the Grid mar-
ketplace, whose role is in part encompassed by the
ESs in the previous model. In a generic marketplace
model framework, consumers interact with their own
brokers for managing and scheduling their applica-
tions on the Grid. The interaction between GRBs and
GSPs during resource trading (service cost establish-
ment) is mediated through a Grid Market Directory
(GMD). They use various economic models or inter-
action protocols for deciding service access price arise
from the real world market, e.g., commodity market,
tender/contract-net [1].
A number of systems have been built using a market
mechanism to allocate the computational resources
(e.g., see [1, 2, 10]), but all of them make the inherent
assumption that the market-based approach is per se
better. Two of the first attempts for investigating on
what circumstances the performance of such systems
can lead to some improvements appeared in [8, 16].
In this paper, that is an extension of a preliminary
work in [4], we apply the tender/contract-net model
which is one of the most widely used models for ser-
vice negotiation in a distributed problem solving en-
vironment [14]. In particular, we propose a quanti-
tative description of this model, showing the interac-
tions among the involved actors. We experimentally
evaluate the performance of the developed market-
based approach in different circumstances, compar-
ing it with respect to a simple round-robin allocation
protocol. The reminder of the paper is organized as
follows. Section 2 describes the general framework.
Section 3 describes the local scheduling policy and
Section 4 the proposed models. Section 5 gives com-
putational results; Section 6 concludes the paper.

2 Actors and Behavior Patterns
A set of users (clients) submits task requests to the
Grid requiring a certain level of service (los). This
los can be represented by means of a due date pro-
vided by the user within which he/she desires to re-
trieve the output/response of its task request and/or by
an amount of money (budget) that the user is willing
to pay (at most) to have its tasks executed (possibly)

within the specified due date.
A task requestj can be characterized by the following
parameters:

• rj : arrival date;

• Oj : size (i.e., the processing requirements), in
MI (Million Instructions);

• Bj : budget available for task execution, in G$
(Grid $);

• dj : due date;

• wj : weight, in G$ per time unit.

We assume that the task due date can be exceeded, but
this implies a certain loss of thelos. The amount of
this loss constitutes apenaltycost for the user, who
has submitted the task, which is assumed to be pro-
portional to the application tardiness or delay (i.e., the
positive difference between task completion time and
its due date). This cost affects the amount of money
that the user is willing to pay for task execution. The
penalty per time unit is specified by the weightwj of
taskj.
Tasks are processed without preemption, that is, a task
cannot migrate to another cluster once its execution is
started. Moreover, we assume that tasks are malleable,
that is, the number of resources of a cluster assigned to
a task may change during its execution, and a task can
be executed on several machines (of the same cluster)
in parallel and spread over an arbitrarily large fraction
of the available computational resources of a cluster.
The computational Grid responsible of task execution
is composed by a number of computing sites or ma-
chine clusters (servers), each one controlled by a local
scheduler. Let us consider a clusterm being charac-
terized by the following parameters:

• Pm: number of machines (i.e., PCs, worksta-
tions, processors) of the cluster;

• R∞

m : peak performance (computation capacity),
in million instructions per time unit (e.g., second)
(MIPS), of thei-th machine of the cluster;

• pi
m: computation price of machinei of clusterm,

in G$ per time unit.

We assume that the computational resource of each
machine of a cluster can be split and allocated to dif-
ferent tasks.
Task requests generated by the users are analyzed by
a set of external schedulers; we assume that each ex-
ternal scheduler is associated with a subset of users,
and is responsible only for their task submissions.
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The role of an external scheduler is twofold: on the
one hand, it acts in the Grid on the behalf of the user
looking at feasibility of thelos required; on the other
hand, it has to interact with the resource owners in the
Grid to allow a matching between tasks and resources
for their execution.
This kind of mechanism requires also a sort of co-
operation between these two layers, i.e., the external
scheduler and the local schedulers. When a user re-
quest is submitted, it is routed to an external sched-
uler for evaluation. Together with the request, the
external scheduler receives from the user thelos de-
sired. Since the users is not aware of the status of
the Grid and thus he/she does not know if enough re-
sources are available to allow the immediate process-
ing of the task, it can happen that the desiredlos is
not obtainable. Thus, the external scheduler has to de-
cide whether to accept or not that task request and in
the former case guaranteeing the associatedlos. To do
so, it has to interact with the local schedulers control-
ling machine clusters where resources reside to take a
decision about the task request acceptance. With this
setting, the performance of the system can be eval-
uated in terms of both number of successfully pro-
cessed tasks, i.e., the number of tasks finished respect-
ing their due dates, violations of the due dates, and the
number of tasks rejected, i.e., those not accepted by
the external scheduler.

3 Local scheduling policy
We assume that the computation cost that a user has to
pay to the computational resource owner for executing
his/her task is driven by a sort of supply-and-demand
model. That is, the more a cluster is loaded and the
greater is the price per MI that the a new user has to
to pay for scheduling his/her task on that cluster.
In order to represent the fact that the cluster price per
MI is an increasing function of the cluster utilization,
we assume that the machines of clusterm are indexed
in non-decreasing computation price order, and we as-
sume that the local scheduler of clusterm allocates
part of the computation capacity of machinei in time
period [t, t + dt) only if machinei − 1 is already
fully allocated (busy) in that period. Accordingly, we
model the computation price of machinei of cluster
m per time unit as

pi
m = pmax

m −
Pm − i

Pm − 1
(pmax

m − pmin
m ),

with pmax
m andpmin

m being the maximum and minimum
price per time unit of a machine of clusterm, respec-
tively. For example, if at a given unit time period (the
first) k machines are fully allocated, the computation

cost for executing one additional MI of taskj in that
unit time period is equal topk+1

m /R∞

m .
Note that, according to the supply-and-demand
model, the use of a cluster when its load is high is
discouraged, while it is encouraged the opposite situ-
ation, leading to load balancing. In fact, we assume
that the local scheduling policy aims to minimizing
the maximum peak of total cluster utilization (load).
Furthermore, we assume that when an ES asks the
LS of clusterm to schedule on that cluster a taskj,
besides the task sizeOj , it also specifies a required
completion timeCj for taskj. The LS finds the best
resource allocation to taskj according to the request
(Oj , Cj), trying to balance as much as possible the
total cluster utilization during the time interval when
the task should be executed. LetR

i
m(t) ≤ R∞

m be
the amount of the computational resource of machine
i of clusterm available in time period[t, t + dt). The
LS of clusterm computes the amount of computa-
tional resourcesρi

j,m(t) (with 0 < ρi
j,m(t) ≤ R

i
m(t))

of machinei to be allocated toj, for each time pe-
riod [t, t+dt) contained in time window[sj , Cj) with
sj ≥ rj , such that

∫ Cj

sj

Pm
∑

i=1

ρi
j,m(t)dt = Oj ,

and the maximum total load

max
t∈[sj ,Cj)

{

Pm
∑

i=1

(R∞

m − R
i
m(t) + ρi

j,m(t))

}

of clusterm in that time window is minimized.
The computation cost that the user should pay to the
resource owner for executing taskj on clusterm with
completion timeCj is therefore

cj,m(Cj) =

∫ Cj

sj

Pm
∑

i=1

pi
m

R∞
m

ρi
j,m(t) dt.

Note that if we suppose that the total amount

Rload
m (t) =

Pm
∑

i=1

(R∞

m − R
i
m(t))

of allocated resources (resource loading profile) of
cluster m (before scheduling taskj) is a non-
increasing function in the time interval[rj , +∞), the
optimal allocation of required resources for the exe-
cution of all theOj operations in the interval[sj , Cj)
can be obtained by guaranteeing that after scheduling
j the total load ofm is constant in that interval.
Moreover, this load balance in time interval[sj , Cj)
also guarantees that the total amount of allocated re-
sources is still non-increasing in the interval[rj , +∞)
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Step 1: The user submits taskj to a GRB.
Step 2.1: GRB announces resource requirements to GSPs

(through the GMD) forexecuting taskj of sizeOj in time
interval[rj , Cj), and invites offer bidsfrom GSPs.

Step 2.2: Interested GSPs evaluate the announcement, and respond
by submitting their bids to GMD.

Step 3.1: GRB evaluates the bids submitted by GSPs.
Step 3.2: GRB identifies the GSP responding with the best bid

(the one maximizing GRB utility) among all the offers.
Step 3.3: If the identified GSP guarantees to GRB a (maximum)

utility not less than zero taskj is accepted, and GRB
awards the contract to that GSP for executing the task;
otherwise, it is rejected.

Step 4: GRB uses the machine cluster of the selected GSP to
execute taskj, and proceed to the payment of the resource
fees to GSP.

Step 5: The user pays the GRB for executing its task.

Table 1: Steps performed at an user task submission

after scheduling taskj. Therefore, w.l.o.g., when a
new taskj′ is submitted to the Grid at timerj′ , we
assume that the resource loading profileRload

m (t) of
clusterm is a non-increasing function fort ≥ rj′ .

4 A tender/contract-net model
In this section we describe in detail the application of
an economic model, based on thetender/contract-net
protocol, for allocating Grid resources to user appli-
cations.
In the tender/contract-net protocol GRBs (managers)
announce their task requirements and invite bids from
GSPs (contractors). Interested GSPs evaluate the re-
quirements and submit their bids. Each GRB awards
the contract to the most appropriate GSP (maximizing
its utility function). In details, the steps performed
when a new application is submitted to the Grid are
reported in Table 1. The selected GSP responds with
anacceptanceor refusalof award. In particular, Step
4 is done if the award is accepted by the GSP, other-
wise GRB awards the contract to the second best GSP.
When selecting the GSP to which award the contract,
on the behalf of the user, the GRB maximizes its util-
ity function. The utility of GRB (i.e., the user util-
ity) for executing and completing taskj at timeCj on
clusterm is

Uj,m(Cj) = Bj − wj max(0, Cj − dj) − cj,m(Cj),

where we recall thatBj is the budget, i.e., the maxi-
mum amount of money the user is willing to pay for
executing taskj; the valuewj max(0, Cj − dj) is the
penalty for the task tardiness if task will be completed
at timeCj . The penalty decreases the budget value
Bj , such thatBj − wj max(0, Cj − dj) is the actual
amount of money the user would pay for the execu-
tion of the task with completion timeCj . The value

cj,m(Cj) is the computational (resource) cost, which
is the bid of the GSP of clusterm, when answer-
ing to the GRB request announcement represented by
(Oj , Cj).
Recall that, w.l.o.g., we assume that the resource load-
ing profile (i.e., the total allocated resource)

Rload
m (t) =

Pm
∑

i=1

(R∞

m − R
i
m(t))

of clusterm at timet is a non-increasing function, for
t ≥ rj . Also, recall that thePm machines of cluster
m are indexed in non-decreasing cost order, and that
some resources of machinei+1 are allocated to some
scheduled applications in time period[t, t + dt) only
if machinei is fully loaded in that time period.
The utility functionUj,m(Cj), for Cj ≥ rj , is piece-
wise linear, and even if it is not concave, in gen-
eral, finding its maximum value can be computed
very quickly. This follows from the fact that the re-
source costcj,m(Cj) is a piece-wise linear and non-
increasing function ofCj . In fact, since in the expres-
sion of Uj,m(Cj) the budgetBj is constant and the
penalty costwj max(0, Cj − dj) is equal to zero for
Cj < dj and linear forCj ≥ dj , we may restrict the
analysis of the resource costcj,m(Cj) for Cj ≥ dj . As
a consequence, the maximum value ofUj,m(Cj) can
be searched only amongCj values whereUj,m(Cj)
changes its slope: that is, forCj = dj , and for the
times when the slope of the resource costcj,m(Cj)
changes.
If such a maximum value is non-negative then taskj
is accepted and executed by the Grid; otherwise, it is
rejected.
W.l.o.g., we assumecj,m(Cj) = +∞ if there is no
sufficient amount of resources of clusterm for ex-
ecuting j in time interval [rj , Cj), and we say that
the completion timeCj is infeasible. Therefore, from
now we consider only feasible completion times forj.

Proposition 1 The resource costcj,m(t) is a non-
increasing function, for feasible completion timest ≥
rj .

Let τh
m (with τh

m ≥ rj) be theh-th time when the
loadRload

m (t) of clusterm changes (decreases). Note
that the number of such times is at most equal to the
number of tasks previously scheduled on clusterm,
which should be completed after timerj . Let us de-
note withTm the subset of feasible completion times
among timesτh

m. Eachτh
m ∈ Tm corresponds to the

maximum feasible completion time for taskj, whenj
is restricted to use only resources that are available at
time t < τh

m.
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Let θi
j,m (with θi

j,m ≥ rj) be the minimum feasi-
ble completion time of taskj, whenj is restricted to
use only resources belonging to the first (cheapest)i
machines (i.e., machines1, . . . , i) among thePm ma-
chines of clusterm. Let us denote withΘj,m the set
of timesθi

j,m. Note thatθ1
j,m ≥ θ2

j,m ≥ . . . ≥ θPm

j,m.

LetTj,m = (t1j,m, . . . , t
qj,m

j,m ) be the non-decreasing or-
dered list of feasible completion times of taskj, with
Tj,m = Θj,m ∪ Tm\{τh

m ∈ Tm : τh
m ≥ θ1

j,m}. In

particular,t1j,m = θPm

j,m, andt
qj,m

j,m = θ1
j,m.

Proposition 2 The resource costcj,m(t) is a lin-
ear function oft, for t ∈ (tsj,m, ts+1

j,m ), with s =
1, . . . , qj,m − 1.

Note that, by definition, taskj cannot be completed in
a feasible way before timet1j,m, hence, we assume that
cj,m(Cj) = +∞ for Cj < t1j,m; moreover, according
to Proposition 1, the resource cost valuescj,m(tsj,m)
does not increase for increasing indexs, andcj,m(Cj)

is constant forCj ≥ t
qj,m

j,m since in this case taskj
will use only resources of machine1 of clusterm.
Moreover, Proposition 2 states that in any time inter-
val (tsj,m, ts+1

j,m ), with s = 1, . . . , qj,m−1, the resource
costcj,m(t) varies linearly. Hence, this proves that

Theorem 3 The resource costcj,m(Cj) is a non-
increasing piece-wise linear function, for feasi-
ble completion timesCj ≥ rj , and Tj,m =

{t1j,m, . . . , t
qj,m

j,m } is the set of times wherecj,m(Cj)
changes the slope.

According to the definition of the utility function
Uj,m(Cj), and since the resource costcj,m(Cj) is non-
increasing, we have thatUj,m(Cj) is a non-decreasing
function in the interval[rj , dj). Therefore, there is
no utility for the GRB to demand computational re-
sources allowing taskj to be completed before its due
datedj . Hence, w.l.o.g., in order to find the maximum
value of the utility functionUj,m(Cj), we may restrict
the analysis ofUj,m(Cj) for feasible completion times
Cj ≥ dj . By Theorem 3,Uj,m(Cj) is also piece-
wise linear, and the maximum valueU∗

j,m is therefore
reached for

C∗

j ∈ {dj} ∪ {tsj,m ∈ Tj,m : tsj,m > dj}.

SinceTj,m = (Θj,m ∪ Tm\{τh
m ∈ Tm : τh

m ≥ θ1
j,m}),

the optimal completion timeC∗

j can be determined in
linear time with respect to the number of machinesPm

plus the number of times inTm, that is, the number of
tasks currently in execution on clusterm at timerj .
In particular, by definition,Tj,m is the union of a sub-
set of the timesτh

m when the resource loading profile

Rload
m (t) of clusterm changes, and the setΘj,m of Pm

times. Therefore, assuming that at the (current) time
rj when taskj is submitted, the information about the
resources of clusterm (i.e., the numberPm of ma-
chines ofm, and their peak performanceR∞

m ) is sup-
plied by GSP of that cluster and stored in the GMD,
and also the resource loading profileRload

m (t) of m
(i.e., the setTm of timesτh

m whenRload
m (t) changes,

along with the values ofRload
m (τh

m)) is known and sup-
plied to the GMD, there is no need in Step 2.1 for the
GRB to make an announcement(Oj , Cj) to the GPS
of clusterm, for everyCj ≥ rj , but only forCj ∈ Tm.
Note that the setTj,m can be easily determined by
GRB by interrogating the GMD where the informa-
tion about the current status of the Grid resources is
available: the GRB interrogates the GMD to obtain
the setTm of times when the resource loading profile
data of clusterm changes, and to determine the set
Θj,m of timesθi

j,m on the basis of the task sizeOj ,
the cluster resources, and the resource loading profile
Rload

m (t) of m stored in the GMD.

5 A simulation study
We experimentally evaluate the performance of the
proposed economic model comparing it with the
round-robin protocol.

5.1 Round-robin
In the round-robin protocol, incoming task queries are
matched with the next available resource offer which
meets the task requirements. For this purpose, an iter-
ator is used which cycles through the list of resource
offers issued by the clusters.
Each cluster resource offer refers to the offer for
scheduling the incoming task on that cluster in or-
der to complete the task as earliest as possible, by
assigning to the task all the available computational
resources of the cluster. On arrival of a new task the
list of clusters is searched until a resource offer is
found that satisfies the task requirements (size, due-
date, budget). The search starts at the current position
of the iterator. In case of success, the resource of-
fer is taken and the task is scheduled on that cluster,
assigning to that task all the available computational
resources of the cluster. Otherwise, the iterator is also
incremented, and the next resource offer (cluster) is
considered. This step is repeated until all clusters have
been checked or a match has been found; in the former
case the task is rejected, while in the latter the task is
scheduled on the selected cluster. In particular, at each
iteration the computational cost of executing the task
in the current cluster in order to be completed as ear-
liest as possible plus the penalty cost of exceeding the
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task due date is compared with the task budget, and
the resource offer is taken (i.e., the cluster is selected)
if the task budget is not less than the sum of these two
costs.

5.2 The simulated scenarios
We consider two different scenarios for the Grid sys-
tem.

• Scenario 1 considers the case where tasks are
mono-thematic applications and their requests
are submitted to the same External Scheduler
(GRB).

• Scenario 2 considers heterogenous tasks and
there are as many GRBs as many tasks.

While in Scenario 1 there is a single GRB that inter-
acts with the GSPs considering one task at a time ac-
cording to a given task ordering (e.g., FIFO), in Sce-
nario 2 there are many GRBs interacting at the same
time with the GSPs. Therefore, in the latter scenario
the GSP of a cluster may receive awards from many
GRBs, and it will respond with anacceptanceonly to
the award related to the most useful announcement for
the cluster, and with arefusalto the other awards.
In both the above described scenarios we use the fol-
lowing data set for the Grid simulation.
We consider a Grid system constituted by 10 clusters.
Each cluster has 10 machines or resource units (pro-
cessors), with the same speed equal to 400 MIPS (mil-
lion instructions per second). For all the clusters, the
minimum and maximum price of a machine per time
unit (i.e. second) is 6 and 8 G$ per time unit, respec-
tively.
Tasks arrive according to a Poisson arrival process
whereλ is the average arrival rate (i.e., number of
tasks per time unit). On average, 45% of the arriv-
ing tasks arebackgroundtasks, that is, tasks generated
inside the clusters by the resource owners, and 55%
are external tasks generated by the Grid users. Back-
ground tasks of a cluster have priority over external
tasks submitted to that cluster, and they are scheduled
immediately on the available resources of the cluster
in order to be finished as earliest as possible.
The sizeOi of a task is equal to 10000 MI plus a uni-
formly generated number between± 10% of 10000
MI.
The due-datedi of a task is equal tori + run time +
wait time plus a uniformly generated number be-
tween± 10% of(run time + wait time), whereri

is the task arrival date,run time = 5 time units is
the expected task run time supposing that half of the
computational resources of a cluster is allocated to the
task, andwait time is the allowed task waiting time.

The budgetBi of a task is equal to 250 G$ plus a
uniformly generated amount between± 10% of 250
G$. Finally, task weightwi is equal toBi/(di − ri −
run time).

5.3 Simulation results
The length of each simulation is 100 time units. Dur-
ing the first and last 10 time units no measurements
are made to ensure the evaluation of the system at its
steady state. We have experimented with different val-
ues ofλ andwait time parameters.
In the following, we report results withλ = 1, . . . , 10,
and with a fixed value forwait time = 5 time units.
Accordingly, the average number of tasks generated in
each simulation is100, . . . , 1000 tasks, respectively.
The simulator was coded in the C language and the
time required to finish a simulation run is not greater
that 1 second on a Pentium IV PC.
Figure 1(a) shows the average cluster load (in percent-
age) due to background tasks, the total load with the
economic model (ECO) both for Scenario 1 (ECO1)
and Scenario 2 (ECO2), and with the Round-Robin
(RR) protocol. For low congested cases (λ ≤ 3), we
have no significant difference between the results of
ECO (in both the two simulated scenarios) and of RR,
and the total average load reach70% with λ = 3. For
medium/high congested cases, and in particular with
λ ≥ 4, the overall load is greater than70% in all the
cases; nevertheless, while with RR it is always less
than90%, with ECO it reaches95.5% for λ = 7 (both
in ECO1 and ECO2), with an improvement of more
than19% with respect to RR.
For greater arrival rates (i.e.,λ ≥ 8) the difference
between the cluster load with ECO and with RR de-
creases. Nevertheless, forλ ≥ 8 the Grid system
becomes very high congested and more than80% of
the incoming tasks has been rejected as shown in Fig-
ure 1(b) where the ratio (in percentage) between the
number of rejected tasks and the number of submitted
tasks are plotted for different values ofλ. In partic-
ular, Figure 1(b) shows that even for low congested
cases (i.e.,λ ≤ 4) a significant amount of submitted
tasks has been rejected by the Grid with RR (more
than32.4% with λ = 4), in opposition to a very small
fraction (6.7%) with ECO. In medium/high congested
case (e.g.,λ = 7), RR rejects more than88.5% tasks
while with ECO the fraction of rejected tasks is no
more than66.3%. Also for very high congested cases
(λ ≥ 8) there is a significant gap between the fraction
of rejected tasks with RR protocol and ECO model.
Finally, there is a negligible difference in the perfor-
mance of ECO comparing Scenarios 1 (ECO1) and 2
(ECO2), that shows a high level of robustness of the
economic model.
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Figure 1: Computational results 1 of 2.
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Figure 2: Computational results 2 of 2.
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Figure 1(c) shows the trend of the average computa-
tional cost per scheduled task (among the scheduled
tasks), as a function of task arrival rateλ. With RR
protocol the task computational cost is almost inde-
pendent fromλ and on average equal to 137 G$; this
is due to the logic of RR protocol where all the avail-
able resources of the selected cluster is assigned to the
submitted task in order to finish it as earliest as pos-
sible. With ECO the average task computational cost
increases withλ from 126 G$ (withλ = 1) to 138
G$ (with λ = 10, and Scenario 2 (ECO2)), and it is
always less than the value obtained with RR. In par-
ticular, there is a non-negligible difference between
the two experimented scenarios (see ECO1 and ECO2
curves) forλ ≥ 5, with a greater computational cost
in Scenario 2, where many GRBs interacts with each
GSP, and hence each GSP accept the most profitable
award for the GSP itself, resulting in a greater average
profit for the resource owners than that of Scenario 1.
Figure 2(a) shows the average utility of submitted task
as a function ofλ. Both scheduled and rejected tasks
are considered in this evaluation, with the utility of re-
jected tasks fixed to zero, and the utility of scheduled
tasks equal to the difference between the task bud-
get (fixed to 250 G$ per task) and the task execution
cost (computational cost plus penalty cost). The fig-
ure shows that task utility decreases withλ, but with
ECO the average task utility is always greater than that
with RR protocol in both the two evaluated scenarios.
In particular there is a significant gap among task util-
ities obtained with ECO and RR in the medium/high
congested case (i.e.,λ between 3 and 5).
Figure 2(b) shows the average penalty cost of submit-
ted task as a function ofλ (rejected task are penalized
by an amount equal to their budget). Clearly, penalty
cost increases withλ. Also for this analysis it can
be noted that with ECO we obtain better results com-
pared to RR. In particular, for low congested cases
(λ ≤ 3) all submitted tasks have been scheduled and
finished within their due dates with ECO (i.e. task
penalty equal to zero), while with RR we have an av-
erage task penalty equal to 23.5 G$ forλ = 3.
Finally, Figure 2(c) shows the average tardiness of
scheduled tasks. For low congested cases (λ ≤ 3)
task tardiness is always equal to zero with ECO, and
almost equal to zero with RR. For medium/high and
very high congested case, we get a smaller tardiness
with RR with respect to ECO, but in any case the av-
erage tardiness is very small (less than 1.5 time units).
The fact that with RR we get better results is due to
the policy of RR that schedules tasks on the selected
cluster in order to finish the task as earliest as possible,
while with ECO the task are scheduled trying to maxi-
mize their utility, and there is no advantage in terms of
task utility to finish tasks earlier than their due dates.

6 Conclusions
The problem of allocating resources in Grid schedul-
ing requires the definition of a model that allows local
and external schedulers to communicate to achieve an
efficient management of the resources themselves. To
this aim, some economic/market-based models have
been introduced in the literature, where users, exter-
nal schedulers, and local schedulers negotiate to op-
timize their objectives. In this paper, we presented
a tender/contract-net model for Grid resource alloca-
tion, showing the interactions among the involved ac-
tors. The behavior of the proposed approach was ex-
perimentally compared with a round-robin allocation
protocol, showing how the former is able to produce
more effective results in terms of both system load and
execution cost.
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